referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{BoundedBTreeMap, BoundedBTreeSet, BoundedVec, WeakBoundedVec};
use alloc::vec::Vec;
use codec::Decode;

/// Provides the sealed trait `StreamIter`.
mod private {
	use super::*;

	/// Used as marker trait for types that support stream iteration.
	pub trait StreamIter {
		/// The actual iterator implementation.
		type Iterator: core::iter::Iterator;

		/// Create the stream iterator for the value found at `key`.
		fn stream_iter(key: Vec<u8>) -> Self::Iterator;
	}

	impl<T: codec::Decode> StreamIter for Vec<T> {
		type Iterator = ScaleContainerStreamIter<T>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}

	impl<T: codec::Decode> StreamIter for alloc::collections::btree_set::BTreeSet<T> {
		type Iterator = ScaleContainerStreamIter<T>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}

	impl<K: codec::Decode, V: codec::Decode> StreamIter
		for alloc::collections::btree_map::BTreeMap<K, V>
	{
		type Iterator = ScaleContainerStreamIter<(K, V)>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}

	impl<T: codec::Decode, S> StreamIter for BoundedVec<T, S> {
		type Iterator = ScaleContainerStreamIter<T>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}

	impl<T: codec::Decode, S> StreamIter for WeakBoundedVec<T, S> {
		type Iterator = ScaleContainerStreamIter<T>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}

	impl<K: codec::Decode, V: codec::Decode, S> StreamIter for BoundedBTreeMap<K, V, S> {
		type Iterator = ScaleContainerStreamIter<(K, V)>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}

	impl<T: codec::Decode, S> StreamIter for BoundedBTreeSet<T, S> {
		type Iterator = ScaleContainerStreamIter<T>;

		fn stream_iter(key: Vec<u8>) -> Self::Iterator {
			ScaleContainerStreamIter::new(key)
		}
	}
}

/// An iterator that streams values directly from storage.
///
/// Requires that `T` implements the sealed trait `StreamIter`.
///
/// Instead of loading the entire `T` into memory, the iterator only loads a certain number of bytes
/// into memory to decode the next `T::Item`. The iterator implementation is allowed to have some
/// internal buffer to reduce the number of storage reads. The iterator should have an almost
/// constant memory usage over its lifetime. If at some point there is a decoding error, the
/// iterator will return `None` to signal that the iterator is finished.
pub trait StorageStreamIter<T: private::StreamIter> {
	/// Create the streaming iterator.
	fn stream_iter() -> T::Iterator;
}

impl<T: private::StreamIter + codec::FullCodec, StorageValue: super::StorageValue<T>>
	StorageStreamIter<T> for StorageValue
{
	fn stream_iter() -> T::Iterator {
		T::stream_iter(Self::hashed_key().into())
	}
}

/// A streaming iterator implementation for SCALE container types.
///
/// SCALE container types follow the same type of encoding `Compact<u32>(len) ++ data`.
/// This type provides an [`Iterator`](core::iter::Iterator) implementation that decodes
/// one item after another with each call to [`next`](Self::next). The bytes representing
/// the container are also not read at once into memory and instead being read in chunks. As long
/// as individual items are smaller than these chunks the memory usage of this iterator should
/// be constant. On decoding errors [`next`](Self::next) will return `None` to signal that the
/// iterator is finished.
pub struct ScaleContainerStreamIter<T> {
	marker: core::marker::PhantomData<T>,
	input: StorageInput,
	length: u32,
	read: u32,
}

impl<T> ScaleContainerStreamIter<T> {
	/// Creates a new instance of the stream iterator.
	///
	/// - `key`: Storage key of the container in the state.
	///
	/// Same as [`Self::new_try`], but logs a potential error and sets the length to `0`.
	pub fn new(key: Vec<u8>) -> Self {
		let mut input = StorageInput::new(key);
		let length = if input.exists() {
			match codec::Compact::<u32>::decode(&mut input) {
				Ok(length) => length.0,
				Err(e) => {
					// TODO #3700: error should be handleable.
					log::error!(
						target: "runtime::storage",
						"Corrupted state at `{:?}`: failed to decode element count: {:?}",
						input.key,
						e,
					);

					0
				},
			}
		} else {
			0
		};

		Self { marker: core::marker::PhantomData, input, length, read: 0 }
	}

	/// Creates a new instance of the stream iterator.
	///
	/// - `key`: Storage key of the container in the state.
	///
	/// Returns an error if the length of the container fails to decode.
	pub fn new_try(key: Vec<u8>) -> Result<Self, codec::Error> {
		let mut input = StorageInput::new(key);
		let length = if input.exists() { codec::Compact::<u32>::decode(&mut input)?.0 } else { 0 };

		Ok(Self { marker: core::marker::PhantomData, input, length, read: 0 })
	}
}

impl<T: codec::Decode> core::iter::Iterator for ScaleContainerStreamIter<T> {
	type Item = T;

	fn next(&mut self) -> Option<T> {
		if self.read >= self.length {
			return None
		}

		match codec::Decode::decode(&mut self.input) {
			Ok(r) => {
				self.read += 1;
				Some(r)
			},
			Err(e) => {
				log::error!(
					target: "runtime::storage",
					"Corrupted state at `{:?}`: failed to decode element {} (out of {} in total): {:?}",
					self.input.key,
					self.read,
					self.length,
					e,
				);

				self.read = self.length;
				None
			},
		}
	}

	fn size_hint(&self) -> (usize, Option<usize>) {
		let left = (self.length - self.read) as usize;

		(left, Some(left))
	}
}

/// The size of the internal buffer used by [`StorageInput`].
///
/// This internal buffer is used to speed up implementation as reading from the
/// state for every access is too slow.
const STORAGE_INPUT_BUFFER_CAPACITY: usize = 2 * 1024;

/// Implementation of [`codec::Input`] using [`sp_io::storage::read`].
///
/// Keeps an internal buffer with a size of [`STORAGE_INPUT_BUFFER_CAPACITY`]. All read accesses
/// are tried to be served by this buffer. If the buffer doesn't hold enough bytes to fulfill the
/// current read access, the buffer is re-filled from the state. A read request that is bigger than
/// the internal buffer is directly forwarded to the state to reduce the number of reads from the
/// state.
struct StorageInput {
	key: Vec<u8>,
	offset: u32,
	total_length: u32,
	exists: bool,
	buffer: Vec<u8>,
	buffer_pos: usize,
}

impl StorageInput {
	/// Create a new instance of the input.
	///
	/// - `key`: The storage key of the storage item that this input will read.
	fn new(key: Vec<u8>) -> Self {
		let mut buffer = alloc::vec![0; STORAGE_INPUT_BUFFER_CAPACITY];
		unsafe {
			buffer.set_len(buffer.capacity());
		}

		let (total_length, exists) =
			if let Some(total_length) = sp_io::storage::read(&key, &mut buffer, 0) {
				(total_length, true)
			} else {
				(0, false)
			};

		if (total_length as usize) < buffer.len() {
			unsafe {
				buffer.set_len(total_length as usize);
			}
		}

		Self { total_length, offset: buffer.len() as u32, key, exists, buffer, buffer_pos: 0 }
	}

	/// Fill the internal buffer from the state.
	fn fill_buffer(&mut self) -> Result<(), codec::Error> {
		self.buffer.copy_within(self.buffer_pos.., 0);
		let present_bytes = self.buffer.len() - self.buffer_pos;
		self.buffer_pos = 0;

		unsafe {
			self.buffer.set_len(self.buffer.capacity());
		}

		if let Some(length_minus_offset) =
			sp_io::storage::read(&self.key, &mut self.buffer[present_bytes..], self.offset)
		{
			let bytes_read =
				core::cmp::min(length_minus_offset as usize, self.buffer.len() - present_bytes);
			let buffer_len = present_bytes + bytes_read;
			unsafe {
				self.buffer.set_len(buffer_len);
			}

			self.ensure_total_length_did_not_change(length_minus_offset)?;

			self.offset += bytes_read as u32;

			Ok(())
		} else {
			// The value was deleted, let's ensure we don't read anymore.
			self.stop_reading();

			Err("Value doesn't exist in the state?".into())
		}
	}

	/// Returns if the value to read exists in the state.
	fn exists(&self) -> bool {
		self.exists
	}

	/// Reads directly into the given slice `into`.
	///
	/// Should be used when `into.len() > self.buffer.capacity()` to reduce the number of reads from
	/// the state.
	#[inline(never)]
	fn read_big_item(&mut self, into: &mut [u8]) -> Result<(), codec::Error> {
		let num_cached = self.buffer.len() - self.buffer_pos;

		let (out_already_read, mut out_remaining) = into.split_at_mut(num_cached);
		out_already_read.copy_from_slice(&self.buffer[self.buffer_pos..]);

		self.buffer_pos = 0;
		unsafe {
			self.buffer.set_len(0);
		}

		if let Some(length_minus_offset) =
			sp_io::storage::read(&self.key, &mut out_remaining, self.offset)
		{
			if (length_minus_offset as usize) < out_remaining.len() {
				return Err("Not enough data to fill the buffer".into())
			}

			self.ensure_total_length_did_not_change(length_minus_offset)?;

			self.offset += out_remaining.len() as u32;

			Ok(())
		} else {
			// The value was deleted, let's ensure we don't read anymore.
			self.stop_reading();

			Err("Value doesn't exist in the state?".into())
		}
	}

	/// Ensures that the expected total length of the value did not change.
	///
	/// On error ensures that further reading is prohibited.
	fn ensure_total_length_did_not_change(
		&mut self,
		length_minus_offset: u32,
	) -> Result<(), codec::Error> {
		if self.total_length == self.offset + length_minus_offset {
			Ok(())
		} else {
			// The value total length changed, let's ensure we don't read anymore.
			self.stop_reading();

			Err("Storage value changed while it is being read!".into())
		}
	}

	/// Ensure that we are stop reading from this value in the state.
	///
	/// Should be used when there happened an unrecoverable error while reading.
	fn stop_reading(&mut self) {
		self.offset = self.total_length;

		self.buffer_pos = 0;
		unsafe {
			self.buffer.set_len(0);
		}
	}
}

impl codec::Input for StorageInput {
	fn remaining_len(&mut self) -> Result<Option<usize>, codec::Error> {
		Ok(Some(self.total_length.saturating_sub(
			self.offset.saturating_sub((self.buffer.len() - self.buffer_pos) as u32),
		) as usize))
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), codec::Error> {
		// If there is still data left to be read from the state.
		if self.offset < self.total_length {
			if into.len() > self.buffer.capacity() {
				return self.read_big_item(into)
			} else if self.buffer_pos + into.len() > self.buffer.len() {
				self.fill_buffer()?;
			}
		}

		// Guard against `fill_buffer` not reading enough data or just not having enough data
		// anymore.
		if into.len() + self.buffer_pos > self.buffer.len() {
			return Err("Not enough data to fill the buffer".into())
		}

		let end = self.buffer_pos + into.len();
		into.copy_from_slice(&self.buffer[self.buffer_pos..end]);
		self.buffer_pos = end;

		Ok(())
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use codec::{Compact, CompactLen, Encode, Input};

	#[crate::storage_alias]
	pub type TestVecU32 = StorageValue<Test, Vec<u32>>;

	#[crate::storage_alias]
	pub type TestVecVecU8 = StorageValue<Test, Vec<Vec<u8>>>;

	#[test]
	fn remaining_len_works() {
		sp_io::TestExternalities::default().execute_with(|| {
			let data: Vec<u32> = vec![1, 2, 3, 4, 5];
			TestVecU32::put(&data);

			let mut input = StorageInput::new(TestVecU32::hashed_key().into());
			assert_eq!(
				5 * std::mem::size_of::<u32>() + Compact::<u32>::compact_len(&5) as usize,
				input.remaining_len().ok().flatten().unwrap()
			);

			assert_eq!(5, Compact::<u32>::decode(&mut input).unwrap().0);
			assert_eq!(
				5 * std::mem::size_of::<u32>(),
				input.remaining_len().ok().flatten().unwrap()
			);

			for i in &data {
				assert_eq!(*i, u32::decode(&mut input).unwrap());
				assert_eq!(
					(5 - *i as usize) * std::mem::size_of::<u32>(),
					input.remaining_len().ok().flatten().unwrap()
				);
			}

			let data: Vec<Vec<u8>> = vec![
				vec![0; 20],
				vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2],
				vec![2; STORAGE_INPUT_BUFFER_CAPACITY * 2],
				vec![3; 30],
				vec![4; 30],
				vec![5; STORAGE_INPUT_BUFFER_CAPACITY * 2],
				vec![6; 30],
			];
			TestVecVecU8::put(&data);

			let mut input = StorageInput::new(TestVecVecU8::hashed_key().into());
			let total_data_len = data
				.iter()
				.map(|v| v.len() + Compact::<u32>::compact_len(&(v.len() as u32)) as usize)
				.sum::<usize>();
			assert_eq!(
				total_data_len + Compact::<u32>::compact_len(&(data.len() as u32)) as usize,
				input.remaining_len().ok().flatten().unwrap()
			);

			assert_eq!(data.len(), Compact::<u32>::decode(&mut input).unwrap().0 as usize);
			assert_eq!(total_data_len, input.remaining_len().ok().flatten().unwrap());

			let mut remaining_len = total_data_len;
			for i in data {
				assert_eq!(i, Vec::<u8>::decode(&mut input).unwrap());

				remaining_len -= i.len() + Compact::<u32>::compact_len(&(i.len() as u32)) as usize;

				assert_eq!(remaining_len, input.remaining_len().ok().flatten().unwrap());
			}
		})
	}

	#[test]
	fn detects_value_total_length_change() {
		sp_io::TestExternalities::default().execute_with(|| {
			let test_data: Vec<Vec<Vec<u8>>> = vec![
				vec![vec![0; 20], vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2]],
				vec![
					vec![0; STORAGE_INPUT_BUFFER_CAPACITY - 1],
					vec![1; STORAGE_INPUT_BUFFER_CAPACITY - 1],
				],
			];

			for data in test_data {
				TestVecVecU8::put(&data);

				let mut input = StorageInput::new(TestVecVecU8::hashed_key().into());

				Compact::<u32>::decode(&mut input).unwrap();
				Vec::<u8>::decode(&mut input).unwrap();

				TestVecVecU8::append(vec![1, 2, 3]);

				assert!(Vec::<u8>::decode(&mut input)
					.unwrap_err()
					.to_string()
					.contains("Storage value changed while it is being read"));

				// Reading a second time should now prevent reading at all.
				assert!(Vec::<u8>::decode(&mut input)
					.unwrap_err()
					.to_string()
					.contains("Not enough data to fill the buffer"));
			}
		})
	}

	#[test]
	fn stream_read_test() {
		sp_io::TestExternalities::default().execute_with(|| {
			let data: Vec<u32> = vec![1, 2, 3, 4, 5];
			TestVecU32::put(&data);

			assert_eq!(data, TestVecU32::stream_iter().collect::<Vec<_>>());

			let data: Vec<Vec<u8>> = vec![vec![0; 3000], vec![1; 2500]];
			TestVecVecU8::put(&data);

			assert_eq!(data, TestVecVecU8::stream_iter().collect::<Vec<_>>());
		})
	}

	#[test]
	fn reading_big_intermediate_value() {
		sp_io::TestExternalities::default().execute_with(|| {
			let data: Vec<Vec<u8>> =
				vec![vec![0; 20], vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2], vec![2; 30]];
			TestVecVecU8::put(&data);

			assert_eq!(data, TestVecVecU8::stream_iter().collect::<Vec<_>>());

			let data: Vec<Vec<u8>> = vec![
				vec![0; 20],
				vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2],
				vec![2; STORAGE_INPUT_BUFFER_CAPACITY * 2],
				vec![3; 30],
				vec![4; 30],
				vec![5; STORAGE_INPUT_BUFFER_CAPACITY * 2],
				vec![6; 30],
			];
			TestVecVecU8::put(&data);

			assert_eq!(data, TestVecVecU8::stream_iter().collect::<Vec<_>>());
		})
	}

	#[test]
	fn reading_more_data_as_in_the_state_is_detected() {
		sp_io::TestExternalities::default().execute_with(|| {
			let data: Vec<Vec<u8>> = vec![vec![0; 20], vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2]];
			TestVecVecU8::put(&data);

			let mut input = StorageInput::new(TestVecVecU8::hashed_key().into());

			Compact::<u32>::decode(&mut input).unwrap();

			Vec::<u8>::decode(&mut input).unwrap();

			let mut buffer = vec![0; STORAGE_INPUT_BUFFER_CAPACITY * 4];
			assert!(input
				.read(&mut buffer)
				.unwrap_err()
				.to_string()
				.contains("Not enough data to fill the buffer"));
		})
	}

	#[test]
	fn reading_invalid_data_from_state() {
		sp_io::TestExternalities::default().execute_with(|| {
			let data: Vec<u32> = vec![1, 2, 3, 4, 5];

			let mut data_encoded = data.encode();
			data_encoded.truncate(data_encoded.len() - 2);
			sp_io::storage::set(&TestVecU32::hashed_key(), &data_encoded);
			assert_eq!(
				data.iter().copied().take(data.len() - 1).collect::<Vec<_>>(),
				TestVecU32::stream_iter().collect::<Vec<_>>()
			);

			let data_encoded = data.encode()[2..].to_vec();
			sp_io::storage::set(&TestVecU32::hashed_key(), &data_encoded);
			assert!(TestVecU32::stream_iter().collect::<Vec<_>>().is_empty());

			let data: Vec<Vec<u8>> = vec![vec![0; 20], vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2]];
			let mut data_encoded = data.encode();
			data_encoded.truncate(data_encoded.len() - 100);
			sp_io::storage::set(&TestVecVecU8::hashed_key(), &data_encoded);

			assert_eq!(
				data.iter().cloned().take(1).collect::<Vec<_>>(),
				TestVecVecU8::stream_iter().collect::<Vec<_>>()
			);
		})
	}

	#[test]
	fn reading_with_fill_buffer() {
		sp_io::TestExternalities::default().execute_with(|| {
			const BUFFER_SIZE: usize = 300;
			// Ensure that the capacity isn't dividable by `300`.
			assert!(STORAGE_INPUT_BUFFER_CAPACITY % BUFFER_SIZE != 0, "Please update buffer size");
			// Create some items where the last item is partially in the inner buffer so that
			// we need to fill the buffer to read the entire item.
			let data: Vec<Vec<u8>> = (0..=(STORAGE_INPUT_BUFFER_CAPACITY / BUFFER_SIZE))
				.into_iter()
				.map(|i| vec![i as u8; BUFFER_SIZE])
				.collect::<Vec<Vec<u8>>>();
			TestVecVecU8::put(&data);

			assert_eq!(data, TestVecVecU8::stream_iter().collect::<Vec<_>>());

			let mut input = StorageInput::new(TestVecVecU8::hashed_key().into());

			Compact::<u32>::decode(&mut input).unwrap();

			(0..data.len() - 1).into_iter().for_each(|_| {
				Vec::<u8>::decode(&mut input).unwrap();
			});

			// Try reading a more data than there should be left.
			let mut result_buffer = vec![0; BUFFER_SIZE * 2];
			assert!(input
				.read(&mut result_buffer)
				.unwrap_err()
				.to_string()
				.contains("Not enough data to fill the buffer"));
		})
	}

	#[test]
	fn detect_value_deleted_in_state() {
		sp_io::TestExternalities::default().execute_with(|| {
			let data: Vec<Vec<u8>> = vec![vec![0; 20], vec![1; STORAGE_INPUT_BUFFER_CAPACITY * 2]];
			TestVecVecU8::put(&data);

			let mut input = StorageInput::new(TestVecVecU8::hashed_key().into());
			TestVecVecU8::kill();

			Compact::<u32>::decode(&mut input).unwrap();
			Vec::<u8>::decode(&mut input).unwrap();

			assert!(Vec::<u8>::decode(&mut input)
				.unwrap_err()
				.to_string()
				.contains("Value doesn't exist in the state?"));

			const BUFFER_SIZE: usize = 300;
			// Ensure that the capacity isn't dividable by `300`.
			assert!(STORAGE_INPUT_BUFFER_CAPACITY % BUFFER_SIZE != 0, "Please update buffer size");
			// Create some items where the last item is partially in the inner buffer so that
			// we need to fill the buffer to read the entire item.
			let data: Vec<Vec<u8>> = (0..=(STORAGE_INPUT_BUFFER_CAPACITY / BUFFER_SIZE))
				.into_iter()
				.map(|i| vec![i as u8; BUFFER_SIZE])
				.collect::<Vec<Vec<u8>>>();
			TestVecVecU8::put(&data);

			let mut input = StorageInput::new(TestVecVecU8::hashed_key().into());
			TestVecVecU8::kill();

			Compact::<u32>::decode(&mut input).unwrap();
			(0..data.len() - 1).into_iter().for_each(|_| {
				Vec::<u8>::decode(&mut input).unwrap();
			});

			assert!(Vec::<u8>::decode(&mut input)
				.unwrap_err()
				.to_string()
				.contains("Value doesn't exist in the state?"));
		})
	}
}