referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Storage map type. Implements StorageMap, StorageIterableMap, StoragePrefixedMap traits and their
//! methods directly.

use crate::{
	storage::{
		types::{OptionQuery, QueryKindTrait, StorageEntryMetadataBuilder},
		KeyLenOf, StorageAppend, StorageDecodeLength, StoragePrefixedMap, StorageTryAppend,
	},
	traits::{Get, GetDefault, StorageInfo, StorageInstance},
	StorageHasher, Twox128,
};
use alloc::{vec, vec::Vec};
use codec::{Decode, Encode, EncodeLike, FullCodec, MaxEncodedLen};
use frame_support::storage::StorageDecodeNonDedupLength;
use sp_arithmetic::traits::SaturatedConversion;
use sp_metadata_ir::{StorageEntryMetadataIR, StorageEntryTypeIR};

/// A type representing a *map* in storage. A *storage map* is a mapping of keys to values of a
/// given type stored on-chain.
///
/// For general information regarding the `#[pallet::storage]` attribute, refer to
/// [`crate::pallet_macros::storage`].
///
/// # Example
///
/// ```
/// #[frame_support::pallet]
/// mod pallet {
///     # use frame_support::pallet_prelude::*;
///     # #[pallet::config]
///     # pub trait Config: frame_system::Config {}
///     # #[pallet::pallet]
///     # pub struct Pallet<T>(_);
/// 	/// A kitchen-sink StorageMap, with all possible additional attributes.
///     #[pallet::storage]
/// 	#[pallet::getter(fn foo)]
/// 	#[pallet::storage_prefix = "OtherFoo"]
/// 	#[pallet::unbounded]
///     pub type Foo<T> = StorageMap<
/// 		_,
/// 		Blake2_128Concat,
/// 		u32,
/// 		u32,
/// 		ValueQuery
/// 	>;
///
/// 	/// Alternative named syntax.
///     #[pallet::storage]
///     pub type Bar<T> = StorageMap<
/// 		Hasher = Blake2_128Concat,
/// 		Key = u32,
/// 		Value = u32,
/// 		QueryKind = ValueQuery
/// 	>;
/// }
/// ```
pub struct StorageMap<
	Prefix,
	Hasher,
	Key,
	Value,
	QueryKind = OptionQuery,
	OnEmpty = GetDefault,
	MaxValues = GetDefault,
>(core::marker::PhantomData<(Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues)>);

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues> Get<u32>
	for KeyLenOf<StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec + MaxEncodedLen,
{
	fn get() -> u32 {
		// The `max_len` of the key hash plus the pallet prefix and storage prefix (which both are
		// hashed with `Twox128`).
		let z = Hasher::max_len::<Key>() + Twox128::max_len::<()>() * 2;
		z as u32
	}
}

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
	crate::storage::generator::StorageMap<Key, Value>
	for StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec,
	Value: FullCodec,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	type Query = QueryKind::Query;
	type Hasher = Hasher;
	fn pallet_prefix() -> &'static [u8] {
		Prefix::pallet_prefix().as_bytes()
	}
	fn storage_prefix() -> &'static [u8] {
		Prefix::STORAGE_PREFIX.as_bytes()
	}
	fn prefix_hash() -> [u8; 32] {
		Prefix::prefix_hash()
	}
	fn from_optional_value_to_query(v: Option<Value>) -> Self::Query {
		QueryKind::from_optional_value_to_query(v)
	}
	fn from_query_to_optional_value(v: Self::Query) -> Option<Value> {
		QueryKind::from_query_to_optional_value(v)
	}
}

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues> StoragePrefixedMap<Value>
	for StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec,
	Value: FullCodec,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	fn pallet_prefix() -> &'static [u8] {
		<Self as crate::storage::generator::StorageMap<Key, Value>>::pallet_prefix()
	}
	fn storage_prefix() -> &'static [u8] {
		<Self as crate::storage::generator::StorageMap<Key, Value>>::storage_prefix()
	}
}

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
	StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec,
	Value: FullCodec,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	/// Get the storage key used to fetch a value corresponding to a specific key.
	pub fn hashed_key_for<KeyArg: EncodeLike<Key>>(key: KeyArg) -> Vec<u8> {
		<Self as crate::storage::StorageMap<Key, Value>>::hashed_key_for(key)
	}

	/// Does the value (explicitly) exist in storage?
	pub fn contains_key<KeyArg: EncodeLike<Key>>(key: KeyArg) -> bool {
		<Self as crate::storage::StorageMap<Key, Value>>::contains_key(key)
	}

	/// Load the value associated with the given key from the map.
	pub fn get<KeyArg: EncodeLike<Key>>(key: KeyArg) -> QueryKind::Query {
		<Self as crate::storage::StorageMap<Key, Value>>::get(key)
	}

	/// Try to get the value for the given key from the map.
	///
	/// Returns `Ok` if it exists, `Err` if not.
	pub fn try_get<KeyArg: EncodeLike<Key>>(key: KeyArg) -> Result<Value, ()> {
		<Self as crate::storage::StorageMap<Key, Value>>::try_get(key)
	}

	/// Swap the values of two keys.
	pub fn swap<KeyArg1: EncodeLike<Key>, KeyArg2: EncodeLike<Key>>(key1: KeyArg1, key2: KeyArg2) {
		<Self as crate::storage::StorageMap<Key, Value>>::swap(key1, key2)
	}

	/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
	pub fn set<KeyArg: EncodeLike<Key>>(key: KeyArg, q: QueryKind::Query) {
		<Self as crate::storage::StorageMap<Key, Value>>::set(key, q)
	}

	/// Store a value to be associated with the given key from the map.
	pub fn insert<KeyArg: EncodeLike<Key>, ValArg: EncodeLike<Value>>(key: KeyArg, val: ValArg) {
		<Self as crate::storage::StorageMap<Key, Value>>::insert(key, val)
	}

	/// Remove the value under a key.
	pub fn remove<KeyArg: EncodeLike<Key>>(key: KeyArg) {
		<Self as crate::storage::StorageMap<Key, Value>>::remove(key)
	}

	/// Mutate the value under a key.
	pub fn mutate<KeyArg: EncodeLike<Key>, R, F: FnOnce(&mut QueryKind::Query) -> R>(
		key: KeyArg,
		f: F,
	) -> R {
		<Self as crate::storage::StorageMap<Key, Value>>::mutate(key, f)
	}

	/// Mutate the item, only if an `Ok` value is returned.
	pub fn try_mutate<KeyArg, R, E, F>(key: KeyArg, f: F) -> Result<R, E>
	where
		KeyArg: EncodeLike<Key>,
		F: FnOnce(&mut QueryKind::Query) -> Result<R, E>,
	{
		<Self as crate::storage::StorageMap<Key, Value>>::try_mutate(key, f)
	}

	/// Mutate the value under a key iff it exists. Do nothing and return the default value if not.
	pub fn mutate_extant<KeyArg: EncodeLike<Key>, R: Default, F: FnOnce(&mut Value) -> R>(
		key: KeyArg,
		f: F,
	) -> R {
		<Self as crate::storage::StorageMap<Key, Value>>::mutate_extant(key, f)
	}

	/// Mutate the value under a key. Deletes the item if mutated to a `None`.
	pub fn mutate_exists<KeyArg: EncodeLike<Key>, R, F: FnOnce(&mut Option<Value>) -> R>(
		key: KeyArg,
		f: F,
	) -> R {
		<Self as crate::storage::StorageMap<Key, Value>>::mutate_exists(key, f)
	}

	/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
	/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
	/// or if the storage item does not exist (`None`), independent of the `QueryType`.
	pub fn try_mutate_exists<KeyArg, R, E, F>(key: KeyArg, f: F) -> Result<R, E>
	where
		KeyArg: EncodeLike<Key>,
		F: FnOnce(&mut Option<Value>) -> Result<R, E>,
	{
		<Self as crate::storage::StorageMap<Key, Value>>::try_mutate_exists(key, f)
	}

	/// Take the value under a key.
	pub fn take<KeyArg: EncodeLike<Key>>(key: KeyArg) -> QueryKind::Query {
		<Self as crate::storage::StorageMap<Key, Value>>::take(key)
	}

	/// Append the given items to the value in the storage.
	///
	/// `Value` is required to implement `codec::EncodeAppend`.
	///
	/// # Warning
	///
	/// If the storage item is not encoded properly, the storage will be overwritten
	/// and set to `[item]`. Any default value set for the storage item will be ignored
	/// on overwrite.
	pub fn append<Item, EncodeLikeItem, EncodeLikeKey>(key: EncodeLikeKey, item: EncodeLikeItem)
	where
		EncodeLikeKey: EncodeLike<Key>,
		Item: Encode,
		EncodeLikeItem: EncodeLike<Item>,
		Value: StorageAppend<Item>,
	{
		<Self as crate::storage::StorageMap<Key, Value>>::append(key, item)
	}

	/// Read the length of the storage value without decoding the entire value under the
	/// given `key`.
	///
	/// `Value` is required to implement [`StorageDecodeLength`].
	///
	/// If the value does not exists or it fails to decode the length, `None` is returned.
	/// Otherwise `Some(len)` is returned.
	///
	/// # Warning
	///
	/// `None` does not mean that `get()` does not return a value. The default value is completely
	/// ignored by this function.
	pub fn decode_len<KeyArg: EncodeLike<Key>>(key: KeyArg) -> Option<usize>
	where
		Value: StorageDecodeLength,
	{
		<Self as crate::storage::StorageMap<Key, Value>>::decode_len(key)
	}

	/// Read the length of the storage value without decoding the entire value.
	///
	/// `Value` is required to implement [`StorageDecodeNonDedupLength`].
	///
	/// If the value does not exists or it fails to decode the length, `None` is returned.
	/// Otherwise `Some(len)` is returned.
	///
	/// # Warning
	///
	///  - `None` does not mean that `get()` does not return a value. The default value is
	///    completely
	/// ignored by this function.
	///
	/// - The value returned is the non-deduplicated length of the underlying Vector in storage.This
	/// means that any duplicate items are included.
	pub fn decode_non_dedup_len<KeyArg: EncodeLike<Key>>(key: KeyArg) -> Option<usize>
	where
		Value: StorageDecodeNonDedupLength,
	{
		<Self as crate::storage::StorageMap<Key, Value>>::decode_non_dedup_len(key)
	}

	/// Migrate an item with the given `key` from a defunct `OldHasher` to the current hasher.
	///
	/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
	pub fn migrate_key<OldHasher: crate::hash::StorageHasher, KeyArg: EncodeLike<Key>>(
		key: KeyArg,
	) -> Option<Value> {
		<Self as crate::storage::StorageMap<Key, Value>>::migrate_key::<OldHasher, _>(key)
	}

	/// Remove all values of the storage in the overlay and up to `limit` in the backend.
	///
	/// All values in the client overlay will be deleted, if there is some `limit` then up to
	/// `limit` values are deleted from the client backend, if `limit` is none then all values in
	/// the client backend are deleted.
	///
	/// # Note
	///
	/// Calling this multiple times per block with a `limit` set leads always to the same keys being
	/// removed and the same result being returned. This happens because the keys to delete in the
	/// overlay are not taken into account when deleting keys in the backend.
	#[deprecated = "Use `clear` instead"]
	pub fn remove_all(limit: Option<u32>) -> sp_io::KillStorageResult {
		#[allow(deprecated)]
		<Self as crate::storage::StoragePrefixedMap<Value>>::remove_all(limit)
	}

	/// Attempt to remove all items from the map.
	///
	/// Returns [`MultiRemovalResults`](sp_io::MultiRemovalResults) to inform about the result. Once
	/// the resultant `maybe_cursor` field is `None`, then no further items remain to be deleted.
	///
	/// NOTE: After the initial call for any given map, it is important that no further items
	/// are inserted into the map. If so, then the map may not be empty when the resultant
	/// `maybe_cursor` is `None`.
	///
	/// # Limit
	///
	/// A `limit` must always be provided through in order to cap the maximum
	/// amount of deletions done in a single call. This is one fewer than the
	/// maximum number of backend iterations which may be done by this operation and as such
	/// represents the maximum number of backend deletions which may happen. A `limit` of zero
	/// implies that no keys will be deleted, though there may be a single iteration done.
	///
	/// # Cursor
	///
	/// A *cursor* may be passed in to this operation with `maybe_cursor`. `None` should only be
	/// passed once (in the initial call) for any given storage map. Subsequent calls
	/// operating on the same map should always pass `Some`, and this should be equal to the
	/// previous call result's `maybe_cursor` field.
	pub fn clear(limit: u32, maybe_cursor: Option<&[u8]>) -> sp_io::MultiRemovalResults {
		<Self as crate::storage::StoragePrefixedMap<Value>>::clear(limit, maybe_cursor)
	}

	/// Iter over all value of the storage.
	///
	/// NOTE: If a value failed to decode because storage is corrupted then it is skipped.
	pub fn iter_values() -> crate::storage::PrefixIterator<Value> {
		<Self as crate::storage::StoragePrefixedMap<Value>>::iter_values()
	}

	/// Translate the values of all elements by a function `f`, in the map in no particular order.
	///
	/// By returning `None` from `f` for an element, you'll remove it from the map.
	///
	/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
	///
	/// # Warning
	///
	/// This function must be used with care, before being updated the storage still contains the
	/// old type, thus other calls (such as `get`) will fail at decoding it.
	///
	/// # Usage
	///
	/// This would typically be called inside the module implementation of on_runtime_upgrade.
	pub fn translate_values<OldValue: Decode, F: FnMut(OldValue) -> Option<Value>>(f: F) {
		<Self as crate::storage::StoragePrefixedMap<Value>>::translate_values(f)
	}

	/// Try and append the given item to the value in the storage.
	///
	/// Is only available if `Value` of the storage implements [`StorageTryAppend`].
	pub fn try_append<KArg, Item, EncodeLikeItem>(key: KArg, item: EncodeLikeItem) -> Result<(), ()>
	where
		KArg: EncodeLike<Key> + Clone,
		Item: Encode,
		EncodeLikeItem: EncodeLike<Item>,
		Value: StorageTryAppend<Item>,
	{
		<Self as crate::storage::TryAppendMap<Key, Value, Item>>::try_append(key, item)
	}
}

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
	StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher + crate::ReversibleStorageHasher,
	Key: FullCodec,
	Value: FullCodec,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	/// Enumerate all elements in the map in no particular order.
	///
	/// If you alter the map while doing this, you'll get undefined results.
	pub fn iter() -> crate::storage::PrefixIterator<(Key, Value)> {
		<Self as crate::storage::IterableStorageMap<Key, Value>>::iter()
	}

	/// Enumerate all elements in the map after a specified `starting_raw_key` in no
	/// particular order.
	///
	/// If you alter the map while doing this, you'll get undefined results.
	pub fn iter_from(starting_raw_key: Vec<u8>) -> crate::storage::PrefixIterator<(Key, Value)> {
		<Self as crate::storage::IterableStorageMap<Key, Value>>::iter_from(starting_raw_key)
	}

	/// Enumerate all elements in the map after a specified `starting_key` in no
	/// particular order.
	///
	/// If you alter the map while doing this, you'll get undefined results.
	pub fn iter_from_key(
		starting_key: impl EncodeLike<Key>,
	) -> crate::storage::PrefixIterator<(Key, Value)> {
		Self::iter_from(Self::hashed_key_for(starting_key))
	}

	/// Enumerate all keys in the map in no particular order.
	///
	/// If you alter the map while doing this, you'll get undefined results.
	pub fn iter_keys() -> crate::storage::KeyPrefixIterator<Key> {
		<Self as crate::storage::IterableStorageMap<Key, Value>>::iter_keys()
	}

	/// Enumerate all keys in the map after a specified `starting_raw_key` in no particular
	/// order.
	///
	/// If you alter the map while doing this, you'll get undefined results.
	pub fn iter_keys_from(starting_raw_key: Vec<u8>) -> crate::storage::KeyPrefixIterator<Key> {
		<Self as crate::storage::IterableStorageMap<Key, Value>>::iter_keys_from(starting_raw_key)
	}

	/// Enumerate all keys in the map after a specified `starting_key` in no particular
	/// order.
	///
	/// If you alter the map while doing this, you'll get undefined results.
	pub fn iter_keys_from_key(
		starting_key: impl EncodeLike<Key>,
	) -> crate::storage::KeyPrefixIterator<Key> {
		Self::iter_keys_from(Self::hashed_key_for(starting_key))
	}

	/// Remove all elements from the map and iterate through them in no particular order.
	///
	/// If you add elements to the map while doing this, you'll get undefined results.
	pub fn drain() -> crate::storage::PrefixIterator<(Key, Value)> {
		<Self as crate::storage::IterableStorageMap<Key, Value>>::drain()
	}

	/// Translate the values of all elements by a function `f`, in the map in no particular order.
	///
	/// By returning `None` from `f` for an element, you'll remove it from the map.
	///
	/// NOTE: If a value fails to decode because storage is corrupted, then it will log an error and
	/// be skipped in production, or panic in development.
	pub fn translate<O: Decode, F: FnMut(Key, O) -> Option<Value>>(f: F) {
		<Self as crate::storage::IterableStorageMap<Key, Value>>::translate(f)
	}
}

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues> StorageEntryMetadataBuilder
	for StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec + scale_info::StaticTypeInfo,
	Value: FullCodec + scale_info::StaticTypeInfo,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	fn build_metadata(
		deprecation_status: sp_metadata_ir::DeprecationStatusIR,
		docs: Vec<&'static str>,
		entries: &mut Vec<StorageEntryMetadataIR>,
	) {
		let docs = if cfg!(feature = "no-metadata-docs") { vec![] } else { docs };

		let entry = StorageEntryMetadataIR {
			name: Prefix::STORAGE_PREFIX,
			modifier: QueryKind::METADATA,
			ty: StorageEntryTypeIR::Map {
				hashers: vec![Hasher::METADATA],
				key: scale_info::meta_type::<Key>(),
				value: scale_info::meta_type::<Value>(),
			},
			default: OnEmpty::get().encode(),
			docs,
			deprecation_info: deprecation_status,
		};

		entries.push(entry);
	}
}

impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues> crate::traits::StorageInfoTrait
	for StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec + MaxEncodedLen,
	Value: FullCodec + MaxEncodedLen,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	fn storage_info() -> Vec<StorageInfo> {
		vec![StorageInfo {
			pallet_name: Self::pallet_prefix().to_vec(),
			storage_name: Self::storage_prefix().to_vec(),
			prefix: Self::final_prefix().to_vec(),
			max_values: MaxValues::get(),
			max_size: Some(
				Hasher::max_len::<Key>()
					.saturating_add(Value::max_encoded_len())
					.saturated_into(),
			),
		}]
	}
}

/// It doesn't require to implement `MaxEncodedLen` and give no information for `max_size`.
impl<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
	crate::traits::PartialStorageInfoTrait
	for StorageMap<Prefix, Hasher, Key, Value, QueryKind, OnEmpty, MaxValues>
where
	Prefix: StorageInstance,
	Hasher: crate::hash::StorageHasher,
	Key: FullCodec,
	Value: FullCodec,
	QueryKind: QueryKindTrait<Value, OnEmpty>,
	OnEmpty: Get<QueryKind::Query> + 'static,
	MaxValues: Get<Option<u32>>,
{
	fn partial_storage_info() -> Vec<StorageInfo> {
		vec![StorageInfo {
			pallet_name: Self::pallet_prefix().to_vec(),
			storage_name: Self::storage_prefix().to_vec(),
			prefix: Self::final_prefix().to_vec(),
			max_values: MaxValues::get(),
			max_size: None,
		}]
	}
}

#[cfg(test)]
mod test {
	use super::*;
	use crate::{
		hash::*,
		storage::{types::ValueQuery, IterableStorageMap},
	};
	use sp_io::{hashing::twox_128, TestExternalities};
	use sp_metadata_ir::{StorageEntryModifierIR, StorageEntryTypeIR, StorageHasherIR};

	struct Prefix;
	impl StorageInstance for Prefix {
		fn pallet_prefix() -> &'static str {
			"test"
		}
		const STORAGE_PREFIX: &'static str = "foo";
	}

	struct ADefault;
	impl crate::traits::Get<u32> for ADefault {
		fn get() -> u32 {
			97
		}
	}

	#[test]
	fn keylenof_works() {
		// Works with Blake2_128Concat.
		type A = StorageMap<Prefix, Blake2_128Concat, u32, u32>;
		let size = 16 * 2 // Two Twox128
			+ 16 + 4; // Blake2_128Concat = hash + key
		assert_eq!(KeyLenOf::<A>::get(), size);

		// Works with Blake2_256.
		type B = StorageMap<Prefix, Blake2_256, u32, u32>;
		let size = 16 * 2 // Two Twox128
			+ 32; // Blake2_256
		assert_eq!(KeyLenOf::<B>::get(), size);

		// Works with Twox64Concat.
		type C = StorageMap<Prefix, Twox64Concat, u32, u32>;
		let size = 16 * 2 // Two Twox128
			+ 8 + 4; // Twox64Concat = hash + key
		assert_eq!(KeyLenOf::<C>::get(), size);
	}

	#[test]
	fn test() {
		type A = StorageMap<Prefix, Blake2_128Concat, u16, u32, OptionQuery>;
		type AValueQueryWithAnOnEmpty =
			StorageMap<Prefix, Blake2_128Concat, u16, u32, ValueQuery, ADefault>;
		type B = StorageMap<Prefix, Blake2_256, u16, u32, ValueQuery>;
		type C = StorageMap<Prefix, Blake2_128Concat, u16, u8, ValueQuery>;
		type WithLen = StorageMap<Prefix, Blake2_128Concat, u16, Vec<u32>>;

		TestExternalities::default().execute_with(|| {
			let mut k: Vec<u8> = vec![];
			k.extend(&twox_128(b"test"));
			k.extend(&twox_128(b"foo"));
			k.extend(&3u16.blake2_128_concat());
			assert_eq!(A::hashed_key_for(3).to_vec(), k);

			assert_eq!(A::contains_key(3), false);
			assert_eq!(A::get(3), None);
			assert_eq!(AValueQueryWithAnOnEmpty::get(3), 97);

			A::insert(3, 10);
			assert_eq!(A::contains_key(3), true);
			assert_eq!(A::get(3), Some(10));
			assert_eq!(A::try_get(3), Ok(10));
			assert_eq!(AValueQueryWithAnOnEmpty::get(3), 10);

			A::swap(3, 2);
			assert_eq!(A::contains_key(3), false);
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(3), None);
			assert_eq!(A::try_get(3), Err(()));
			assert_eq!(AValueQueryWithAnOnEmpty::get(3), 97);
			assert_eq!(A::get(2), Some(10));
			assert_eq!(AValueQueryWithAnOnEmpty::get(2), 10);

			A::remove(2);
			assert_eq!(A::contains_key(2), false);
			assert_eq!(A::get(2), None);

			AValueQueryWithAnOnEmpty::mutate(2, |v| *v = *v * 2);
			AValueQueryWithAnOnEmpty::mutate(2, |v| *v = *v * 2);
			assert_eq!(AValueQueryWithAnOnEmpty::contains_key(2), true);
			assert_eq!(AValueQueryWithAnOnEmpty::get(2), 97 * 4);

			A::remove(2);
			let _: Result<(), ()> = AValueQueryWithAnOnEmpty::try_mutate(2, |v| {
				*v = *v * 2;
				Ok(())
			});
			let _: Result<(), ()> = AValueQueryWithAnOnEmpty::try_mutate(2, |v| {
				*v = *v * 2;
				Ok(())
			});
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(97 * 4));

			A::remove(2);
			let _: Result<(), ()> = AValueQueryWithAnOnEmpty::try_mutate(2, |v| {
				*v = *v * 2;
				Err(())
			});
			assert_eq!(A::contains_key(2), false);

			A::remove(2);
			AValueQueryWithAnOnEmpty::mutate_exists(2, |v| {
				assert!(v.is_none());
				*v = Some(10);
			});
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(10));
			AValueQueryWithAnOnEmpty::mutate_exists(2, |v| {
				*v = Some(v.unwrap() * 10);
			});
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(100));

			A::remove(2);
			let _: Result<(), ()> = AValueQueryWithAnOnEmpty::try_mutate_exists(2, |v| {
				assert!(v.is_none());
				*v = Some(10);
				Ok(())
			});
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(10));
			let _: Result<(), ()> = AValueQueryWithAnOnEmpty::try_mutate_exists(2, |v| {
				*v = Some(v.unwrap() * 10);
				Ok(())
			});
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(100));
			let _: Result<(), ()> = AValueQueryWithAnOnEmpty::try_mutate_exists(2, |v| {
				*v = Some(v.unwrap() * 10);
				Err(())
			});
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(100));

			A::insert(2, 10);
			assert_eq!(A::take(2), Some(10));
			assert_eq!(A::contains_key(2), false);
			assert_eq!(AValueQueryWithAnOnEmpty::take(2), 97);
			assert_eq!(A::contains_key(2), false);

			// Set non-existing.
			B::set(30, 100);

			assert_eq!(B::contains_key(30), true);
			assert_eq!(B::get(30), 100);
			assert_eq!(B::try_get(30), Ok(100));

			// Set existing.
			B::set(30, 101);

			assert_eq!(B::contains_key(30), true);
			assert_eq!(B::get(30), 101);
			assert_eq!(B::try_get(30), Ok(101));

			// Set non-existing.
			A::set(30, Some(100));

			assert_eq!(A::contains_key(30), true);
			assert_eq!(A::get(30), Some(100));
			assert_eq!(A::try_get(30), Ok(100));

			// Set existing.
			A::set(30, Some(101));

			assert_eq!(A::contains_key(30), true);
			assert_eq!(A::get(30), Some(101));
			assert_eq!(A::try_get(30), Ok(101));

			// Unset existing.
			A::set(30, None);

			assert_eq!(A::contains_key(30), false);
			assert_eq!(A::get(30), None);
			assert_eq!(A::try_get(30), Err(()));

			// Unset non-existing.
			A::set(31, None);

			assert_eq!(A::contains_key(31), false);
			assert_eq!(A::get(31), None);
			assert_eq!(A::try_get(31), Err(()));

			B::insert(2, 10);
			assert_eq!(A::migrate_key::<Blake2_256, _>(2), Some(10));
			assert_eq!(A::contains_key(2), true);
			assert_eq!(A::get(2), Some(10));

			A::insert(3, 10);
			A::insert(4, 10);
			let _ = A::clear(u32::max_value(), None);
			assert_eq!(A::contains_key(3), false);
			assert_eq!(A::contains_key(4), false);

			A::insert(3, 10);
			A::insert(4, 10);
			assert_eq!(A::iter_values().collect::<Vec<_>>(), vec![10, 10]);

			C::insert(3, 10);
			C::insert(4, 10);
			A::translate_values::<u8, _>(|v| Some((v * 2).into()));
			assert_eq!(A::iter().collect::<Vec<_>>(), vec![(4, 20), (3, 20)]);

			A::insert(3, 10);
			A::insert(4, 10);
			assert_eq!(A::iter().collect::<Vec<_>>(), vec![(4, 10), (3, 10)]);
			assert_eq!(A::drain().collect::<Vec<_>>(), vec![(4, 10), (3, 10)]);
			assert_eq!(A::iter().collect::<Vec<_>>(), vec![]);

			C::insert(3, 10);
			C::insert(4, 10);
			A::translate::<u8, _>(|k, v| Some((k * v as u16).into()));
			assert_eq!(A::iter().collect::<Vec<_>>(), vec![(4, 40), (3, 30)]);

			let translate_next = |k: u16, v: u8| Some((v as u16 / k).into());
			let k = A::translate_next::<u8, _>(None, translate_next);
			let k = A::translate_next::<u8, _>(k, translate_next);
			assert_eq!(None, A::translate_next::<u8, _>(k, translate_next));
			assert_eq!(A::iter().collect::<Vec<_>>(), vec![(4, 10), (3, 10)]);

			let _ = A::translate_next::<u8, _>(None, |_, _| None);
			assert_eq!(A::iter().collect::<Vec<_>>(), vec![(3, 10)]);

			let mut entries = vec![];
			A::build_metadata(
				sp_metadata_ir::DeprecationStatusIR::NotDeprecated,
				vec![],
				&mut entries,
			);
			AValueQueryWithAnOnEmpty::build_metadata(
				sp_metadata_ir::DeprecationStatusIR::NotDeprecated,
				vec![],
				&mut entries,
			);
			assert_eq!(
				entries,
				vec![
					StorageEntryMetadataIR {
						name: "foo",
						modifier: StorageEntryModifierIR::Optional,
						ty: StorageEntryTypeIR::Map {
							hashers: vec![StorageHasherIR::Blake2_128Concat],
							key: scale_info::meta_type::<u16>(),
							value: scale_info::meta_type::<u32>(),
						},
						default: Option::<u32>::None.encode(),
						docs: vec![],
						deprecation_info: sp_metadata_ir::DeprecationStatusIR::NotDeprecated
					},
					StorageEntryMetadataIR {
						name: "foo",
						modifier: StorageEntryModifierIR::Default,
						ty: StorageEntryTypeIR::Map {
							hashers: vec![StorageHasherIR::Blake2_128Concat],
							key: scale_info::meta_type::<u16>(),
							value: scale_info::meta_type::<u32>(),
						},
						default: 97u32.encode(),
						docs: vec![],
						deprecation_info: sp_metadata_ir::DeprecationStatusIR::NotDeprecated
					}
				]
			);

			let _ = WithLen::clear(u32::max_value(), None);
			assert_eq!(WithLen::decode_len(3), None);
			WithLen::append(0, 10);
			assert_eq!(WithLen::decode_len(0), Some(1));
		})
	}
}