1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
	hash::{ReversibleStorageHasher, StorageHasher},
	storage::{self, storage_prefix, unhashed, KeyPrefixIterator, PrefixIterator, StorageAppend},
	Never,
};
use alloc::vec::Vec;
use codec::{Decode, Encode, EncodeLike, FullCodec, FullEncode};

/// Generator for `StorageDoubleMap` used by `decl_storage`.
///
/// # Mapping of keys to a storage path
///
/// The storage key (i.e. the key under which the `Value` will be stored) is created from two parts.
/// The first part is a hash of a concatenation of the `key1_prefix` and `Key1`. And the second part
/// is a hash of a `Key2`.
///
/// Thus value for (key1, key2) is stored at:
/// ```nocompile
/// Twox128(pallet_prefix) ++ Twox128(storage_prefix) ++ Hasher1(encode(key1)) ++ Hasher2(encode(key2))
/// ```
///
/// # Warning
///
/// If the key1s are not trusted (e.g. can be set by a user), a cryptographic `hasher` such as
/// `blake2_256` must be used for Hasher1. Otherwise, other values in storage can be compromised.
/// If the key2s are not trusted (e.g. can be set by a user), a cryptographic `hasher` such as
/// `blake2_256` must be used for Hasher2. Otherwise, other items in storage with the same first
/// key can be compromised.
pub trait StorageDoubleMap<K1: FullEncode, K2: FullEncode, V: FullCodec> {
	/// The type that get/take returns.
	type Query;

	/// Hasher for the first key.
	type Hasher1: StorageHasher;

	/// Hasher for the second key.
	type Hasher2: StorageHasher;

	/// Pallet prefix. Used for generating final key.
	fn pallet_prefix() -> &'static [u8];

	/// Storage prefix. Used for generating final key.
	fn storage_prefix() -> &'static [u8];

	/// The full prefix; just the hash of `pallet_prefix` concatenated to the hash of
	/// `storage_prefix`.
	fn prefix_hash() -> [u8; 32];

	/// Convert an optional value retrieved from storage to the type queried.
	fn from_optional_value_to_query(v: Option<V>) -> Self::Query;

	/// Convert a query to an optional value into storage.
	fn from_query_to_optional_value(v: Self::Query) -> Option<V>;

	/// Generate the first part of the key used in top storage.
	fn storage_double_map_final_key1<KArg1>(k1: KArg1) -> Vec<u8>
	where
		KArg1: EncodeLike<K1>,
	{
		let storage_prefix = storage_prefix(Self::pallet_prefix(), Self::storage_prefix());
		let key_hashed = k1.using_encoded(Self::Hasher1::hash);

		let mut final_key = Vec::with_capacity(storage_prefix.len() + key_hashed.as_ref().len());

		final_key.extend_from_slice(&storage_prefix);
		final_key.extend_from_slice(key_hashed.as_ref());

		final_key
	}

	/// Generate the full key used in top storage.
	fn storage_double_map_final_key<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Vec<u8>
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		let storage_prefix = storage_prefix(Self::pallet_prefix(), Self::storage_prefix());
		let key1_hashed = k1.using_encoded(Self::Hasher1::hash);
		let key2_hashed = k2.using_encoded(Self::Hasher2::hash);

		let mut final_key = Vec::with_capacity(
			storage_prefix.len() + key1_hashed.as_ref().len() + key2_hashed.as_ref().len(),
		);

		final_key.extend_from_slice(&storage_prefix);
		final_key.extend_from_slice(key1_hashed.as_ref());
		final_key.extend_from_slice(key2_hashed.as_ref());

		final_key
	}
}

impl<K1, K2, V, G> storage::StorageDoubleMap<K1, K2, V> for G
where
	K1: FullEncode,
	K2: FullEncode,
	V: FullCodec,
	G: StorageDoubleMap<K1, K2, V>,
{
	type Query = G::Query;

	fn hashed_key_for<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Vec<u8>
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		Self::storage_double_map_final_key(k1, k2)
	}

	fn contains_key<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> bool
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		unhashed::exists(&Self::storage_double_map_final_key(k1, k2))
	}

	fn get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Self::Query
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		G::from_optional_value_to_query(unhashed::get(&Self::storage_double_map_final_key(k1, k2)))
	}

	fn try_get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Result<V, ()>
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		unhashed::get(&Self::storage_double_map_final_key(k1, k2)).ok_or(())
	}

	fn set<KArg1: EncodeLike<K1>, KArg2: EncodeLike<K2>>(k1: KArg1, k2: KArg2, q: Self::Query) {
		match G::from_query_to_optional_value(q) {
			Some(v) => Self::insert(k1, k2, v),
			None => Self::remove(k1, k2),
		}
	}

	fn take<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Self::Query
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		let final_key = Self::storage_double_map_final_key(k1, k2);

		let value = unhashed::take(&final_key);
		G::from_optional_value_to_query(value)
	}

	fn swap<XKArg1, XKArg2, YKArg1, YKArg2>(x_k1: XKArg1, x_k2: XKArg2, y_k1: YKArg1, y_k2: YKArg2)
	where
		XKArg1: EncodeLike<K1>,
		XKArg2: EncodeLike<K2>,
		YKArg1: EncodeLike<K1>,
		YKArg2: EncodeLike<K2>,
	{
		let final_x_key = Self::storage_double_map_final_key(x_k1, x_k2);
		let final_y_key = Self::storage_double_map_final_key(y_k1, y_k2);

		let v1 = unhashed::get_raw(&final_x_key);
		if let Some(val) = unhashed::get_raw(&final_y_key) {
			unhashed::put_raw(&final_x_key, &val);
		} else {
			unhashed::kill(&final_x_key)
		}
		if let Some(val) = v1 {
			unhashed::put_raw(&final_y_key, &val);
		} else {
			unhashed::kill(&final_y_key)
		}
	}

	fn insert<KArg1, KArg2, VArg>(k1: KArg1, k2: KArg2, val: VArg)
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
		VArg: EncodeLike<V>,
	{
		unhashed::put(&Self::storage_double_map_final_key(k1, k2), &val)
	}

	fn remove<KArg1, KArg2>(k1: KArg1, k2: KArg2)
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
	{
		unhashed::kill(&Self::storage_double_map_final_key(k1, k2))
	}

	fn remove_prefix<KArg1>(k1: KArg1, maybe_limit: Option<u32>) -> sp_io::KillStorageResult
	where
		KArg1: EncodeLike<K1>,
	{
		unhashed::clear_prefix(Self::storage_double_map_final_key1(k1).as_ref(), maybe_limit, None)
			.into()
	}

	fn clear_prefix<KArg1>(
		k1: KArg1,
		limit: u32,
		maybe_cursor: Option<&[u8]>,
	) -> sp_io::MultiRemovalResults
	where
		KArg1: EncodeLike<K1>,
	{
		unhashed::clear_prefix(
			Self::storage_double_map_final_key1(k1).as_ref(),
			Some(limit),
			maybe_cursor,
		)
		.into()
	}

	fn contains_prefix<KArg1>(k1: KArg1) -> bool
	where
		KArg1: EncodeLike<K1>,
	{
		unhashed::contains_prefixed_key(Self::storage_double_map_final_key1(k1).as_ref())
	}

	fn iter_prefix_values<KArg1>(k1: KArg1) -> storage::PrefixIterator<V>
	where
		KArg1: ?Sized + EncodeLike<K1>,
	{
		let prefix = Self::storage_double_map_final_key1(k1);
		storage::PrefixIterator {
			prefix: prefix.clone(),
			previous_key: prefix,
			drain: false,
			closure: |_raw_key, mut raw_value| V::decode(&mut raw_value),
			phantom: Default::default(),
		}
	}

	fn mutate<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
		F: FnOnce(&mut Self::Query) -> R,
	{
		Self::try_mutate(k1, k2, |v| Ok::<R, Never>(f(v)))
			.expect("`Never` can not be constructed; qed")
	}

	fn mutate_exists<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
		F: FnOnce(&mut Option<V>) -> R,
	{
		Self::try_mutate_exists(k1, k2, |v| Ok::<R, Never>(f(v)))
			.expect("`Never` can not be constructed; qed")
	}

	fn try_mutate<KArg1, KArg2, R, E, F>(k1: KArg1, k2: KArg2, f: F) -> Result<R, E>
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
		F: FnOnce(&mut Self::Query) -> Result<R, E>,
	{
		let final_key = Self::storage_double_map_final_key(k1, k2);
		let mut val = G::from_optional_value_to_query(unhashed::get(final_key.as_ref()));

		let ret = f(&mut val);
		if ret.is_ok() {
			match G::from_query_to_optional_value(val) {
				Some(ref val) => unhashed::put(final_key.as_ref(), val),
				None => unhashed::kill(final_key.as_ref()),
			}
		}
		ret
	}

	fn try_mutate_exists<KArg1, KArg2, R, E, F>(k1: KArg1, k2: KArg2, f: F) -> Result<R, E>
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
		F: FnOnce(&mut Option<V>) -> Result<R, E>,
	{
		let final_key = Self::storage_double_map_final_key(k1, k2);
		let mut val = unhashed::get(final_key.as_ref());

		let ret = f(&mut val);
		if ret.is_ok() {
			match val {
				Some(ref val) => unhashed::put(final_key.as_ref(), val),
				None => unhashed::kill(final_key.as_ref()),
			}
		}
		ret
	}

	fn append<Item, EncodeLikeItem, KArg1, KArg2>(k1: KArg1, k2: KArg2, item: EncodeLikeItem)
	where
		KArg1: EncodeLike<K1>,
		KArg2: EncodeLike<K2>,
		Item: Encode,
		EncodeLikeItem: EncodeLike<Item>,
		V: StorageAppend<Item>,
	{
		let final_key = Self::storage_double_map_final_key(k1, k2);
		sp_io::storage::append(&final_key, item.encode());
	}

	fn migrate_keys<
		OldHasher1: StorageHasher,
		OldHasher2: StorageHasher,
		KeyArg1: EncodeLike<K1>,
		KeyArg2: EncodeLike<K2>,
	>(
		key1: KeyArg1,
		key2: KeyArg2,
	) -> Option<V> {
		let old_key = {
			let storage_prefix = storage_prefix(Self::pallet_prefix(), Self::storage_prefix());

			let key1_hashed = key1.using_encoded(OldHasher1::hash);
			let key2_hashed = key2.using_encoded(OldHasher2::hash);

			let mut final_key = Vec::with_capacity(
				storage_prefix.len() + key1_hashed.as_ref().len() + key2_hashed.as_ref().len(),
			);

			final_key.extend_from_slice(&storage_prefix);
			final_key.extend_from_slice(key1_hashed.as_ref());
			final_key.extend_from_slice(key2_hashed.as_ref());

			final_key
		};
		unhashed::take(old_key.as_ref()).map(|value| {
			unhashed::put(Self::storage_double_map_final_key(key1, key2).as_ref(), &value);
			value
		})
	}
}

impl<K1: FullCodec, K2: FullCodec, V: FullCodec, G: StorageDoubleMap<K1, K2, V>>
	storage::IterableStorageDoubleMap<K1, K2, V> for G
where
	G::Hasher1: ReversibleStorageHasher,
	G::Hasher2: ReversibleStorageHasher,
{
	type PartialKeyIterator = KeyPrefixIterator<K2>;
	type PrefixIterator = PrefixIterator<(K2, V)>;
	type FullKeyIterator = KeyPrefixIterator<(K1, K2)>;
	type Iterator = PrefixIterator<(K1, K2, V)>;

	fn iter_prefix(k1: impl EncodeLike<K1>) -> Self::PrefixIterator {
		let prefix = G::storage_double_map_final_key1(k1);
		Self::PrefixIterator {
			prefix: prefix.clone(),
			previous_key: prefix,
			drain: false,
			closure: |raw_key_without_prefix, mut raw_value| {
				let mut key_material = G::Hasher2::reverse(raw_key_without_prefix);
				Ok((K2::decode(&mut key_material)?, V::decode(&mut raw_value)?))
			},
			phantom: Default::default(),
		}
	}

	fn iter_prefix_from(
		k1: impl EncodeLike<K1>,
		starting_raw_key: Vec<u8>,
	) -> Self::PrefixIterator {
		let mut iter = Self::iter_prefix(k1);
		iter.set_last_raw_key(starting_raw_key);
		iter
	}

	fn iter_key_prefix(k1: impl EncodeLike<K1>) -> Self::PartialKeyIterator {
		let prefix = G::storage_double_map_final_key1(k1);
		Self::PartialKeyIterator {
			prefix: prefix.clone(),
			previous_key: prefix,
			drain: false,
			closure: |raw_key_without_prefix| {
				let mut key_material = G::Hasher2::reverse(raw_key_without_prefix);
				K2::decode(&mut key_material)
			},
		}
	}

	fn iter_key_prefix_from(
		k1: impl EncodeLike<K1>,
		starting_raw_key: Vec<u8>,
	) -> Self::PartialKeyIterator {
		let mut iter = Self::iter_key_prefix(k1);
		iter.set_last_raw_key(starting_raw_key);
		iter
	}

	fn drain_prefix(k1: impl EncodeLike<K1>) -> Self::PrefixIterator {
		let mut iterator = Self::iter_prefix(k1);
		iterator.drain = true;
		iterator
	}

	fn iter() -> Self::Iterator {
		let prefix = G::prefix_hash().to_vec();
		Self::Iterator {
			prefix: prefix.clone(),
			previous_key: prefix,
			drain: false,
			closure: |raw_key_without_prefix, mut raw_value| {
				let mut k1_k2_material = G::Hasher1::reverse(raw_key_without_prefix);
				let k1 = K1::decode(&mut k1_k2_material)?;
				let mut k2_material = G::Hasher2::reverse(k1_k2_material);
				let k2 = K2::decode(&mut k2_material)?;
				Ok((k1, k2, V::decode(&mut raw_value)?))
			},
			phantom: Default::default(),
		}
	}

	fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator {
		let mut iter = Self::iter();
		iter.set_last_raw_key(starting_raw_key);
		iter
	}

	fn iter_keys() -> Self::FullKeyIterator {
		let prefix = G::prefix_hash().to_vec();
		Self::FullKeyIterator {
			prefix: prefix.clone(),
			previous_key: prefix,
			drain: false,
			closure: |raw_key_without_prefix| {
				let mut k1_k2_material = G::Hasher1::reverse(raw_key_without_prefix);
				let k1 = K1::decode(&mut k1_k2_material)?;
				let mut k2_material = G::Hasher2::reverse(k1_k2_material);
				let k2 = K2::decode(&mut k2_material)?;
				Ok((k1, k2))
			},
		}
	}

	fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::FullKeyIterator {
		let mut iter = Self::iter_keys();
		iter.set_last_raw_key(starting_raw_key);
		iter
	}

	fn drain() -> Self::Iterator {
		let mut iterator = Self::iter();
		iterator.drain = true;
		iterator
	}

	fn translate<O: Decode, F: FnMut(K1, K2, O) -> Option<V>>(mut f: F) {
		let prefix = G::prefix_hash().to_vec();
		let mut previous_key = prefix.clone();
		while let Some(next) =
			sp_io::storage::next_key(&previous_key).filter(|n| n.starts_with(&prefix))
		{
			previous_key = next;
			let value = match unhashed::get::<O>(&previous_key) {
				Some(value) => value,
				None => {
					log::error!("Invalid translate: fail to decode old value");
					continue
				},
			};
			let mut key_material = G::Hasher1::reverse(&previous_key[prefix.len()..]);
			let key1 = match K1::decode(&mut key_material) {
				Ok(key1) => key1,
				Err(_) => {
					log::error!("Invalid translate: fail to decode key1");
					continue
				},
			};

			let mut key2_material = G::Hasher2::reverse(key_material);
			let key2 = match K2::decode(&mut key2_material) {
				Ok(key2) => key2,
				Err(_) => {
					log::error!("Invalid translate: fail to decode key2");
					continue
				},
			};

			match f(key1, key2, value) {
				Some(new) => unhashed::put::<V>(&previous_key, &new),
				None => unhashed::kill(&previous_key),
			}
		}
	}
}

/// Test iterators for StorageDoubleMap
#[cfg(test)]
mod test_iterators {
	use crate::{
		hash::StorageHasher,
		storage::{
			generator::{tests::*, StorageDoubleMap},
			unhashed,
		},
	};
	use alloc::vec;
	use codec::Encode;

	#[test]
	fn double_map_iter_from() {
		sp_io::TestExternalities::default().execute_with(|| {
			use crate::hash::Identity;
			#[crate::storage_alias]
			type MyDoubleMap = StorageDoubleMap<MyModule, Identity, u64, Identity, u64, u64>;

			MyDoubleMap::insert(1, 10, 100);
			MyDoubleMap::insert(1, 21, 201);
			MyDoubleMap::insert(1, 31, 301);
			MyDoubleMap::insert(1, 41, 401);
			MyDoubleMap::insert(2, 20, 200);
			MyDoubleMap::insert(3, 30, 300);
			MyDoubleMap::insert(4, 40, 400);
			MyDoubleMap::insert(5, 50, 500);

			let starting_raw_key = MyDoubleMap::storage_double_map_final_key(1, 21);
			let iter = MyDoubleMap::iter_key_prefix_from(1, starting_raw_key);
			assert_eq!(iter.collect::<Vec<_>>(), vec![31, 41]);

			let starting_raw_key = MyDoubleMap::storage_double_map_final_key(1, 31);
			let iter = MyDoubleMap::iter_prefix_from(1, starting_raw_key);
			assert_eq!(iter.collect::<Vec<_>>(), vec![(41, 401)]);

			let starting_raw_key = MyDoubleMap::storage_double_map_final_key(2, 20);
			let iter = MyDoubleMap::iter_keys_from(starting_raw_key);
			assert_eq!(iter.collect::<Vec<_>>(), vec![(3, 30), (4, 40), (5, 50)]);

			let starting_raw_key = MyDoubleMap::storage_double_map_final_key(3, 30);
			let iter = MyDoubleMap::iter_from(starting_raw_key);
			assert_eq!(iter.collect::<Vec<_>>(), vec![(4, 40, 400), (5, 50, 500)]);
		});
	}

	#[test]
	fn double_map_reversible_reversible_iteration() {
		sp_io::TestExternalities::default().execute_with(|| {
			type DoubleMap = self::frame_system::DoubleMap<Runtime>;

			// All map iterator
			let prefix = DoubleMap::prefix_hash().to_vec();

			unhashed::put(&key_before_prefix(prefix.clone()), &1u64);
			unhashed::put(&key_after_prefix(prefix.clone()), &1u64);

			for i in 0..4 {
				DoubleMap::insert(i as u16, i as u32, i as u64);
			}

			assert_eq!(
				DoubleMap::iter().collect::<Vec<_>>(),
				vec![(3, 3, 3), (0, 0, 0), (2, 2, 2), (1, 1, 1)],
			);

			assert_eq!(
				DoubleMap::iter_keys().collect::<Vec<_>>(),
				vec![(3, 3), (0, 0), (2, 2), (1, 1)],
			);

			assert_eq!(DoubleMap::iter_values().collect::<Vec<_>>(), vec![3, 0, 2, 1]);

			assert_eq!(
				DoubleMap::drain().collect::<Vec<_>>(),
				vec![(3, 3, 3), (0, 0, 0), (2, 2, 2), (1, 1, 1)],
			);

			assert_eq!(DoubleMap::iter().collect::<Vec<_>>(), vec![]);
			assert_eq!(unhashed::get(&key_before_prefix(prefix.clone())), Some(1u64));
			assert_eq!(unhashed::get(&key_after_prefix(prefix.clone())), Some(1u64));

			// Prefix iterator
			let k1 = 3 << 8;
			let prefix = DoubleMap::storage_double_map_final_key1(k1);

			unhashed::put(&key_before_prefix(prefix.clone()), &1u64);
			unhashed::put(&key_after_prefix(prefix.clone()), &1u64);

			for i in 0..4 {
				DoubleMap::insert(k1, i as u32, i as u64);
			}

			assert_eq!(
				DoubleMap::iter_prefix(k1).collect::<Vec<_>>(),
				vec![(1, 1), (2, 2), (0, 0), (3, 3)],
			);

			assert_eq!(DoubleMap::iter_key_prefix(k1).collect::<Vec<_>>(), vec![1, 2, 0, 3]);

			assert_eq!(DoubleMap::iter_prefix_values(k1).collect::<Vec<_>>(), vec![1, 2, 0, 3]);

			assert_eq!(
				DoubleMap::drain_prefix(k1).collect::<Vec<_>>(),
				vec![(1, 1), (2, 2), (0, 0), (3, 3)],
			);

			assert_eq!(DoubleMap::iter_prefix(k1).collect::<Vec<_>>(), vec![]);
			assert_eq!(unhashed::get(&key_before_prefix(prefix.clone())), Some(1u64));
			assert_eq!(unhashed::get(&key_after_prefix(prefix.clone())), Some(1u64));

			// Translate
			let prefix = DoubleMap::prefix_hash().to_vec();

			unhashed::put(&key_before_prefix(prefix.clone()), &1u64);
			unhashed::put(&key_after_prefix(prefix.clone()), &1u64);
			for i in 0..4 {
				DoubleMap::insert(i as u16, i as u32, i as u64);
			}

			// Wrong key1
			unhashed::put(&[prefix.clone(), vec![1, 2, 3]].concat(), &3u64.encode());

			// Wrong key2
			unhashed::put(
				&[prefix.clone(), crate::Blake2_128Concat::hash(&1u16.encode())].concat(),
				&3u64.encode(),
			);

			// Wrong value
			unhashed::put(
				&[
					prefix.clone(),
					crate::Blake2_128Concat::hash(&1u16.encode()),
					crate::Twox64Concat::hash(&2u32.encode()),
				]
				.concat(),
				&vec![1],
			);

			DoubleMap::translate(|_k1, _k2, v: u64| Some(v * 2));
			assert_eq!(
				DoubleMap::iter().collect::<Vec<_>>(),
				vec![(3, 3, 6), (0, 0, 0), (2, 2, 4), (1, 1, 2)],
			);
		})
	}
}