1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Traits for dealing with the idea of membership.

use alloc::vec::Vec;
use core::marker::PhantomData;
use impl_trait_for_tuples::impl_for_tuples;
use sp_arithmetic::traits::AtLeast16BitUnsigned;
use sp_runtime::DispatchResult;

/// A trait for querying whether a type can be said to "contain" a value.
pub trait Contains<T> {
	/// Return `true` if this "contains" the given value `t`.
	fn contains(t: &T) -> bool;
}

#[cfg_attr(all(not(feature = "tuples-96"), not(feature = "tuples-128")), impl_for_tuples(64))]
#[cfg_attr(all(feature = "tuples-96", not(feature = "tuples-128")), impl_for_tuples(96))]
#[cfg_attr(feature = "tuples-128", impl_for_tuples(128))]
impl<T> Contains<T> for Tuple {
	fn contains(t: &T) -> bool {
		for_tuples!( #(
			if Tuple::contains(t) { return true }
		)* );
		false
	}
}

/// A trait for querying whether a type can be said to "contain" a pair-value.
pub trait ContainsPair<A, B> {
	/// Return `true` if this "contains" the pair-value `(a, b)`.
	fn contains(a: &A, b: &B) -> bool;
}

#[cfg_attr(all(not(feature = "tuples-96"), not(feature = "tuples-128")), impl_for_tuples(64))]
#[cfg_attr(all(feature = "tuples-96", not(feature = "tuples-128")), impl_for_tuples(96))]
#[cfg_attr(feature = "tuples-128", impl_for_tuples(128))]
impl<A, B> ContainsPair<A, B> for Tuple {
	fn contains(a: &A, b: &B) -> bool {
		for_tuples!( #(
			if Tuple::contains(a, b) { return true }
		)* );
		false
	}
}

/// Converter `struct` to use a `ContainsPair` implementation for a `Contains` bound.
pub struct FromContainsPair<CP>(PhantomData<CP>);
impl<A, B, CP: ContainsPair<A, B>> Contains<(A, B)> for FromContainsPair<CP> {
	fn contains((ref a, ref b): &(A, B)) -> bool {
		CP::contains(a, b)
	}
}

/// A [`ContainsPair`] implementation that has a `Contains` implementation for each member of the
/// pair.
pub struct FromContains<CA, CB>(PhantomData<(CA, CB)>);
impl<A, B, CA: Contains<A>, CB: Contains<B>> ContainsPair<A, B> for FromContains<CA, CB> {
	fn contains(a: &A, b: &B) -> bool {
		CA::contains(a) && CB::contains(b)
	}
}

/// A [`Contains`] implementation that contains every value.
pub enum Everything {}
impl<T> Contains<T> for Everything {
	fn contains(_: &T) -> bool {
		true
	}
}
impl<A, B> ContainsPair<A, B> for Everything {
	fn contains(_: &A, _: &B) -> bool {
		true
	}
}

/// A [`Contains`] implementation that contains no value.
pub enum Nothing {}
impl<T> Contains<T> for Nothing {
	fn contains(_: &T) -> bool {
		false
	}
}
impl<A, B> ContainsPair<A, B> for Nothing {
	fn contains(_: &A, _: &B) -> bool {
		false
	}
}

/// A [`Contains`] implementation that contains everything except the values in `Exclude`.
pub struct EverythingBut<Exclude>(PhantomData<Exclude>);
impl<T, Exclude: Contains<T>> Contains<T> for EverythingBut<Exclude> {
	fn contains(t: &T) -> bool {
		!Exclude::contains(t)
	}
}
impl<A, B, Exclude: ContainsPair<A, B>> ContainsPair<A, B> for EverythingBut<Exclude> {
	fn contains(a: &A, b: &B) -> bool {
		!Exclude::contains(a, b)
	}
}

/// A [`Contains`] implementation that contains all members of `These` excepting any members in
/// `Except`.
pub struct TheseExcept<These, Except>(PhantomData<(These, Except)>);
impl<T, These: Contains<T>, Except: Contains<T>> Contains<T> for TheseExcept<These, Except> {
	fn contains(t: &T) -> bool {
		These::contains(t) && !Except::contains(t)
	}
}
impl<A, B, These: ContainsPair<A, B>, Except: ContainsPair<A, B>> ContainsPair<A, B>
	for TheseExcept<These, Except>
{
	fn contains(a: &A, b: &B) -> bool {
		These::contains(a, b) && !Except::contains(a, b)
	}
}

/// A [`Contains`] implementation which contains all members of `These` which are also members of
/// `Those`.
pub struct InsideBoth<These, Those>(PhantomData<(These, Those)>);
impl<T, These: Contains<T>, Those: Contains<T>> Contains<T> for InsideBoth<These, Those> {
	fn contains(t: &T) -> bool {
		These::contains(t) && Those::contains(t)
	}
}
impl<A, B, These: ContainsPair<A, B>, Those: ContainsPair<A, B>> ContainsPair<A, B>
	for InsideBoth<These, Those>
{
	fn contains(a: &A, b: &B) -> bool {
		These::contains(a, b) && Those::contains(a, b)
	}
}

/// An implementation of [`Contains`] which contains only equal members to `T`.
pub struct Equals<T>(PhantomData<T>);
impl<X: PartialEq, T: super::Get<X>> Contains<X> for Equals<T> {
	fn contains(t: &X) -> bool {
		t == &T::get()
	}
}

/// Create a type which implements the `Contains` trait for a particular type with syntax similar
/// to `matches!`.
#[macro_export]
macro_rules! match_types {
	(
		pub type $n:ident: impl Contains<$t:ty> = {
			$phead:pat_param $( | $ptail:pat )*
		};
		$( $rest:tt )*
	) => {
		pub struct $n;
		impl $crate::traits::Contains<$t> for $n {
			fn contains(l: &$t) -> bool {
				matches!(l, $phead $( | $ptail )* )
			}
		}
		$crate::match_types!( $( $rest )* );
	};
	(
		pub type $n:ident: impl ContainsPair<$a:ty, $b:ty> = {
			$phead:pat_param $( | $ptail:pat )*
		};
		$( $rest:tt )*
	) => {
		pub struct $n;
		impl $crate::traits::ContainsPair<$a, $b> for $n {
			fn contains(a: &$a, b: &$b) -> bool {
				matches!((a, b), $phead $( | $ptail )* )
			}
		}
		$crate::match_types!( $( $rest )* );
	};
	() => {}
}

/// Create a type which implements the `Contains` trait for a particular type with syntax similar
/// to `matches!`.
#[macro_export]
#[deprecated = "Use `match_types!` instead"]
macro_rules! match_type {
	($( $x:tt )*) => { $crate::match_types!( $( $x )* ); }
}

#[deprecated = "Use `Everything` instead"]
pub type AllowAll = Everything;
#[deprecated = "Use `Nothing` instead"]
pub type DenyAll = Nothing;
#[deprecated = "Use `Contains` instead"]
pub trait Filter<T> {
	fn filter(t: &T) -> bool;
}
#[allow(deprecated)]
impl<T, C: Contains<T>> Filter<T> for C {
	fn filter(t: &T) -> bool {
		Self::contains(t)
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	match_types! {
		pub type OneOrTenToTwenty: impl Contains<u8> = { 1 | 10..=20 };
	}

	#[test]
	fn match_types_works() {
		for i in 0..=255 {
			assert_eq!(OneOrTenToTwenty::contains(&i), i == 1 || i >= 10 && i <= 20);
		}
	}
}

/// A trait for a set which can enumerate its members in order.
pub trait SortedMembers<T: Ord> {
	/// Get a vector of all members in the set, ordered.
	fn sorted_members() -> Vec<T>;

	/// Return `true` if this "contains" the given value `t`.
	fn contains(t: &T) -> bool {
		Self::sorted_members().binary_search(t).is_ok()
	}

	/// Get the number of items in the set.
	fn count() -> usize {
		Self::sorted_members().len()
	}

	/// Add an item that would satisfy `contains`. It does not make sure any other
	/// state is correctly maintained or generated.
	///
	/// **Should be used for benchmarking only!!!**
	#[cfg(feature = "runtime-benchmarks")]
	fn add(_t: &T) {
		unimplemented!()
	}
}

/// Adapter struct for turning an `OrderedMembership` impl into a `Contains` impl.
pub struct AsContains<OM>(PhantomData<(OM,)>);
impl<T: Ord + Eq, OM: SortedMembers<T>> Contains<T> for AsContains<OM> {
	fn contains(t: &T) -> bool {
		OM::contains(t)
	}
}

/// Trivial utility for implementing `Contains`/`OrderedMembership` with a `Vec`.
pub struct IsInVec<T>(PhantomData<T>);
impl<X: Eq, T: super::Get<Vec<X>>> Contains<X> for IsInVec<T> {
	fn contains(t: &X) -> bool {
		T::get().contains(t)
	}
}
impl<X: Ord + PartialOrd, T: super::Get<Vec<X>>> SortedMembers<X> for IsInVec<T> {
	fn sorted_members() -> Vec<X> {
		let mut r = T::get();
		r.sort();
		r
	}
}

/// A trait for querying bound for the length of an implementation of `Contains`
pub trait ContainsLengthBound {
	/// Minimum number of elements contained
	fn min_len() -> usize;
	/// Maximum number of elements contained
	fn max_len() -> usize;
}

/// Ranked membership data structure.
pub trait RankedMembers {
	type AccountId;
	type Rank: AtLeast16BitUnsigned;

	/// The lowest rank possible in this membership organisation.
	fn min_rank() -> Self::Rank;

	/// Return the rank of the given ID, or `None` if they are not a member.
	fn rank_of(who: &Self::AccountId) -> Option<Self::Rank>;

	/// Add a member to the group at the `min_rank()`.
	fn induct(who: &Self::AccountId) -> DispatchResult;

	/// Promote a member to the next higher rank.
	fn promote(who: &Self::AccountId) -> DispatchResult;

	/// Demote a member to the next lower rank; demoting beyond the `min_rank` removes the
	/// member entirely.
	fn demote(who: &Self::AccountId) -> DispatchResult;
}

/// Handler that can deal with the swap of two members.
#[impl_trait_for_tuples::impl_for_tuples(16)]
pub trait RankedMembersSwapHandler<AccountId, Rank> {
	/// Member `old` was swapped with `new` at `rank`.
	fn swapped(who: &AccountId, new_who: &AccountId, rank: Rank);
}

/// Trait for type that can handle the initialization of account IDs at genesis.
pub trait InitializeMembers<AccountId> {
	/// Initialize the members to the given `members`.
	fn initialize_members(members: &[AccountId]);
}

impl<T> InitializeMembers<T> for () {
	fn initialize_members(_: &[T]) {}
}

/// Trait for type that can handle incremental changes to a set of account IDs.
pub trait ChangeMembers<AccountId: Clone + Ord> {
	/// A number of members `incoming` just joined the set and replaced some `outgoing` ones. The
	/// new set is given by `new`, and need not be sorted.
	///
	/// This resets any previous value of prime.
	fn change_members(incoming: &[AccountId], outgoing: &[AccountId], mut new: Vec<AccountId>) {
		new.sort();
		Self::change_members_sorted(incoming, outgoing, &new[..]);
	}

	/// A number of members `_incoming` just joined the set and replaced some `_outgoing` ones. The
	/// new set is thus given by `sorted_new` and **must be sorted**.
	///
	/// NOTE: This is the only function that needs to be implemented in `ChangeMembers`.
	///
	/// This resets any previous value of prime.
	fn change_members_sorted(
		incoming: &[AccountId],
		outgoing: &[AccountId],
		sorted_new: &[AccountId],
	);

	/// Set the new members; they **must already be sorted**. This will compute the diff and use it
	/// to call `change_members_sorted`.
	///
	/// This resets any previous value of prime.
	fn set_members_sorted(new_members: &[AccountId], old_members: &[AccountId]) {
		let (incoming, outgoing) = Self::compute_members_diff_sorted(new_members, old_members);
		Self::change_members_sorted(&incoming[..], &outgoing[..], new_members);
	}

	/// Compute diff between new and old members; they **must already be sorted**.
	///
	/// Returns incoming and outgoing members.
	fn compute_members_diff_sorted(
		new_members: &[AccountId],
		old_members: &[AccountId],
	) -> (Vec<AccountId>, Vec<AccountId>) {
		let mut old_iter = old_members.iter();
		let mut new_iter = new_members.iter();
		let mut incoming = Vec::new();
		let mut outgoing = Vec::new();
		let mut old_i = old_iter.next();
		let mut new_i = new_iter.next();
		loop {
			match (old_i, new_i) {
				(None, None) => break,
				(Some(old), Some(new)) if old == new => {
					old_i = old_iter.next();
					new_i = new_iter.next();
				},
				(Some(old), Some(new)) if old < new => {
					outgoing.push(old.clone());
					old_i = old_iter.next();
				},
				(Some(old), None) => {
					outgoing.push(old.clone());
					old_i = old_iter.next();
				},
				(_, Some(new)) => {
					incoming.push(new.clone());
					new_i = new_iter.next();
				},
			}
		}
		(incoming, outgoing)
	}

	/// Set the prime member.
	fn set_prime(_prime: Option<AccountId>) {}

	/// Get the current prime.
	fn get_prime() -> Option<AccountId> {
		None
	}
}

impl<T: Clone + Ord> ChangeMembers<T> for () {
	fn change_members(_: &[T], _: &[T], _: Vec<T>) {}
	fn change_members_sorted(_: &[T], _: &[T], _: &[T]) {}
	fn set_members_sorted(_: &[T], _: &[T]) {}
	fn set_prime(_: Option<T>) {}
}