frame_support/traits/tokens/asset_ops/common_strategies.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This modules contains the common asset ops strategies.
use super::*;
use crate::pallet_prelude::RuntimeDebug;
use codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;
/// The `CheckState` is a strategy that accepts an `Inspect` value and the `Inner` strategy.
///
/// It is meant to be used when the asset state check should be performed
/// prior to the `Inner` strategy execution.
/// **The inspected state must be equal to the provided value.**
///
/// The `CheckState` implements all potentially state-mutating strategies that the `Inner`
/// implements.
pub struct CheckState<Inspect: InspectStrategy, Inner = NoParams>(pub Inspect::Value, pub Inner);
impl<Inspect: InspectStrategy, Inner: Default> CheckState<Inspect, Inner> {
/// This function creates a `CheckState` strategy.
/// The operation that accepts it must check if the provided `expected` value
/// equals the in-storage one.
///
/// If so, the operation must, in turn, proceed according to the default value of the `Inner`
/// strategy.
pub fn check(expected: Inspect::Value) -> Self {
Self(expected, Default::default())
}
}
impl<Inspect: InspectStrategy, Inner> CheckState<Inspect, Inner> {
/// This function creates a `CheckState` strategy.
/// The operation that accepts it must check if the provided `expected` value
/// equals the in-storage one.
///
/// If so, the operation must, in turn, proceed according to the provided value of the `Inner`
/// strategy.
pub fn new(expected: Inspect::Value, inner: Inner) -> Self {
Self(expected, inner)
}
}
impl<Inspect: InspectStrategy, Inner: UpdateStrategy> UpdateStrategy
for CheckState<Inspect, Inner>
{
type UpdateValue<'u> = Inner::UpdateValue<'u>;
type Success = Inner::Success;
}
impl<Inspect: InspectStrategy, Inner: CreateStrategy> CreateStrategy
for CheckState<Inspect, Inner>
{
type Success = Inner::Success;
}
impl<Inspect: InspectStrategy, Inner: DestroyStrategy> DestroyStrategy
for CheckState<Inspect, Inner>
{
type Success = Inner::Success;
}
impl<Inspect: InspectStrategy, Inner: StashStrategy> StashStrategy for CheckState<Inspect, Inner> {
type Success = Inner::Success;
}
impl<Inspect: InspectStrategy, Inner: RestoreStrategy> RestoreStrategy
for CheckState<Inspect, Inner>
{
type Success = Inner::Success;
}
/// The `CheckOrigin` is a strategy that accepts a runtime origin and the `Inner` strategy.
///
/// It is meant to be used when the origin check should be performed
/// prior to the `Inner` strategy execution.
///
/// The `CheckOrigin` implements all potentially state-mutating strategies that the `Inner`
/// implements.
pub struct CheckOrigin<RuntimeOrigin, Inner = NoParams>(pub RuntimeOrigin, pub Inner);
impl<RuntimeOrigin, Inner: Default> CheckOrigin<RuntimeOrigin, Inner> {
/// This function creates a `CheckOrigin` strategy.
/// The operation that accepts it must check if the provided `origin` is allowed to perform it.
///
/// If so, the operation must, in turn, proceed according to the default value of the `Inner`
/// strategy.
pub fn check(origin: RuntimeOrigin) -> Self {
Self(origin, Default::default())
}
}
impl<RuntimeOrigin, Inner> CheckOrigin<RuntimeOrigin, Inner> {
/// This function creates a `CheckOrigin` strategy.
/// The operation that accepts it must check if the provided `origin` is allowed to perform it.
///
/// If so, the operation must, in turn, proceed according to the provided value of the `Inner`
/// strategy.
pub fn new(origin: RuntimeOrigin, inner: Inner) -> Self {
Self(origin, inner)
}
}
impl<RuntimeOrigin, Inner: UpdateStrategy> UpdateStrategy for CheckOrigin<RuntimeOrigin, Inner> {
type UpdateValue<'u> = Inner::UpdateValue<'u>;
type Success = Inner::Success;
}
impl<RuntimeOrigin, Inner: CreateStrategy> CreateStrategy for CheckOrigin<RuntimeOrigin, Inner> {
type Success = Inner::Success;
}
impl<RuntimeOrigin, Inner: DestroyStrategy> DestroyStrategy for CheckOrigin<RuntimeOrigin, Inner> {
type Success = Inner::Success;
}
impl<RuntimeOrigin, Inner: StashStrategy> StashStrategy for CheckOrigin<RuntimeOrigin, Inner> {
type Success = Inner::Success;
}
impl<RuntimeOrigin, Inner: RestoreStrategy> RestoreStrategy for CheckOrigin<RuntimeOrigin, Inner> {
type Success = Inner::Success;
}
/// The NoParams represents the simplest state-mutating strategy,
/// which doesn't require any parameters to perform the operation.
///
/// It can be used as the following strategies:
/// * [`destroy strategy`](DestroyStrategy)
/// * [`stash strategy`](StashStrategy)
/// * [`restore strategy`](RestoreStrategy)
#[derive(Default)]
pub struct NoParams;
impl DestroyStrategy for NoParams {
type Success = ();
}
impl StashStrategy for NoParams {
type Success = ();
}
impl RestoreStrategy for NoParams {
type Success = ();
}
/// The `Bytes` strategy represents raw state bytes.
/// It is both an [inspect](InspectStrategy) and [update](UpdateStrategy)
/// strategy.
///
/// * As the inspect strategy, it returns `Vec<u8>`.
/// * As the update strategy, it accepts `Option<&[u8]>`, where `None` means data removal.
///
/// By default, the `Bytes` identifies a byte blob associated with the asset (the only one
/// blob). However, a user can define several variants of this strategy by supplying the
/// `Request` type. The `Request` type can also contain additional data (like a byte key) to
/// identify a certain byte data.
/// For instance, there can be several named byte attributes. In that case, the `Request` might
/// be something like `Attribute(/* name: */ String)`.
pub struct Bytes<Request = ()>(pub Request);
impl Default for Bytes<()> {
fn default() -> Self {
Self(())
}
}
impl<Request> InspectStrategy for Bytes<Request> {
type Value = Vec<u8>;
}
impl<Request> UpdateStrategy for Bytes<Request> {
type UpdateValue<'u> = Option<&'u [u8]>;
type Success = ();
}
/// The `Owner` strategy is both [inspect](InspectStrategy) and [update](UpdateStrategy) strategy
/// allows getting and setting the owner of an asset.
#[derive(RuntimeDebug, PartialEq, Eq, Clone, Encode, Decode, MaxEncodedLen, TypeInfo)]
pub struct Owner<AccountId>(PhantomData<AccountId>);
impl<AccountId> Default for Owner<AccountId> {
fn default() -> Self {
Self(PhantomData)
}
}
impl<AccountId> InspectStrategy for Owner<AccountId> {
type Value = AccountId;
}
impl<AccountId: 'static> UpdateStrategy for Owner<AccountId> {
type UpdateValue<'u> = &'u AccountId;
type Success = ();
}
/// The `Admin` strategy is both [inspect](InspectStrategy) and [update](UpdateStrategy) strategy
/// allows getting and setting the admin of an asset.
#[derive(RuntimeDebug, PartialEq, Eq, Clone, Encode, Decode, MaxEncodedLen, TypeInfo)]
pub struct Admin<AccountId>(PhantomData<AccountId>);
impl<AccountId> Default for Admin<AccountId> {
fn default() -> Self {
Self(PhantomData)
}
}
impl<AccountId> InspectStrategy for Admin<AccountId> {
type Value = AccountId;
}
impl<AccountId: 'static> UpdateStrategy for Admin<AccountId> {
type UpdateValue<'u> = &'u AccountId;
type Success = ();
}
/// The `Witness` strategy is an [inspect](InspectStrategy) strategy,
/// which gets the specified `WitnessData` from the asset.
///
/// The `WitnessData` can be anything descriptive about the asset that helps perform a related
/// operation. For instance, a witness could be required to destroy an NFT collection because the
/// corresponding extrinsic's weight couldn't be known ahead of time without providing, for example,
/// the number of items within the collection. In this case, the number of items is the witness
/// data. The said extrinsic, in turn, could use the destroy operation with the `WithWitness`
/// strategy, which will compare the provided witness with the actual chain state before attempting
/// the collection destruction.
#[derive(RuntimeDebug, PartialEq, Eq, Clone, Encode, Decode, MaxEncodedLen, TypeInfo)]
pub struct Witness<WitnessData>(PhantomData<WitnessData>);
impl<WitnessData> Default for Witness<WitnessData> {
fn default() -> Self {
Self(PhantomData)
}
}
impl<WitnessData> InspectStrategy for Witness<WitnessData> {
type Value = WitnessData;
}
/// The operation implementation must check
/// if the given account owns the asset and act according to the inner strategy.
pub type IfOwnedBy<AccountId, Inner = NoParams> = CheckState<Owner<AccountId>, Inner>;
/// The operation implementation must check
/// if the given account owns the asset and only then perform the owner update to the one supplied
/// to the `Update::update` function.
pub type ChangeOwnerFrom<AccountId> = CheckState<Owner<AccountId>, Owner<AccountId>>;
/// The operation implementation must check
/// if the given witness represents the correct state of the asset.
/// If so, the operation must act according to the inner strategy.
pub type WithWitness<WitnessData, Inner = NoParams> = CheckState<Witness<WitnessData>, Inner>;
/// The `CanCreate` strategy represents the ability to create an asset.
/// It is both an [inspect](InspectStrategy) and [update](UpdateStrategy)
/// strategy.
///
/// * As the inspect strategy, it returns `bool`.
/// * As the update strategy, it accepts `bool`.
///
/// By default, this strategy means the ability to create an asset "in general".
/// However, a user can define several variants of this strategy by supplying the `Condition`
/// type. Using the `Condition` value, we are formulating the question, "Can this be created
/// under the given condition?". For instance, "Can **a specific user** create an asset?".
pub struct CanCreate<Condition = ()>(pub Condition);
impl Default for CanCreate<()> {
fn default() -> Self {
Self(())
}
}
impl<Condition> InspectStrategy for CanCreate<Condition> {
type Value = bool;
}
impl<Condition> UpdateStrategy for CanCreate<Condition> {
type UpdateValue<'u> = bool;
type Success = ();
}
/// The `CanDestroy` strategy represents the ability to destroy an asset.
/// It is both an [inspect](InspectStrategy) and [update](UpdateStrategy)
/// strategy.
///
/// * As the inspect strategy, it returns `bool`.
/// * As the update strategy, it accepts `bool`.
///
/// By default, this strategy means the ability to destroy an asset "in general".
/// However, a user can define several variants of this strategy by supplying the `Condition`
/// type. Using the `Condition` value, we are formulating the question, "Can this be destroyed
/// under the given condition?". For instance, "Can **a specific user** destroy an asset of
/// **another user**?".
pub struct CanDestroy<Condition = ()>(pub Condition);
impl Default for CanDestroy<()> {
fn default() -> Self {
Self(())
}
}
impl<Condition> InspectStrategy for CanDestroy<Condition> {
type Value = bool;
}
impl<Condition> UpdateStrategy for CanDestroy<Condition> {
type UpdateValue<'u> = bool;
type Success = ();
}
/// The `CanUpdate` strategy represents the ability to update the state of an asset.
/// It is both an [inspect](InspectStrategy) and [update](UpdateStrategy)
/// strategy.
///
/// * As the inspect strategy, it returns `bool`.
/// * As the update strategy is accepts `bool`.
///
/// By default, this strategy means the ability to update the state of an asset "in general".
/// However, a user can define several flavors of this strategy by supplying the `Flavor` type.
/// The `Flavor` type can add more details to the strategy.
/// For instance, "Can **a specific user** update the state of an asset **under a certain
/// key**?".
pub struct CanUpdate<Flavor = ()>(pub Flavor);
impl Default for CanUpdate<()> {
fn default() -> Self {
Self(())
}
}
impl<Flavor> InspectStrategy for CanUpdate<Flavor> {
type Value = bool;
}
impl<Flavor> UpdateStrategy for CanUpdate<Flavor> {
type UpdateValue<'u> = bool;
type Success = ();
}
/// This trait converts the given [UpdateStrategy] into the corresponding [CanUpdate] strategy
/// representing the ability to update the asset using the provided strategy.
pub trait AsCanUpdate: Sized + UpdateStrategy {
fn as_can_update(self) -> CanUpdate<Self>;
}
impl<T: UpdateStrategy> AsCanUpdate for T {
fn as_can_update(self) -> CanUpdate<Self> {
CanUpdate(self)
}
}
/// The `AutoId` is an ID assignment approach intended to be used in
/// [`"create" strategies`](CreateStrategy).
///
/// It accepts the `Id` type of the asset.
/// The "create" strategy should report the value of type `ReportedId` upon successful asset
/// creation.
pub type AutoId<ReportedId> = DeriveAndReportId<(), ReportedId>;
/// The `PredefinedId` is an ID assignment approach intended to be used in
/// [`"create" strategies`](CreateStrategy).
///
/// It accepts the `Id` that should be assigned to the newly created asset.
///
/// The "create" strategy should report the `Id` value upon successful asset creation.
pub type PredefinedId<Id> = DeriveAndReportId<Id, Id>;
/// The `DeriveAndReportId` is an ID assignment approach intended to be used in
/// [`"create" strategies`](CreateStrategy).
///
/// It accepts the `Params` and the `Id`.
/// The `ReportedId` value should be computed by the "create" strategy using the `Params` value.
///
/// The "create" strategy should report the `ReportedId` value upon successful asset creation.
///
/// An example of ID derivation is the creation of an NFT inside a collection using the
/// collection ID as `Params`. The `ReportedId` in this case is the full ID of the NFT.
#[derive(RuntimeDebug, PartialEq, Eq, Clone, Encode, Decode, MaxEncodedLen, TypeInfo)]
pub struct DeriveAndReportId<Params, ReportedId> {
pub params: Params,
_phantom: PhantomData<ReportedId>,
}
impl<ReportedId> DeriveAndReportId<(), ReportedId> {
pub fn auto() -> AutoId<ReportedId> {
Self { params: (), _phantom: PhantomData }
}
}
impl<Params, ReportedId> DeriveAndReportId<Params, ReportedId> {
pub fn from(params: Params) -> Self {
Self { params, _phantom: PhantomData }
}
}
impl<Params, ReportedId> IdAssignment for DeriveAndReportId<Params, ReportedId> {
type ReportedId = ReportedId;
}
/// Represents the value of an [InspectStrategy] to be used as a configuration value in the
/// [WithConfig] strategy.
#[derive(Debug, PartialEq, Eq, Clone, Encode, Decode, MaxEncodedLen, TypeInfo)]
pub struct ConfigValue<Inspect: InspectStrategy>(pub Inspect::Value);
/// This trait marks a config value to be used in the [WithConfig] strategy.
/// It is used to make compiler error messages clearer if invalid type is supplied into the
/// [WithConfig].
pub trait ConfigValueMarker {}
impl<Inspect: InspectStrategy> ConfigValueMarker for ConfigValue<Inspect> {}
#[impl_trait_for_tuples::impl_for_tuples(1, 8)]
impl ConfigValueMarker for Tuple {}
/// This trait converts the given [InspectStrategy] into the config value to be used in the
/// [WithConfig] strategy.
pub trait WithConfigValue: Sized + InspectStrategy {
fn with_config_value(value: Self::Value) -> ConfigValue<Self>;
}
impl<T: InspectStrategy> WithConfigValue for T {
fn with_config_value(value: Self::Value) -> ConfigValue<Self> {
ConfigValue::<Self>(value)
}
}
/// The `WithConfig` is a [create](CreateStrategy) and [restore](RestoreStrategy) strategy.
/// It facilitates setting the asset's properties that can be later inspected via the corresponding
/// [inspect strategies](InspectStrategy). The provided asset's properties are considered its
/// config. Every inspect strategy can be used to create a config value.
///
/// For instance, one can use `WithConfig` to restore an asset to the given owner using the [Owner]
/// inspect strategy:
///
/// ```rust,ignore
/// NftEngine::restore(WithConfig::from(Owner::with_config_value(OWNER_ACCOUNT)))
/// ```
///
/// The extra parameters can be supplied to provide additional context to the operation.
/// They're required for creation operation as they provide the [id assignment
/// approach](IdAssignment), but they're optional for the restoring operation.
///
/// For instance, one can use `WithConfig` to create an asset with a predefined id this way:
///
/// ```rust,ignore
/// NftEngine::create(WithConfig::new(
/// Owner::with_config_value(OWNER_ACCOUNT),
/// PredefinedId::from(ASSET_ID),
/// ))
/// ```
///
/// Note: you can use several config values by providing a tuple of them:
///
/// ```rust,ignore
/// NftEngine::create(WithConfig::new(
/// (
/// Owner::with_config_value(OWNER_ACCOUNT),
/// Admin::with_config_value(ADMIN_ACCOUNT),
/// ),
/// PredefinedId::from(ASSET_ID),
/// ))
/// ```
#[derive(RuntimeDebug, PartialEq, Eq, Clone, Encode, Decode, MaxEncodedLen, TypeInfo)]
pub struct WithConfig<ConfigValue: ConfigValueMarker, Extra = ()> {
pub config: ConfigValue,
pub extra: Extra,
}
impl<ConfigValue: ConfigValueMarker> WithConfig<ConfigValue> {
pub fn from(config: ConfigValue) -> Self {
Self { config, extra: () }
}
}
impl<ConfigValue: ConfigValueMarker, Extra> WithConfig<ConfigValue, Extra> {
pub fn new(config: ConfigValue, extra: Extra) -> Self {
Self { config, extra }
}
}
impl<ConfigValue: ConfigValueMarker, Assignment: IdAssignment> CreateStrategy
for WithConfig<ConfigValue, Assignment>
{
type Success = Assignment::ReportedId;
}
impl<ConfigValue: ConfigValueMarker, Extra> RestoreStrategy for WithConfig<ConfigValue, Extra> {
type Success = ();
}