1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Copyright 2019-2021 Parity Technologies (UK) Ltd.
// This file is part of Cumulus.

// Cumulus is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Cumulus is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Cumulus.  If not, see <http://www.gnu.org/licenses/>.

use codec::Decode;
use polkadot_primitives::{
	Block as PBlock, Hash as PHash, Header as PHeader, PersistedValidationData, ValidationCodeHash,
};

use cumulus_primitives_core::{
	relay_chain::{BlockId as RBlockId, OccupiedCoreAssumption},
	ParaId,
};
use cumulus_relay_chain_interface::{RelayChainError, RelayChainInterface};

use sc_client_api::{Backend, HeaderBackend};
use sc_consensus::{shared_data::SharedData, BlockImport, ImportResult};
use sp_blockchain::Backend as BlockchainBackend;
use sp_consensus_slots::Slot;
use sp_runtime::traits::{Block as BlockT, Header as HeaderT};
use sp_timestamp::Timestamp;

use std::{sync::Arc, time::Duration};

mod level_monitor;
mod parachain_consensus;
#[cfg(test)]
mod tests;

pub use parachain_consensus::run_parachain_consensus;

use level_monitor::LevelMonitor;
pub use level_monitor::{LevelLimit, MAX_LEAVES_PER_LEVEL_SENSIBLE_DEFAULT};

pub mod import_queue;

/// Provides the hash of validation code used for authoring/execution of blocks at a given
/// hash.
pub trait ValidationCodeHashProvider<Hash> {
	fn code_hash_at(&self, at: Hash) -> Option<ValidationCodeHash>;
}

impl<F, Hash> ValidationCodeHashProvider<Hash> for F
where
	F: Fn(Hash) -> Option<ValidationCodeHash>,
{
	fn code_hash_at(&self, at: Hash) -> Option<ValidationCodeHash> {
		(self)(at)
	}
}

/// The result of [`ParachainConsensus::produce_candidate`].
pub struct ParachainCandidate<B> {
	/// The block that was built for this candidate.
	pub block: B,
	/// The proof that was recorded while building the block.
	pub proof: sp_trie::StorageProof,
}

/// A specific parachain consensus implementation that can be used by a collator to produce
/// candidates.
///
/// The collator will call [`Self::produce_candidate`] every time there is a free core for the
/// parachain this collator is collating for. It is the job of the consensus implementation to
/// decide if this specific collator should build a candidate for the given relay chain block. The
/// consensus implementation could, for example, check whether this specific collator is part of a
/// staked set.
#[async_trait::async_trait]
pub trait ParachainConsensus<B: BlockT>: Send + Sync + dyn_clone::DynClone {
	/// Produce a new candidate at the given parent block and relay-parent blocks.
	///
	/// Should return `None` if the consensus implementation decided that it shouldn't build a
	/// candidate or if there occurred any error.
	///
	/// # NOTE
	///
	/// It is expected that the block is already imported when the future resolves.
	async fn produce_candidate(
		&mut self,
		parent: &B::Header,
		relay_parent: PHash,
		validation_data: &PersistedValidationData,
	) -> Option<ParachainCandidate<B>>;
}

dyn_clone::clone_trait_object!(<B> ParachainConsensus<B> where B: BlockT);

#[async_trait::async_trait]
impl<B: BlockT> ParachainConsensus<B> for Box<dyn ParachainConsensus<B> + Send + Sync> {
	async fn produce_candidate(
		&mut self,
		parent: &B::Header,
		relay_parent: PHash,
		validation_data: &PersistedValidationData,
	) -> Option<ParachainCandidate<B>> {
		(*self).produce_candidate(parent, relay_parent, validation_data).await
	}
}

/// Parachain specific block import.
///
/// This is used to set `block_import_params.fork_choice` to `false` as long as the block origin is
/// not `NetworkInitialSync`. The best block for parachains is determined by the relay chain.
/// Meaning we will update the best block, as it is included by the relay-chain.
pub struct ParachainBlockImport<Block: BlockT, BI, BE> {
	inner: BI,
	monitor: Option<SharedData<LevelMonitor<Block, BE>>>,
}

impl<Block: BlockT, BI, BE: Backend<Block>> ParachainBlockImport<Block, BI, BE> {
	/// Create a new instance.
	///
	/// The number of leaves per level limit is set to `LevelLimit::Default`.
	pub fn new(inner: BI, backend: Arc<BE>) -> Self {
		Self::new_with_limit(inner, backend, LevelLimit::Default)
	}

	/// Create a new instance with an explicit limit to the number of leaves per level.
	///
	/// This function alone doesn't enforce the limit on levels for old imported blocks,
	/// the limit is eventually enforced only when new blocks are imported.
	pub fn new_with_limit(inner: BI, backend: Arc<BE>, level_leaves_max: LevelLimit) -> Self {
		let level_limit = match level_leaves_max {
			LevelLimit::None => None,
			LevelLimit::Some(limit) => Some(limit),
			LevelLimit::Default => Some(MAX_LEAVES_PER_LEVEL_SENSIBLE_DEFAULT),
		};

		let monitor =
			level_limit.map(|level_limit| SharedData::new(LevelMonitor::new(level_limit, backend)));

		Self { inner, monitor }
	}
}

impl<Block: BlockT, I: Clone, BE> Clone for ParachainBlockImport<Block, I, BE> {
	fn clone(&self) -> Self {
		ParachainBlockImport { inner: self.inner.clone(), monitor: self.monitor.clone() }
	}
}

#[async_trait::async_trait]
impl<Block, BI, BE> BlockImport<Block> for ParachainBlockImport<Block, BI, BE>
where
	Block: BlockT,
	BI: BlockImport<Block> + Send,
	BE: Backend<Block>,
{
	type Error = BI::Error;

	async fn check_block(
		&mut self,
		block: sc_consensus::BlockCheckParams<Block>,
	) -> Result<sc_consensus::ImportResult, Self::Error> {
		self.inner.check_block(block).await
	}

	async fn import_block(
		&mut self,
		mut params: sc_consensus::BlockImportParams<Block>,
	) -> Result<sc_consensus::ImportResult, Self::Error> {
		// Blocks are stored within the backend by using POST hash.
		let hash = params.post_hash();
		let number = *params.header.number();

		if params.with_state() {
			// Force imported state finality.
			// Required for warp sync. We assume that preconditions have been
			// checked properly and we are importing a finalized block with state.
			params.finalized = true;
		}

		// Best block is determined by the relay chain, or if we are doing the initial sync
		// we import all blocks as new best.
		params.fork_choice = Some(sc_consensus::ForkChoiceStrategy::Custom(
			params.origin == sp_consensus::BlockOrigin::NetworkInitialSync,
		));

		let maybe_lock = self.monitor.as_ref().map(|monitor_lock| {
			let mut monitor = monitor_lock.shared_data_locked();
			monitor.enforce_limit(number);
			monitor.release_mutex()
		});

		let res = self.inner.import_block(params).await?;

		if let (Some(mut monitor_lock), ImportResult::Imported(_)) = (maybe_lock, &res) {
			let mut monitor = monitor_lock.upgrade();
			monitor.block_imported(number, hash);
		}

		Ok(res)
	}
}

/// Marker trait denoting a block import type that fits the parachain requirements.
pub trait ParachainBlockImportMarker {}

impl<B: BlockT, BI, BE> ParachainBlockImportMarker for ParachainBlockImport<B, BI, BE> {}

/// Parameters when searching for suitable parents to build on top of.
pub struct ParentSearchParams {
	/// The relay-parent that is intended to be used.
	pub relay_parent: PHash,
	/// The ID of the parachain.
	pub para_id: ParaId,
	/// A limitation on the age of relay parents for parachain blocks that are being
	/// considered. This is relative to the `relay_parent` number.
	pub ancestry_lookback: usize,
	/// How "deep" parents can be relative to the included parachain block at the relay-parent.
	/// The included block has depth 0.
	pub max_depth: usize,
	/// Whether to only ignore "alternative" branches, i.e. branches of the chain
	/// which do not contain the block pending availability.
	pub ignore_alternative_branches: bool,
}

/// A potential parent block returned from [`find_potential_parents`]
pub struct PotentialParent<B: BlockT> {
	/// The hash of the block.
	pub hash: B::Hash,
	/// The header of the block.
	pub header: B::Header,
	/// The depth of the block.
	pub depth: usize,
	/// Whether the block is the included block, is itself pending on-chain, or descends
	/// from the block pending availability.
	pub aligned_with_pending: bool,
}

/// Perform a recursive search through blocks to find potential
/// parent blocks for a new block.
///
/// This accepts a relay-chain block to be used as an anchor and a maximum search depth,
/// along with some arguments for filtering parachain blocks and performs a recursive search
/// for parachain blocks. The search begins at the last included parachain block and returns
/// a set of [`PotentialParent`]s which could be potential parents of a new block with this
/// relay-parent according to the search parameters.
///
/// A parachain block is a potential parent if it is either the last included parachain block, the
/// pending parachain block (when `max_depth` >= 1), or all of the following hold:
///   * its parent is a potential parent
///   * its relay-parent is within `ancestry_lookback` of the targeted relay-parent.
///   * its relay-parent is within the same session as the targeted relay-parent.
///   * the block number is within `max_depth` blocks of the included block
pub async fn find_potential_parents<B: BlockT>(
	params: ParentSearchParams,
	client: &impl Backend<B>,
	relay_client: &impl RelayChainInterface,
) -> Result<Vec<PotentialParent<B>>, RelayChainError> {
	// 1. Build up the ancestry record of the relay chain to compare against.
	let rp_ancestry = {
		let mut ancestry = Vec::with_capacity(params.ancestry_lookback + 1);
		let mut current_rp = params.relay_parent;
		let mut required_session = None;

		while ancestry.len() <= params.ancestry_lookback {
			let header = match relay_client.header(RBlockId::hash(current_rp)).await? {
				None => break,
				Some(h) => h,
			};

			let session = relay_client.session_index_for_child(current_rp).await?;
			if let Some(required_session) = required_session {
				// Respect the relay-chain rule not to cross session boundaries.
				if session != required_session {
					break
				}
			} else {
				required_session = Some(session);
			}

			ancestry.push((current_rp, *header.state_root()));
			current_rp = *header.parent_hash();

			// don't iterate back into the genesis block.
			if header.number == 1 {
				break
			}
		}

		ancestry
	};

	let is_hash_in_ancestry = |hash| rp_ancestry.iter().any(|x| x.0 == hash);
	let is_root_in_ancestry = |root| rp_ancestry.iter().any(|x| x.1 == root);

	// 2. Get the included and pending availability blocks.
	let included_header = relay_client
		.persisted_validation_data(
			params.relay_parent,
			params.para_id,
			OccupiedCoreAssumption::TimedOut,
		)
		.await?;

	let included_header = match included_header {
		Some(pvd) => pvd.parent_head,
		None => return Ok(Vec::new()), // this implies the para doesn't exist.
	};

	let pending_header = relay_client
		.persisted_validation_data(
			params.relay_parent,
			params.para_id,
			OccupiedCoreAssumption::Included,
		)
		.await?
		.and_then(|x| if x.parent_head != included_header { Some(x.parent_head) } else { None });

	let included_header = match B::Header::decode(&mut &included_header.0[..]).ok() {
		None => return Ok(Vec::new()),
		Some(x) => x,
	};
	// Silently swallow if pending block can't decode.
	let pending_header = pending_header.and_then(|p| B::Header::decode(&mut &p.0[..]).ok());
	let included_hash = included_header.hash();
	let pending_hash = pending_header.as_ref().map(|hdr| hdr.hash());

	let mut frontier = vec![PotentialParent::<B> {
		hash: included_hash,
		header: included_header,
		depth: 0,
		aligned_with_pending: true,
	}];

	// Recursive search through descendants of the included block which have acceptable
	// relay parents.
	let mut potential_parents = Vec::new();
	while let Some(entry) = frontier.pop() {
		let is_pending =
			entry.depth == 1 && pending_hash.as_ref().map_or(false, |h| &entry.hash == h);
		let is_included = entry.depth == 0;

		// note: even if the pending block or included block have a relay parent
		// outside of the expected part of the relay chain, they are always allowed
		// because they have already been posted on chain.
		let is_potential = is_pending || is_included || {
			let digest = entry.header.digest();
			cumulus_primitives_core::extract_relay_parent(digest).map_or(false, is_hash_in_ancestry) ||
				cumulus_primitives_core::rpsr_digest::extract_relay_parent_storage_root(digest)
					.map(|(r, _n)| r)
					.map_or(false, is_root_in_ancestry)
		};

		let parent_aligned_with_pending = entry.aligned_with_pending;
		let child_depth = entry.depth + 1;
		let hash = entry.hash;

		if is_potential {
			potential_parents.push(entry);
		}

		if !is_potential || child_depth > params.max_depth {
			continue
		}

		// push children onto search frontier.
		for child in client.blockchain().children(hash).ok().into_iter().flatten() {
			let aligned_with_pending = parent_aligned_with_pending &&
				if child_depth == 1 {
					pending_hash.as_ref().map_or(true, |h| &child == h)
				} else {
					true
				};

			if params.ignore_alternative_branches && !aligned_with_pending {
				continue
			}

			let header = match client.blockchain().header(child) {
				Ok(Some(h)) => h,
				Ok(None) => continue,
				Err(_) => continue,
			};

			frontier.push(PotentialParent {
				hash: child,
				header,
				depth: child_depth,
				aligned_with_pending,
			});
		}
	}

	Ok(potential_parents)
}

/// Get the relay-parent slot and timestamp from a header.
pub fn relay_slot_and_timestamp(
	relay_parent_header: &PHeader,
	relay_chain_slot_duration: Duration,
) -> Option<(Slot, Timestamp)> {
	sc_consensus_babe::find_pre_digest::<PBlock>(relay_parent_header)
		.map(|babe_pre_digest| {
			let slot = babe_pre_digest.slot();
			let t = Timestamp::new(relay_chain_slot_duration.as_millis() as u64 * *slot);

			(slot, t)
		})
		.ok()
}