referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Handles statistics that were generated from benchmarking results and
//! that can be used to fill out weight templates.

use sc_cli::Result;

use serde::Serialize;
use std::{fmt, result, str::FromStr};

/// Various statistics that help to gauge the quality of the produced weights.
/// Will be written to the weight file and printed to console.
#[derive(Serialize, Default, Clone)]
pub struct Stats {
	/// Sum of all values.
	pub sum: u64,
	/// Minimal observed value.
	pub min: u64,
	/// Maximal observed value.
	pub max: u64,

	/// Average of all values.
	pub avg: u64,
	/// Median of all values.
	pub median: u64,
	/// Standard derivation of all values.
	pub stddev: f64,

	/// 99th percentile. At least 99% of all values are below this threshold.
	pub p99: u64,
	/// 95th percentile. At least 95% of all values are below this threshold.
	pub p95: u64,
	/// 75th percentile. At least 75% of all values are below this threshold.
	pub p75: u64,
}

/// Selects a specific field from a [`Stats`] object.
/// Not all fields are available.
#[derive(Debug, Clone, Copy, Serialize, PartialEq)]
pub enum StatSelect {
	/// Select the maximum.
	Maximum,
	/// Select the average.
	Average,
	/// Select the median.
	Median,
	/// Select the 99th percentile.
	P99Percentile,
	/// Select the 95th percentile.
	P95Percentile,
	/// Select the 75th percentile.
	P75Percentile,
}

impl Stats {
	/// Calculates statistics and returns them.
	pub fn new(xs: &Vec<u64>) -> Result<Self> {
		if xs.is_empty() {
			return Err("Empty input is invalid".into())
		}
		let (avg, stddev) = Self::avg_and_stddev(xs);

		Ok(Self {
			sum: xs.iter().sum(),
			min: *xs.iter().min().expect("Checked for non-empty above"),
			max: *xs.iter().max().expect("Checked for non-empty above"),

			avg: avg as u64,
			median: Self::percentile(xs.clone(), 0.50),
			stddev: (stddev * 100.0).round() / 100.0, // round to 1/100

			p99: Self::percentile(xs.clone(), 0.99),
			p95: Self::percentile(xs.clone(), 0.95),
			p75: Self::percentile(xs.clone(), 0.75),
		})
	}

	/// Returns the selected stat.
	pub fn select(&self, s: StatSelect) -> u64 {
		match s {
			StatSelect::Maximum => self.max,
			StatSelect::Average => self.avg,
			StatSelect::Median => self.median,
			StatSelect::P99Percentile => self.p99,
			StatSelect::P95Percentile => self.p95,
			StatSelect::P75Percentile => self.p75,
		}
	}

	/// Returns the *average* and the *standard derivation*.
	fn avg_and_stddev(xs: &Vec<u64>) -> (f64, f64) {
		let avg = xs.iter().map(|x| *x as f64).sum::<f64>() / xs.len() as f64;
		let variance = xs.iter().map(|x| (*x as f64 - avg).powi(2)).sum::<f64>() / xs.len() as f64;
		(avg, variance.sqrt())
	}

	/// Returns the specified percentile for the given data.
	/// This is best effort since it ignores the interpolation case.
	fn percentile(mut xs: Vec<u64>, p: f64) -> u64 {
		xs.sort();
		let index = (xs.len() as f64 * p).ceil() as usize - 1;
		xs[index.clamp(0, xs.len() - 1)]
	}
}

impl fmt::Debug for Stats {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		writeln!(f, "Total: {}", self.sum)?;
		writeln!(f, "Min: {}, Max: {}", self.min, self.max)?;
		writeln!(f, "Average: {}, Median: {}, Stddev: {}", self.avg, self.median, self.stddev)?;
		write!(f, "Percentiles 99th, 95th, 75th: {}, {}, {}", self.p99, self.p95, self.p75)
	}
}

impl Default for StatSelect {
	/// Returns the `Average` selector.
	fn default() -> Self {
		Self::Average
	}
}

impl FromStr for StatSelect {
	type Err = &'static str;

	fn from_str(day: &str) -> result::Result<Self, Self::Err> {
		match day.to_lowercase().as_str() {
			"max" => Ok(Self::Maximum),
			"average" => Ok(Self::Average),
			"median" => Ok(Self::Median),
			"p99" => Ok(Self::P99Percentile),
			"p95" => Ok(Self::P95Percentile),
			"p75" => Ok(Self::P75Percentile),
			_ => Err("String was not a StatSelect"),
		}
	}
}

#[cfg(test)]
mod test_stats {
	use super::Stats;
	use rand::{seq::SliceRandom, thread_rng};

	#[test]
	fn stats_correct() {
		let mut data: Vec<u64> = (1..=100).collect();
		data.shuffle(&mut thread_rng());
		let stats = Stats::new(&data).unwrap();

		assert_eq!(stats.sum, 5050);
		assert_eq!(stats.min, 1);
		assert_eq!(stats.max, 100);

		assert_eq!(stats.avg, 50);
		assert_eq!(stats.median, 50); // 50.5 to be exact.
		assert_eq!(stats.stddev, 28.87); // Rounded with 1/100 precision.

		assert_eq!(stats.p99, 99);
		assert_eq!(stats.p95, 95);
		assert_eq!(stats.p75, 75);
	}

	#[test]
	fn no_panic_short_lengths() {
		// Empty input does error.
		assert!(Stats::new(&vec![]).is_err());

		// Different small input lengths are fine.
		for l in 1..10 {
			let data = (0..=l).collect();
			assert!(Stats::new(&data).is_ok());
		}
	}
}