Type Alias pallet_child_bounties::pallet::ChildBounties
source · pub type ChildBounties<T: Config> = StorageDoubleMap<_GeneratedPrefixForStorageChildBounties<T>, Twox64Concat, BountyIndex, Twox64Concat, BountyIndex, ChildBounty<T::AccountId, BalanceOf<T>, <<T as Config>::BlockNumberProvider as BlockNumberProvider>::BlockNumber>>;
Expand description
Child bounties that have been added.
Storage type is [StorageDoubleMap
] with key1 type BountyIndex, key2 type BountyIndex and value type ChildBounty < T :: AccountId, BalanceOf < T > , BlockNumberFor < T > >.
Aliased Type§
struct ChildBounties<T: Config>(/* private fields */);
Implementations
§impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>where
Prefix: StorageInstance,
Hasher1: StorageHasher + ReversibleStorageHasher,
Hasher2: StorageHasher + ReversibleStorageHasher,
Key1: FullCodec,
Key2: FullCodec,
Value: FullCodec,
QueryKind: QueryKindTrait<Value, OnEmpty>,
OnEmpty: Get<<QueryKind as QueryKindTrait<Value, OnEmpty>>::Query> + 'static,
MaxValues: Get<Option<u32>>,
impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>where
Prefix: StorageInstance,
Hasher1: StorageHasher + ReversibleStorageHasher,
Hasher2: StorageHasher + ReversibleStorageHasher,
Key1: FullCodec,
Key2: FullCodec,
Value: FullCodec,
QueryKind: QueryKindTrait<Value, OnEmpty>,
OnEmpty: Get<<QueryKind as QueryKindTrait<Value, OnEmpty>>::Query> + 'static,
MaxValues: Get<Option<u32>>,
pub fn iter_prefix(k1: impl EncodeLike<Key1>) -> PrefixIterator<(Key2, Value)>
pub fn iter_prefix(k1: impl EncodeLike<Key1>) -> PrefixIterator<(Key2, Value)>
Enumerate all elements in the map with first key k1
in no particular order.
If you add or remove values whose first key is k1
to the map while doing this, you’ll get
undefined results.
pub fn iter_prefix_from(
k1: impl EncodeLike<Key1>,
starting_raw_key: Vec<u8>,
) -> PrefixIterator<(Key2, Value)>
pub fn iter_prefix_from( k1: impl EncodeLike<Key1>, starting_raw_key: Vec<u8>, ) -> PrefixIterator<(Key2, Value)>
Enumerate all elements in the map with first key k1
after a specified starting_raw_key
in no particular order.
If you add or remove values whose first key is k1
to the map while doing this, you’ll get
undefined results.
pub fn iter_key_prefix(k1: impl EncodeLike<Key1>) -> KeyPrefixIterator<Key2>
pub fn iter_key_prefix(k1: impl EncodeLike<Key1>) -> KeyPrefixIterator<Key2>
Enumerate all second keys k2
in the map with the same first key k1
in no particular
order.
If you add or remove values whose first key is k1
to the map while doing this, you’ll get
undefined results.
pub fn iter_key_prefix_from(
k1: impl EncodeLike<Key1>,
starting_raw_key: Vec<u8>,
) -> KeyPrefixIterator<Key2>
pub fn iter_key_prefix_from( k1: impl EncodeLike<Key1>, starting_raw_key: Vec<u8>, ) -> KeyPrefixIterator<Key2>
Enumerate all second keys k2
in the map with the same first key k1
after a specified
starting_raw_key
in no particular order.
If you add or remove values whose first key is k1
to the map while doing this, you’ll get
undefined results.
pub fn drain_prefix(k1: impl EncodeLike<Key1>) -> PrefixIterator<(Key2, Value)>
pub fn drain_prefix(k1: impl EncodeLike<Key1>) -> PrefixIterator<(Key2, Value)>
Remove all elements from the map with first key k1
and iterate through them in no
particular order.
If you add elements with first key k1
to the map while doing this, you’ll get undefined
results.
pub fn iter() -> PrefixIterator<(Key1, Key2, Value)>
pub fn iter() -> PrefixIterator<(Key1, Key2, Value)>
Enumerate all elements in the map in no particular order.
If you add or remove values to the map while doing this, you’ll get undefined results.
pub fn iter_from(
starting_raw_key: Vec<u8>,
) -> PrefixIterator<(Key1, Key2, Value)>
pub fn iter_from( starting_raw_key: Vec<u8>, ) -> PrefixIterator<(Key1, Key2, Value)>
Enumerate all elements in the map after a specified starting_raw_key
in no particular
order.
If you add or remove values to the map while doing this, you’ll get undefined results.
pub fn iter_keys() -> KeyPrefixIterator<(Key1, Key2)>
pub fn iter_keys() -> KeyPrefixIterator<(Key1, Key2)>
Enumerate all keys k1
and k2
in the map in no particular order.
If you add or remove values to the map while doing this, you’ll get undefined results.
pub fn iter_keys_from(
starting_raw_key: Vec<u8>,
) -> KeyPrefixIterator<(Key1, Key2)>
pub fn iter_keys_from( starting_raw_key: Vec<u8>, ) -> KeyPrefixIterator<(Key1, Key2)>
Enumerate all keys k1
and k2
in the map after a specified starting_raw_key
in no
particular order.
If you add or remove values to the map while doing this, you’ll get undefined results.
pub fn drain() -> PrefixIterator<(Key1, Key2, Value)>
pub fn drain() -> PrefixIterator<(Key1, Key2, Value)>
Remove all elements from the map and iterate through them in no particular order.
If you add elements to the map while doing this, you’ll get undefined results.
pub fn translate<O, F>(f: F)
pub fn translate<O, F>(f: F)
Translate the values of all elements by a function f
, in the map in no particular order.
By returning None
from f
for an element, you’ll remove it from the map.
NOTE: If a value fail to decode because storage is corrupted then it is skipped.
§impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
pub fn hashed_key_for<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Vec<u8> ⓘwhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn hashed_key_for<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Vec<u8> ⓘwhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Get the storage key used to fetch a value corresponding to a specific key.
pub fn contains_key<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> boolwhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn contains_key<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> boolwhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Does the value (explicitly) exist in storage?
pub fn get<KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
) -> <QueryKind as QueryKindTrait<Value, OnEmpty>>::Querywhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn get<KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
) -> <QueryKind as QueryKindTrait<Value, OnEmpty>>::Querywhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Load the value associated with the given key from the double map.
pub fn try_get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Result<Value, ()>where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn try_get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Result<Value, ()>where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Try to get the value for the given key from the double map.
Returns Ok
if it exists, Err
if not.
pub fn set<KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
q: <QueryKind as QueryKindTrait<Value, OnEmpty>>::Query,
)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn set<KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
q: <QueryKind as QueryKindTrait<Value, OnEmpty>>::Query,
)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Store or remove the value to be associated with key
so that get
returns the query
.
pub fn take<KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
) -> <QueryKind as QueryKindTrait<Value, OnEmpty>>::Querywhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn take<KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
) -> <QueryKind as QueryKindTrait<Value, OnEmpty>>::Querywhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Take a value from storage, removing it afterwards.
pub fn swap<XKArg1, XKArg2, YKArg1, YKArg2>(
x_k1: XKArg1,
x_k2: XKArg2,
y_k1: YKArg1,
y_k2: YKArg2,
)where
XKArg1: EncodeLike<Key1>,
XKArg2: EncodeLike<Key2>,
YKArg1: EncodeLike<Key1>,
YKArg2: EncodeLike<Key2>,
pub fn swap<XKArg1, XKArg2, YKArg1, YKArg2>(
x_k1: XKArg1,
x_k2: XKArg2,
y_k1: YKArg1,
y_k2: YKArg2,
)where
XKArg1: EncodeLike<Key1>,
XKArg2: EncodeLike<Key2>,
YKArg1: EncodeLike<Key1>,
YKArg2: EncodeLike<Key2>,
Swap the values of two key-pairs.
pub fn insert<KArg1, KArg2, VArg>(k1: KArg1, k2: KArg2, val: VArg)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
VArg: EncodeLike<Value>,
pub fn insert<KArg1, KArg2, VArg>(k1: KArg1, k2: KArg2, val: VArg)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
VArg: EncodeLike<Value>,
Store a value to be associated with the given keys from the double map.
pub fn remove<KArg1, KArg2>(k1: KArg1, k2: KArg2)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
pub fn remove<KArg1, KArg2>(k1: KArg1, k2: KArg2)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Remove the value under the given keys.
pub fn remove_prefix<KArg1>(k1: KArg1, limit: Option<u32>) -> KillStorageResultwhere
KArg1: EncodeLike<Key1> + ?Sized,
👎Deprecated: Use clear_prefix
instead
pub fn remove_prefix<KArg1>(k1: KArg1, limit: Option<u32>) -> KillStorageResultwhere
KArg1: EncodeLike<Key1> + ?Sized,
clear_prefix
insteadRemove all values under k1
in the overlay and up to limit
in the
backend.
All values in the client overlay will be deleted, if there is some limit
then up to
limit
values are deleted from the client backend, if limit
is none then all values in
the client backend are deleted.
§Note
Calling this multiple times per block with a limit
set leads always to the same keys being
removed and the same result being returned. This happens because the keys to delete in the
overlay are not taken into account when deleting keys in the backend.
pub fn clear_prefix<KArg1>(
first_key: KArg1,
limit: u32,
maybe_cursor: Option<&[u8]>,
) -> MultiRemovalResultswhere
KArg1: EncodeLike<Key1> + ?Sized,
pub fn clear_prefix<KArg1>(
first_key: KArg1,
limit: u32,
maybe_cursor: Option<&[u8]>,
) -> MultiRemovalResultswhere
KArg1: EncodeLike<Key1> + ?Sized,
Attempt to remove items from the map matching a first_key
prefix.
Returns MultiRemovalResults
to inform about the result. Once
the resultant maybe_cursor
field is None
, then no further items remain to be deleted.
NOTE: After the initial call for any given map, it is important that no further items
are inserted into the map which match the first_key
. If so, then the map may not be
empty when the resultant maybe_cursor
is None
.
§Limit
A limit
must always be provided through in order to cap the maximum
amount of deletions done in a single call. This is one fewer than the
maximum number of backend iterations which may be done by this operation and as such
represents the maximum number of backend deletions which may happen. A limit
of zero
implies that no keys will be deleted, though there may be a single iteration done.
§Cursor
A cursor may be passed in to this operation with maybe_cursor
. None
should only be
passed once (in the initial call) for any given storage map and first_key
. Subsequent
calls operating on the same map/first_key
should always pass Some
, and this should be
equal to the previous call result’s maybe_cursor
field.
pub fn iter_prefix_values<KArg1>(k1: KArg1) -> PrefixIterator<Value>where
KArg1: EncodeLike<Key1> + ?Sized,
pub fn iter_prefix_values<KArg1>(k1: KArg1) -> PrefixIterator<Value>where
KArg1: EncodeLike<Key1> + ?Sized,
Iterate over values that share the first key.
pub fn mutate<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> Rwhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
F: FnOnce(&mut <QueryKind as QueryKindTrait<Value, OnEmpty>>::Query) -> R,
pub fn mutate<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> Rwhere
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
F: FnOnce(&mut <QueryKind as QueryKindTrait<Value, OnEmpty>>::Query) -> R,
Mutate the value under the given keys.
pub fn try_mutate<KArg1, KArg2, R, E, F>(
k1: KArg1,
k2: KArg2,
f: F,
) -> Result<R, E>
pub fn try_mutate<KArg1, KArg2, R, E, F>( k1: KArg1, k2: KArg2, f: F, ) -> Result<R, E>
Mutate the value under the given keys when the closure returns Ok
.
pub fn mutate_exists<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
pub fn mutate_exists<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
Mutate the value under the given keys. Deletes the item if mutated to a None
.
pub fn try_mutate_exists<KArg1, KArg2, R, E, F>(
k1: KArg1,
k2: KArg2,
f: F,
) -> Result<R, E>
pub fn try_mutate_exists<KArg1, KArg2, R, E, F>( k1: KArg1, k2: KArg2, f: F, ) -> Result<R, E>
Mutate the item, only if an Ok
value is returned. Deletes the item if mutated to a None
.
f
will always be called with an option representing if the storage item exists (Some<V>
)
or if the storage item does not exist (None
), independent of the QueryType
.
pub fn append<Item, EncodeLikeItem, KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
item: EncodeLikeItem,
)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
Value: StorageAppend<Item>,
pub fn append<Item, EncodeLikeItem, KArg1, KArg2>(
k1: KArg1,
k2: KArg2,
item: EncodeLikeItem,
)where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
Value: StorageAppend<Item>,
Append the given item to the value in the storage.
Value
is required to implement [StorageAppend
].
§Warning
If the storage item is not encoded properly, the storage will be overwritten
and set to [item]
. Any default value set for the storage item will be ignored
on overwrite.
pub fn decode_len<KArg1, KArg2>(key1: KArg1, key2: KArg2) -> Option<usize>where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Value: StorageDecodeLength,
pub fn decode_len<KArg1, KArg2>(key1: KArg1, key2: KArg2) -> Option<usize>where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Value: StorageDecodeLength,
Read the length of the storage value without decoding the entire value under the
given key1
and key2
.
Value
is required to implement [StorageDecodeLength
].
If the value does not exists or it fails to decode the length, None
is returned.
Otherwise Some(len)
is returned.
§Warning
None
does not mean that get()
does not return a value. The default value is completely
ignored by this function.
pub fn decode_non_dedup_len<KArg1, KArg2>(
key1: KArg1,
key2: KArg2,
) -> Option<usize>where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Value: StorageDecodeNonDedupLength,
pub fn decode_non_dedup_len<KArg1, KArg2>(
key1: KArg1,
key2: KArg2,
) -> Option<usize>where
KArg1: EncodeLike<Key1>,
KArg2: EncodeLike<Key2>,
Value: StorageDecodeNonDedupLength,
Read the length of the storage value without decoding the entire value.
Value
is required to implement [StorageDecodeNonDedupLength
].
If the value does not exists or it fails to decode the length, None
is returned.
Otherwise Some(len)
is returned.
§Warning
-
None
does not mean thatget()
does not return a value. The default value is completely ignored by this function. -
The value returned is the non-deduplicated length of the underlying Vector in storage.This means that any duplicate items are included.
pub fn migrate_keys<OldHasher1, OldHasher2, KeyArg1, KeyArg2>(
key1: KeyArg1,
key2: KeyArg2,
) -> Option<Value>where
OldHasher1: StorageHasher,
OldHasher2: StorageHasher,
KeyArg1: EncodeLike<Key1>,
KeyArg2: EncodeLike<Key2>,
pub fn migrate_keys<OldHasher1, OldHasher2, KeyArg1, KeyArg2>(
key1: KeyArg1,
key2: KeyArg2,
) -> Option<Value>where
OldHasher1: StorageHasher,
OldHasher2: StorageHasher,
KeyArg1: EncodeLike<Key1>,
KeyArg2: EncodeLike<Key2>,
Migrate an item with the given key1
and key2
from defunct OldHasher1
and
OldHasher2
to the current hashers.
If the key doesn’t exist, then it’s a no-op. If it does, then it returns its value.
pub fn remove_all(limit: Option<u32>) -> KillStorageResult
👎Deprecated: Use clear
instead
pub fn remove_all(limit: Option<u32>) -> KillStorageResult
clear
insteadRemove all values in the overlay and up to limit
in the backend.
All values in the client overlay will be deleted, if there is some limit
then up to
limit
values are deleted from the client backend, if limit
is none then all values in
the client backend are deleted.
§Note
Calling this multiple times per block with a limit
set leads always to the same keys being
removed and the same result being returned. This happens because the keys to delete in the
overlay are not taken into account when deleting keys in the backend.
pub fn clear(limit: u32, maybe_cursor: Option<&[u8]>) -> MultiRemovalResults
pub fn clear(limit: u32, maybe_cursor: Option<&[u8]>) -> MultiRemovalResults
Attempt to remove all items from the map.
Returns MultiRemovalResults
to inform about the result. Once
the resultant maybe_cursor
field is None
, then no further items remain to be deleted.
NOTE: After the initial call for any given map, it is important that no further items
are inserted into the map. If so, then the map may not be empty when the resultant
maybe_cursor
is None
.
§Limit
A limit
must always be provided through in order to cap the maximum
amount of deletions done in a single call. This is one fewer than the
maximum number of backend iterations which may be done by this operation and as such
represents the maximum number of backend deletions which may happen.A limit
of zero
implies that no keys will be deleted, though there may be a single iteration done.
§Cursor
A cursor may be passed in to this operation with maybe_cursor
. None
should only be
passed once (in the initial call) for any given storage map. Subsequent calls
operating on the same map should always pass Some
, and this should be equal to the
previous call result’s maybe_cursor
field.
pub fn iter_values() -> PrefixIterator<Value>
pub fn iter_values() -> PrefixIterator<Value>
Iter over all value of the storage.
NOTE: If a value failed to decode because storage is corrupted then it is skipped.
pub fn translate_values<OldValue, F>(f: F)
pub fn translate_values<OldValue, F>(f: F)
Translate the values of all elements by a function f
, in the map in no particular order.
By returning None
from f
for an element, you’ll remove it from the map.
NOTE: If a value fail to decode because storage is corrupted then it is skipped.
§Warning
This function must be used with care, before being updated the storage still contains the
old type, thus other calls (such as get
) will fail at decoding it.
§Usage
This would typically be called inside the module implementation of on_runtime_upgrade.
pub fn try_append<KArg1, KArg2, Item, EncodeLikeItem>(
key1: KArg1,
key2: KArg2,
item: EncodeLikeItem,
) -> Result<(), ()>
pub fn try_append<KArg1, KArg2, Item, EncodeLikeItem>( key1: KArg1, key2: KArg2, item: EncodeLikeItem, ) -> Result<(), ()>
Try and append the given item to the value in the storage.
Is only available if Value
of the storage implements [StorageTryAppend
].
Trait Implementations
§impl<Prefix, Hasher1, Hasher2, Key1, Key2, Value, QueryKind, OnEmpty, MaxValues> PartialStorageInfoTrait for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
impl<Prefix, Hasher1, Hasher2, Key1, Key2, Value, QueryKind, OnEmpty, MaxValues> PartialStorageInfoTrait for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
It doesn’t require to implement MaxEncodedLen
and give no information for max_size
.
fn partial_storage_info() -> Vec<StorageInfo>
§impl<Prefix, Hasher1, Hasher2, Key1, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageEntryMetadataBuilder for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>where
Prefix: StorageInstance,
Hasher1: StorageHasher,
Hasher2: StorageHasher,
Key1: FullCodec + StaticTypeInfo,
Key2: FullCodec + StaticTypeInfo,
Value: FullCodec + StaticTypeInfo,
QueryKind: QueryKindTrait<Value, OnEmpty>,
OnEmpty: Get<<QueryKind as QueryKindTrait<Value, OnEmpty>>::Query> + 'static,
MaxValues: Get<Option<u32>>,
impl<Prefix, Hasher1, Hasher2, Key1, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageEntryMetadataBuilder for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>where
Prefix: StorageInstance,
Hasher1: StorageHasher,
Hasher2: StorageHasher,
Key1: FullCodec + StaticTypeInfo,
Key2: FullCodec + StaticTypeInfo,
Value: FullCodec + StaticTypeInfo,
QueryKind: QueryKindTrait<Value, OnEmpty>,
OnEmpty: Get<<QueryKind as QueryKindTrait<Value, OnEmpty>>::Query> + 'static,
MaxValues: Get<Option<u32>>,
§fn build_metadata(
deprecation_status: DeprecationStatusIR,
docs: Vec<&'static str>,
entries: &mut Vec<StorageEntryMetadataIR>,
)
fn build_metadata( deprecation_status: DeprecationStatusIR, docs: Vec<&'static str>, entries: &mut Vec<StorageEntryMetadataIR>, )
entries
the storage metadata entries of a storage given some docs
.§impl<Prefix, Hasher1, Hasher2, Key1, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageInfoTrait for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>where
Prefix: StorageInstance,
Hasher1: StorageHasher,
Hasher2: StorageHasher,
Key1: FullCodec + MaxEncodedLen,
Key2: FullCodec + MaxEncodedLen,
Value: FullCodec + MaxEncodedLen,
QueryKind: QueryKindTrait<Value, OnEmpty>,
OnEmpty: Get<<QueryKind as QueryKindTrait<Value, OnEmpty>>::Query> + 'static,
MaxValues: Get<Option<u32>>,
impl<Prefix, Hasher1, Hasher2, Key1, Key2, Value, QueryKind, OnEmpty, MaxValues> StorageInfoTrait for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>where
Prefix: StorageInstance,
Hasher1: StorageHasher,
Hasher2: StorageHasher,
Key1: FullCodec + MaxEncodedLen,
Key2: FullCodec + MaxEncodedLen,
Value: FullCodec + MaxEncodedLen,
QueryKind: QueryKindTrait<Value, OnEmpty>,
OnEmpty: Get<<QueryKind as QueryKindTrait<Value, OnEmpty>>::Query> + 'static,
MaxValues: Get<Option<u32>>,
fn storage_info() -> Vec<StorageInfo>
§impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> StoragePrefixedMap<Value> for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> StoragePrefixedMap<Value> for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
§fn pallet_prefix() -> &'static [u8] ⓘ
fn pallet_prefix() -> &'static [u8] ⓘ
§fn storage_prefix() -> &'static [u8] ⓘ
fn storage_prefix() -> &'static [u8] ⓘ
§fn final_prefix() -> [u8; 32]
fn final_prefix() -> [u8; 32]
§fn remove_all(limit: Option<u32>) -> KillStorageResult
fn remove_all(limit: Option<u32>) -> KillStorageResult
clear
insteadlimit
in the backend. Read more§fn clear(limit: u32, maybe_cursor: Option<&[u8]>) -> MultiRemovalResults
fn clear(limit: u32, maybe_cursor: Option<&[u8]>) -> MultiRemovalResults
§fn iter_values() -> PrefixIterator<Value>
fn iter_values() -> PrefixIterator<Value>
§fn translate_values<OldValue, F>(f: F)
fn translate_values<OldValue, F>(f: F)
f
, in the map in no particular order.
By returning None
from f
for an element, you’ll remove it from the map. Read more§impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> TryDecodeEntireStorage for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
impl<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues> TryDecodeEntireStorage for StorageDoubleMap<Prefix, Hasher1, Key1, Hasher2, Key2, Value, QueryKind, OnEmpty, MaxValues>
§fn try_decode_entire_state() -> Result<usize, Vec<TryDecodeEntireStorageError>>
fn try_decode_entire_state() -> Result<usize, Vec<TryDecodeEntireStorageError>>
Ok(bytes_decoded)
if success.