1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! The unsigned phase, and its miner.

use crate::{
	helpers, Call, Config, ElectionCompute, Error, FeasibilityError, Pallet, RawSolution,
	ReadySolution, RoundSnapshot, SolutionAccuracyOf, SolutionOf, SolutionOrSnapshotSize, Weight,
};
use codec::Encode;
use frame_election_provider_support::{NposSolution, NposSolver, PerThing128, VoteWeight};
use frame_support::{
	dispatch::DispatchResult,
	ensure,
	traits::{DefensiveResult, Get},
	BoundedVec,
};
use frame_system::{offchain::SubmitTransaction, pallet_prelude::BlockNumberFor};
use scale_info::TypeInfo;
use sp_npos_elections::{
	assignment_ratio_to_staked_normalized, assignment_staked_to_ratio_normalized, ElectionResult,
	ElectionScore, EvaluateSupport,
};
use sp_runtime::{
	offchain::storage::{MutateStorageError, StorageValueRef},
	DispatchError, SaturatedConversion,
};
use sp_std::prelude::*;

/// Storage key used to store the last block number at which offchain worker ran.
pub(crate) const OFFCHAIN_LAST_BLOCK: &[u8] = b"parity/multi-phase-unsigned-election";
/// Storage key used to store the offchain worker running status.
pub(crate) const OFFCHAIN_LOCK: &[u8] = b"parity/multi-phase-unsigned-election/lock";

/// Storage key used to cache the solution `call`.
pub(crate) const OFFCHAIN_CACHED_CALL: &[u8] = b"parity/multi-phase-unsigned-election/call";

/// A voter's fundamental data: their ID, their stake, and the list of candidates for whom they
/// voted.
pub type VoterOf<T> = frame_election_provider_support::VoterOf<<T as Config>::DataProvider>;

/// Same as [`VoterOf`], but parameterized by the `MinerConfig`.
pub type MinerVoterOf<T> = frame_election_provider_support::Voter<
	<T as MinerConfig>::AccountId,
	<T as MinerConfig>::MaxVotesPerVoter,
>;

/// The relative distribution of a voter's stake among the winning targets.
pub type Assignment<T> =
	sp_npos_elections::Assignment<<T as frame_system::Config>::AccountId, SolutionAccuracyOf<T>>;

/// The [`IndexAssignment`][frame_election_provider_support::IndexAssignment] type specialized for a
/// particular runtime `T`.
pub type IndexAssignmentOf<T> = frame_election_provider_support::IndexAssignmentOf<SolutionOf<T>>;

/// Error type of the pallet's [`crate::Config::Solver`].
pub type SolverErrorOf<T> = <<T as Config>::Solver as NposSolver>::Error;
/// Error type for operations related to the OCW npos solution miner.
#[derive(frame_support::DebugNoBound, frame_support::PartialEqNoBound)]
pub enum MinerError {
	/// An internal error in the NPoS elections crate.
	NposElections(sp_npos_elections::Error),
	/// Snapshot data was unavailable unexpectedly.
	SnapshotUnAvailable,
	/// Submitting a transaction to the pool failed.
	PoolSubmissionFailed,
	/// The pre-dispatch checks failed for the mined solution.
	PreDispatchChecksFailed(DispatchError),
	/// The solution generated from the miner is not feasible.
	Feasibility(FeasibilityError),
	/// Something went wrong fetching the lock.
	Lock(&'static str),
	/// Cannot restore a solution that was not stored.
	NoStoredSolution,
	/// Cached solution is not a `submit_unsigned` call.
	SolutionCallInvalid,
	/// Failed to store a solution.
	FailedToStoreSolution,
	/// There are no more voters to remove to trim the solution.
	NoMoreVoters,
	/// An error from the solver.
	Solver,
}

impl From<sp_npos_elections::Error> for MinerError {
	fn from(e: sp_npos_elections::Error) -> Self {
		MinerError::NposElections(e)
	}
}

impl From<FeasibilityError> for MinerError {
	fn from(e: FeasibilityError) -> Self {
		MinerError::Feasibility(e)
	}
}

/// Reports the trimming result of a mined solution
#[derive(Debug, Clone)]
pub struct TrimmingStatus {
	weight: usize,
	length: usize,
}

impl TrimmingStatus {
	pub fn is_trimmed(&self) -> bool {
		self.weight > 0 || self.length > 0
	}

	pub fn trimmed_weight(&self) -> usize {
		self.weight
	}

	pub fn trimmed_length(&self) -> usize {
		self.length
	}
}

/// Save a given call into OCW storage.
fn save_solution<T: Config>(call: &Call<T>) -> Result<(), MinerError> {
	log!(debug, "saving a call to the offchain storage.");
	let storage = StorageValueRef::persistent(OFFCHAIN_CACHED_CALL);
	match storage.mutate::<_, (), _>(|_| Ok(call.clone())) {
		Ok(_) => Ok(()),
		Err(MutateStorageError::ConcurrentModification(_)) =>
			Err(MinerError::FailedToStoreSolution),
		Err(MutateStorageError::ValueFunctionFailed(_)) => {
			// this branch should be unreachable according to the definition of
			// `StorageValueRef::mutate`: that function should only ever `Err` if the closure we
			// pass it returns an error. however, for safety in case the definition changes, we do
			// not optimize the branch away or panic.
			Err(MinerError::FailedToStoreSolution)
		},
	}
}

/// Get a saved solution from OCW storage if it exists.
fn restore_solution<T: Config>() -> Result<Call<T>, MinerError> {
	StorageValueRef::persistent(OFFCHAIN_CACHED_CALL)
		.get()
		.ok()
		.flatten()
		.ok_or(MinerError::NoStoredSolution)
}

/// Clear a saved solution from OCW storage.
pub(super) fn kill_ocw_solution<T: Config>() {
	log!(debug, "clearing offchain call cache storage.");
	let mut storage = StorageValueRef::persistent(OFFCHAIN_CACHED_CALL);
	storage.clear();
}

/// Clear the offchain repeat storage.
///
/// After calling this, the next offchain worker is guaranteed to work, with respect to the
/// frequency repeat.
fn clear_offchain_repeat_frequency() {
	let mut last_block = StorageValueRef::persistent(OFFCHAIN_LAST_BLOCK);
	last_block.clear();
}

/// `true` when OCW storage contains a solution
#[cfg(test)]
fn ocw_solution_exists<T: Config>() -> bool {
	matches!(StorageValueRef::persistent(OFFCHAIN_CACHED_CALL).get::<Call<T>>(), Ok(Some(_)))
}

impl<T: Config> Pallet<T> {
	/// Mine a new npos solution.
	///
	/// The Npos Solver type, `S`, must have the same AccountId and Error type as the
	/// [`crate::Config::Solver`] in order to create a unified return type.
	pub fn mine_solution() -> Result<
		(RawSolution<SolutionOf<T::MinerConfig>>, SolutionOrSnapshotSize, TrimmingStatus),
		MinerError,
	> {
		let RoundSnapshot { voters, targets } =
			Self::snapshot().ok_or(MinerError::SnapshotUnAvailable)?;
		let desired_targets = Self::desired_targets().ok_or(MinerError::SnapshotUnAvailable)?;
		let (solution, score, size, is_trimmed) =
			Miner::<T::MinerConfig>::mine_solution_with_snapshot::<T::Solver>(
				voters,
				targets,
				desired_targets,
			)?;
		let round = Self::round();
		Ok((RawSolution { solution, score, round }, size, is_trimmed))
	}

	/// Attempt to restore a solution from cache. Otherwise, compute it fresh. Either way, submit
	/// if our call's score is greater than that of the cached solution.
	pub fn restore_or_compute_then_maybe_submit() -> Result<(), MinerError> {
		log!(debug, "miner attempting to restore or compute an unsigned solution.");

		let call = restore_solution::<T>()
			.and_then(|call| {
				// ensure the cached call is still current before submitting
				if let Call::submit_unsigned { raw_solution, .. } = &call {
					// prevent errors arising from state changes in a forkful chain
					Self::basic_checks(raw_solution, "restored")?;
					Ok(call)
				} else {
					Err(MinerError::SolutionCallInvalid)
				}
			})
			.or_else::<MinerError, _>(|error| {
				log!(debug, "restoring solution failed due to {:?}", error);
				match error {
					MinerError::NoStoredSolution => {
						log!(trace, "mining a new solution.");
						// if not present or cache invalidated due to feasibility, regenerate.
						// note that failing `Feasibility` can only mean that the solution was
						// computed over a snapshot that has changed due to a fork.
						let call = Self::mine_checked_call()?;
						save_solution(&call)?;
						Ok(call)
					},
					MinerError::Feasibility(_) => {
						log!(trace, "wiping infeasible solution.");
						// kill the infeasible solution, hopefully in the next runs (whenever they
						// may be) we mine a new one.
						kill_ocw_solution::<T>();
						clear_offchain_repeat_frequency();
						Err(error)
					},
					_ => {
						// nothing to do. Return the error as-is.
						Err(error)
					},
				}
			})?;

		Self::submit_call(call)
	}

	/// Mine a new solution, cache it, and submit it back to the chain as an unsigned transaction.
	pub fn mine_check_save_submit() -> Result<(), MinerError> {
		log!(debug, "miner attempting to compute an unsigned solution.");

		let call = Self::mine_checked_call()?;
		save_solution(&call)?;
		Self::submit_call(call)
	}

	/// Mine a new solution as a call. Performs all checks.
	pub fn mine_checked_call() -> Result<Call<T>, MinerError> {
		// get the solution, with a load of checks to ensure if submitted, IT IS ABSOLUTELY VALID.
		let (raw_solution, witness, _) = Self::mine_and_check()?;

		let score = raw_solution.score;
		let call: Call<T> = Call::submit_unsigned { raw_solution: Box::new(raw_solution), witness };

		log!(
			debug,
			"mined a solution with score {:?} and size {}",
			score,
			call.using_encoded(|b| b.len())
		);

		Ok(call)
	}

	fn submit_call(call: Call<T>) -> Result<(), MinerError> {
		log!(debug, "miner submitting a solution as an unsigned transaction");

		SubmitTransaction::<T, Call<T>>::submit_unsigned_transaction(call.into())
			.map_err(|_| MinerError::PoolSubmissionFailed)
	}

	// perform basic checks of a solution's validity
	//
	// Performance: note that it internally clones the provided solution.
	pub fn basic_checks(
		raw_solution: &RawSolution<SolutionOf<T::MinerConfig>>,
		solution_type: &str,
	) -> Result<(), MinerError> {
		Self::unsigned_pre_dispatch_checks(raw_solution).map_err(|err| {
			log!(debug, "pre-dispatch checks failed for {} solution: {:?}", solution_type, err);
			MinerError::PreDispatchChecksFailed(err)
		})?;

		Self::feasibility_check(raw_solution.clone(), ElectionCompute::Unsigned).map_err(
			|err| {
				log!(debug, "feasibility check failed for {} solution: {:?}", solution_type, err);
				err
			},
		)?;

		Ok(())
	}

	/// Mine a new npos solution, with all the relevant checks to make sure that it will be accepted
	/// to the chain.
	///
	/// If you want an unchecked solution, use [`Pallet::mine_solution`].
	/// If you want a checked solution and submit it at the same time, use
	/// [`Pallet::mine_check_save_submit`].
	pub fn mine_and_check() -> Result<
		(RawSolution<SolutionOf<T::MinerConfig>>, SolutionOrSnapshotSize, TrimmingStatus),
		MinerError,
	> {
		let (raw_solution, witness, is_trimmed) = Self::mine_solution()?;
		Self::basic_checks(&raw_solution, "mined")?;
		Ok((raw_solution, witness, is_trimmed))
	}

	/// Checks if an execution of the offchain worker is permitted at the given block number, or
	/// not.
	///
	/// This makes sure that
	/// 1. we don't run on previous blocks in case of a re-org
	/// 2. we don't run twice within a window of length `T::OffchainRepeat`.
	///
	/// Returns `Ok(())` if offchain worker limit is respected, `Err(reason)` otherwise. If `Ok()`
	/// is returned, `now` is written in storage and will be used in further calls as the baseline.
	pub fn ensure_offchain_repeat_frequency(now: BlockNumberFor<T>) -> Result<(), MinerError> {
		let threshold = T::OffchainRepeat::get();
		let last_block = StorageValueRef::persistent(OFFCHAIN_LAST_BLOCK);

		let mutate_stat = last_block.mutate::<_, &'static str, _>(
			|maybe_head: Result<Option<BlockNumberFor<T>>, _>| {
				match maybe_head {
					Ok(Some(head)) if now < head => Err("fork."),
					Ok(Some(head)) if now >= head && now <= head + threshold =>
						Err("recently executed."),
					Ok(Some(head)) if now > head + threshold => {
						// we can run again now. Write the new head.
						Ok(now)
					},
					_ => {
						// value doesn't exists. Probably this node just booted up. Write, and run
						Ok(now)
					},
				}
			},
		);

		match mutate_stat {
			// all good
			Ok(_) => Ok(()),
			// failed to write.
			Err(MutateStorageError::ConcurrentModification(_)) =>
				Err(MinerError::Lock("failed to write to offchain db (concurrent modification).")),
			// fork etc.
			Err(MutateStorageError::ValueFunctionFailed(why)) => Err(MinerError::Lock(why)),
		}
	}

	/// Do the basics checks that MUST happen during the validation and pre-dispatch of an unsigned
	/// transaction.
	///
	/// Can optionally also be called during dispatch, if needed.
	///
	/// NOTE: Ideally, these tests should move more and more outside of this and more to the miner's
	/// code, so that we do less and less storage reads here.
	pub fn unsigned_pre_dispatch_checks(
		raw_solution: &RawSolution<SolutionOf<T::MinerConfig>>,
	) -> DispatchResult {
		// ensure solution is timely. Don't panic yet. This is a cheap check.
		ensure!(Self::current_phase().is_unsigned_open(), Error::<T>::PreDispatchEarlySubmission);

		// ensure round is current
		ensure!(Self::round() == raw_solution.round, Error::<T>::OcwCallWrongEra);

		// ensure correct number of winners.
		ensure!(
			Self::desired_targets().unwrap_or_default() ==
				raw_solution.solution.unique_targets().len() as u32,
			Error::<T>::PreDispatchWrongWinnerCount,
		);

		// ensure score is being improved. Panic henceforth.
		ensure!(
			Self::queued_solution()
				.map_or(true, |q: ReadySolution<_, _>| raw_solution.score > q.score),
			Error::<T>::PreDispatchWeakSubmission,
		);

		Ok(())
	}
}

/// Configurations for a miner that comes with this pallet.
pub trait MinerConfig {
	/// The account id type.
	type AccountId: Ord + Clone + codec::Codec + sp_std::fmt::Debug;
	/// The solution that the miner is mining.
	type Solution: codec::Codec
		+ Default
		+ PartialEq
		+ Eq
		+ Clone
		+ sp_std::fmt::Debug
		+ Ord
		+ NposSolution
		+ TypeInfo;
	/// Maximum number of votes per voter in the snapshots.
	type MaxVotesPerVoter;
	/// Maximum length of the solution that the miner is allowed to generate.
	///
	/// Solutions are trimmed to respect this.
	type MaxLength: Get<u32>;
	/// Maximum weight of the solution that the miner is allowed to generate.
	///
	/// Solutions are trimmed to respect this.
	///
	/// The weight is computed using `solution_weight`.
	type MaxWeight: Get<Weight>;
	/// The maximum number of winners that can be elected.
	type MaxWinners: Get<u32>;
	/// Something that can compute the weight of a solution.
	///
	/// This weight estimate is then used to trim the solution, based on [`MinerConfig::MaxWeight`].
	fn solution_weight(voters: u32, targets: u32, active_voters: u32, degree: u32) -> Weight;
}

/// A base miner, suitable to be used for both signed and unsigned submissions.
pub struct Miner<T: MinerConfig>(sp_std::marker::PhantomData<T>);
impl<T: MinerConfig> Miner<T> {
	/// Same as [`Pallet::mine_solution`], but the input snapshot data must be given.
	pub fn mine_solution_with_snapshot<S>(
		voters: Vec<(T::AccountId, VoteWeight, BoundedVec<T::AccountId, T::MaxVotesPerVoter>)>,
		targets: Vec<T::AccountId>,
		desired_targets: u32,
	) -> Result<(SolutionOf<T>, ElectionScore, SolutionOrSnapshotSize, TrimmingStatus), MinerError>
	where
		S: NposSolver<AccountId = T::AccountId>,
	{
		S::solve(desired_targets as usize, targets.clone(), voters.clone())
			.map_err(|e| {
				log_no_system!(error, "solver error: {:?}", e);
				MinerError::Solver
			})
			.and_then(|e| {
				Self::prepare_election_result_with_snapshot::<S::Accuracy>(
					e,
					voters,
					targets,
					desired_targets,
				)
			})
	}

	/// Convert a raw solution from [`sp_npos_elections::ElectionResult`] to [`RawSolution`], which
	/// is ready to be submitted to the chain.
	///
	/// Will always reduce the solution as well.
	pub fn prepare_election_result_with_snapshot<Accuracy: PerThing128>(
		election_result: ElectionResult<T::AccountId, Accuracy>,
		voters: Vec<(T::AccountId, VoteWeight, BoundedVec<T::AccountId, T::MaxVotesPerVoter>)>,
		targets: Vec<T::AccountId>,
		desired_targets: u32,
	) -> Result<(SolutionOf<T>, ElectionScore, SolutionOrSnapshotSize, TrimmingStatus), MinerError>
	{
		// now make some helper closures.
		let cache = helpers::generate_voter_cache::<T>(&voters);
		let voter_index = helpers::voter_index_fn::<T>(&cache);
		let target_index = helpers::target_index_fn::<T>(&targets);
		let voter_at = helpers::voter_at_fn::<T>(&voters);
		let target_at = helpers::target_at_fn::<T>(&targets);
		let stake_of = helpers::stake_of_fn::<T>(&voters, &cache);

		// Compute the size of a solution comprised of the selected arguments.
		//
		// This function completes in `O(edges)`; it's expensive, but linear.
		let encoded_size_of = |assignments: &[IndexAssignmentOf<T>]| {
			SolutionOf::<T>::try_from(assignments).map(|s| s.encoded_size())
		};

		let ElectionResult { assignments, winners: _ } = election_result;

		// Reduce (requires round-trip to staked form)
		let sorted_assignments = {
			// convert to staked and reduce.
			let mut staked = assignment_ratio_to_staked_normalized(assignments, &stake_of)?;

			// we reduce before sorting in order to ensure that the reduction process doesn't
			// accidentally change the sort order
			sp_npos_elections::reduce(&mut staked);

			// Sort the assignments by reversed voter stake. This ensures that we can efficiently
			// truncate the list.
			staked.sort_by_key(
				|sp_npos_elections::StakedAssignment::<T::AccountId> { who, .. }| {
					// though staked assignments are expressed in terms of absolute stake, we'd
					// still need to iterate over all votes in order to actually compute the total
					// stake. it should be faster to look it up from the cache.
					let stake = cache
						.get(who)
						.map(|idx| {
							let (_, stake, _) = voters[*idx];
							stake
						})
						.unwrap_or_default();
					sp_std::cmp::Reverse(stake)
				},
			);

			// convert back.
			assignment_staked_to_ratio_normalized(staked)?
		};

		// convert to `IndexAssignment`. This improves the runtime complexity of repeatedly
		// converting to `Solution`.
		let mut index_assignments = sorted_assignments
			.into_iter()
			.map(|assignment| IndexAssignmentOf::<T>::new(&assignment, &voter_index, &target_index))
			.collect::<Result<Vec<_>, _>>()?;

		// trim assignments list for weight and length.
		let size =
			SolutionOrSnapshotSize { voters: voters.len() as u32, targets: targets.len() as u32 };
		let weight_trimmed = Self::trim_assignments_weight(
			desired_targets,
			size,
			T::MaxWeight::get(),
			&mut index_assignments,
		);
		let length_trimmed = Self::trim_assignments_length(
			T::MaxLength::get(),
			&mut index_assignments,
			&encoded_size_of,
		)?;

		// now make solution.
		let solution = SolutionOf::<T>::try_from(&index_assignments)?;

		// re-calc score.
		let score = solution.clone().score(stake_of, voter_at, target_at)?;

		let is_trimmed = TrimmingStatus { weight: weight_trimmed, length: length_trimmed };

		Ok((solution, score, size, is_trimmed))
	}

	/// Greedily reduce the size of the solution to fit into the block w.r.t length.
	///
	/// The length of the solution is largely a function of the number of voters. The number of
	/// winners cannot be changed. Thus, to reduce the solution size, we need to strip voters.
	///
	/// Note that this solution is already computed, and winners are elected based on the merit of
	/// the total stake in the system. Nevertheless, some of the voters may be removed here.
	///
	/// Sometimes, removing a voter can cause a validator to also be implicitly removed, if
	/// that voter was the only backer of that winner. In such cases, this solution is invalid,
	/// which will be caught prior to submission.
	///
	/// The score must be computed **after** this step. If this step reduces the score too much,
	/// then the solution must be discarded.
	pub fn trim_assignments_length(
		max_allowed_length: u32,
		assignments: &mut Vec<IndexAssignmentOf<T>>,
		encoded_size_of: impl Fn(&[IndexAssignmentOf<T>]) -> Result<usize, sp_npos_elections::Error>,
	) -> Result<usize, MinerError> {
		// Perform a binary search for the max subset of which can fit into the allowed
		// length. Having discovered that, we can truncate efficiently.
		let max_allowed_length: usize = max_allowed_length.saturated_into();
		let mut high = assignments.len();
		let mut low = 0;

		// not much we can do if assignments are already empty.
		if high == low {
			return Ok(0)
		}

		while high - low > 1 {
			let test = (high + low) / 2;
			if encoded_size_of(&assignments[..test])? <= max_allowed_length {
				low = test;
			} else {
				high = test;
			}
		}
		let maximum_allowed_voters = if low < assignments.len() &&
			encoded_size_of(&assignments[..low + 1])? <= max_allowed_length
		{
			low + 1
		} else {
			low
		};

		// ensure our post-conditions are correct
		debug_assert!(
			encoded_size_of(&assignments[..maximum_allowed_voters]).unwrap() <= max_allowed_length
		);
		debug_assert!(if maximum_allowed_voters < assignments.len() {
			encoded_size_of(&assignments[..maximum_allowed_voters + 1]).unwrap() >
				max_allowed_length
		} else {
			true
		});

		// NOTE: before this point, every access was immutable.
		// after this point, we never error.
		// check before edit.

		let remove = assignments.len().saturating_sub(maximum_allowed_voters);

		log_no_system!(
			debug,
			"from {} assignments, truncating to {} for length, removing {}",
			assignments.len(),
			maximum_allowed_voters,
			remove
		);
		assignments.truncate(maximum_allowed_voters);

		Ok(remove)
	}

	/// Greedily reduce the size of the solution to fit into the block w.r.t. weight.
	///
	/// The weight of the solution is foremost a function of the number of voters (i.e.
	/// `assignments.len()`). Aside from this, the other components of the weight are invariant. The
	/// number of winners shall not be changed (otherwise the solution is invalid) and the
	/// `ElectionSize` is merely a representation of the total number of stakers.
	///
	/// Thus, we reside to stripping away some voters from the `assignments`.
	///
	/// Note that the solution is already computed, and the winners are elected based on the merit
	/// of the entire stake in the system. Nonetheless, some of the voters will be removed further
	/// down the line.
	///
	/// Indeed, the score must be computed **after** this step. If this step reduces the score too
	/// much or remove a winner, then the solution must be discarded **after** this step.
	pub fn trim_assignments_weight(
		desired_targets: u32,
		size: SolutionOrSnapshotSize,
		max_weight: Weight,
		assignments: &mut Vec<IndexAssignmentOf<T>>,
	) -> usize {
		let maximum_allowed_voters =
			Self::maximum_voter_for_weight(desired_targets, size, max_weight);
		let removing: usize =
			assignments.len().saturating_sub(maximum_allowed_voters.saturated_into());
		log_no_system!(
			debug,
			"from {} assignments, truncating to {} for weight, removing {}",
			assignments.len(),
			maximum_allowed_voters,
			removing,
		);
		assignments.truncate(maximum_allowed_voters as usize);

		removing
	}

	/// Find the maximum `len` that a solution can have in order to fit into the block weight.
	///
	/// This only returns a value between zero and `size.nominators`.
	pub fn maximum_voter_for_weight(
		desired_winners: u32,
		size: SolutionOrSnapshotSize,
		max_weight: Weight,
	) -> u32 {
		if size.voters < 1 {
			return size.voters
		}

		let max_voters = size.voters.max(1);
		let mut voters = max_voters;

		// helper closures.
		let weight_with = |active_voters: u32| -> Weight {
			T::solution_weight(size.voters, size.targets, active_voters, desired_winners)
		};

		let next_voters = |current_weight: Weight, voters: u32, step: u32| -> Result<u32, ()> {
			if current_weight.all_lt(max_weight) {
				let next_voters = voters.checked_add(step);
				match next_voters {
					Some(voters) if voters < max_voters => Ok(voters),
					_ => Err(()),
				}
			} else if current_weight.any_gt(max_weight) {
				voters.checked_sub(step).ok_or(())
			} else {
				// If any of the constituent weights is equal to the max weight, we're at max
				Ok(voters)
			}
		};

		// First binary-search the right amount of voters
		let mut step = voters / 2;
		let mut current_weight = weight_with(voters);

		while step > 0 {
			match next_voters(current_weight, voters, step) {
				// proceed with the binary search
				Ok(next) if next != voters => {
					voters = next;
				},
				// we are out of bounds, break out of the loop.
				Err(()) => break,
				// we found the right value - early exit the function.
				Ok(next) => return next,
			}
			step /= 2;
			current_weight = weight_with(voters);
		}

		// Time to finish. We might have reduced less than expected due to rounding error. Increase
		// one last time if we have any room left, the reduce until we are sure we are below limit.
		while voters < max_voters && weight_with(voters + 1).all_lt(max_weight) {
			voters += 1;
		}
		while voters.checked_sub(1).is_some() && weight_with(voters).any_gt(max_weight) {
			voters -= 1;
		}

		let final_decision = voters.min(size.voters);
		debug_assert!(
			weight_with(final_decision).all_lte(max_weight),
			"weight_with({}) <= {}",
			final_decision,
			max_weight,
		);
		final_decision
	}

	/// Checks the feasibility of a solution.
	pub fn feasibility_check(
		raw_solution: RawSolution<SolutionOf<T>>,
		compute: ElectionCompute,
		desired_targets: u32,
		snapshot: RoundSnapshot<T::AccountId, MinerVoterOf<T>>,
		current_round: u32,
		minimum_untrusted_score: Option<ElectionScore>,
	) -> Result<ReadySolution<T::AccountId, T::MaxWinners>, FeasibilityError> {
		let RawSolution { solution, score, round } = raw_solution;
		let RoundSnapshot { voters: snapshot_voters, targets: snapshot_targets } = snapshot;

		// First, check round.
		ensure!(current_round == round, FeasibilityError::InvalidRound);

		// Winners are not directly encoded in the solution.
		let winners = solution.unique_targets();

		ensure!(winners.len() as u32 == desired_targets, FeasibilityError::WrongWinnerCount);
		// Fail early if targets requested by data provider exceed maximum winners supported.
		ensure!(desired_targets <= T::MaxWinners::get(), FeasibilityError::TooManyDesiredTargets);

		// Ensure that the solution's score can pass absolute min-score.
		let submitted_score = raw_solution.score;
		ensure!(
			minimum_untrusted_score.map_or(true, |min_score| {
				submitted_score.strict_threshold_better(min_score, sp_runtime::Perbill::zero())
			}),
			FeasibilityError::UntrustedScoreTooLow
		);

		// ----- Start building. First, we need some closures.
		let cache = helpers::generate_voter_cache::<T>(&snapshot_voters);
		let voter_at = helpers::voter_at_fn::<T>(&snapshot_voters);
		let target_at = helpers::target_at_fn::<T>(&snapshot_targets);
		let voter_index = helpers::voter_index_fn_usize::<T>(&cache);

		// Then convert solution -> assignment. This will fail if any of the indices are gibberish,
		// namely any of the voters or targets.
		let assignments = solution
			.into_assignment(voter_at, target_at)
			.map_err::<FeasibilityError, _>(Into::into)?;

		// Ensure that assignments is correct.
		let _ = assignments.iter().try_for_each(|assignment| {
			// Check that assignment.who is actually a voter (defensive-only).
			// NOTE: while using the index map from `voter_index` is better than a blind linear
			// search, this *still* has room for optimization. Note that we had the index when
			// we did `solution -> assignment` and we lost it. Ideal is to keep the index
			// around.

			// Defensive-only: must exist in the snapshot.
			let snapshot_index =
				voter_index(&assignment.who).ok_or(FeasibilityError::InvalidVoter)?;
			// Defensive-only: index comes from the snapshot, must exist.
			let (_voter, _stake, targets) =
				snapshot_voters.get(snapshot_index).ok_or(FeasibilityError::InvalidVoter)?;

			// Check that all of the targets are valid based on the snapshot.
			if assignment.distribution.iter().any(|(d, _)| !targets.contains(d)) {
				return Err(FeasibilityError::InvalidVote)
			}
			Ok(())
		})?;

		// ----- Start building support. First, we need one more closure.
		let stake_of = helpers::stake_of_fn::<T>(&snapshot_voters, &cache);

		// This might fail if the normalization fails. Very unlikely. See `integrity_test`.
		let staked_assignments = assignment_ratio_to_staked_normalized(assignments, stake_of)
			.map_err::<FeasibilityError, _>(Into::into)?;
		let supports = sp_npos_elections::to_supports(&staked_assignments);

		// Finally, check that the claimed score was indeed correct.
		let known_score = supports.evaluate();
		ensure!(known_score == score, FeasibilityError::InvalidScore);

		// Size of winners in miner solution is equal to `desired_targets` <= `MaxWinners`.
		let supports = supports
			.try_into()
			.defensive_map_err(|_| FeasibilityError::BoundedConversionFailed)?;

		Ok(ReadySolution { supports, compute, score })
	}
}

#[cfg(test)]
mod max_weight {
	#![allow(unused_variables)]
	use super::*;
	use crate::mock::{MockWeightInfo, Runtime};
	#[test]
	fn find_max_voter_binary_search_works() {
		let w = SolutionOrSnapshotSize { voters: 10, targets: 0 };
		MockWeightInfo::set(crate::mock::MockedWeightInfo::Complex);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(0, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(999, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1000, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1001, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1990, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1999, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2000, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2001, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2010, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2990, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2999, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(3000, u64::MAX)),
			3
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(3333, u64::MAX)),
			3
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(5500, u64::MAX)),
			5
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(7777, u64::MAX)),
			7
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(9999, u64::MAX)),
			9
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(10_000, u64::MAX)),
			10
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(10_999, u64::MAX)),
			10
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(11_000, u64::MAX)),
			10
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(22_000, u64::MAX)),
			10
		);

		let w = SolutionOrSnapshotSize { voters: 1, targets: 0 };

		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(0, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(999, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1000, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1001, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1990, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1999, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2000, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2001, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2010, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(3333, u64::MAX)),
			1
		);

		let w = SolutionOrSnapshotSize { voters: 2, targets: 0 };

		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(0, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(999, u64::MAX)),
			0
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1000, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1001, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(1999, u64::MAX)),
			1
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2000, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2001, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(2010, u64::MAX)),
			2
		);
		assert_eq!(
			Miner::<Runtime>::maximum_voter_for_weight(0, w, Weight::from_parts(3333, u64::MAX)),
			2
		);
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{
		mock::{
			multi_phase_events, roll_to, roll_to_signed, roll_to_unsigned, roll_to_with_ocw,
			trim_helpers, witness, BlockNumber, ExtBuilder, Extrinsic, MinerMaxWeight, MultiPhase,
			Runtime, RuntimeCall, RuntimeOrigin, System, TestNposSolution, TrimHelpers,
			UnsignedPhase,
		},
		Event, InvalidTransaction, Phase, QueuedSolution, TransactionSource,
		TransactionValidityError,
	};
	use codec::Decode;
	use frame_election_provider_support::IndexAssignment;
	use frame_support::{assert_noop, assert_ok, traits::OffchainWorker};
	use sp_npos_elections::ElectionScore;
	use sp_runtime::{
		bounded_vec,
		offchain::storage_lock::{BlockAndTime, StorageLock},
		traits::{Dispatchable, ValidateUnsigned, Zero},
		ModuleError, PerU16,
	};

	type Assignment = crate::unsigned::Assignment<Runtime>;

	#[test]
	fn validate_unsigned_retracts_wrong_phase() {
		ExtBuilder::default().desired_targets(0).build_and_execute(|| {
			let solution = RawSolution::<TestNposSolution> {
				score: ElectionScore { minimal_stake: 5, ..Default::default() },
				..Default::default()
			};
			let call = Call::submit_unsigned {
				raw_solution: Box::new(solution.clone()),
				witness: witness(),
			};

			// initial
			assert_eq!(MultiPhase::current_phase(), Phase::Off);
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));

			// signed
			roll_to_signed();
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));

			// unsigned
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			assert!(<MultiPhase as ValidateUnsigned>::validate_unsigned(
				TransactionSource::Local,
				&call
			)
			.is_ok());
			assert!(<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).is_ok());

			// unsigned -- but not enabled.
			MultiPhase::phase_transition(Phase::Unsigned((false, 25)));
			assert!(MultiPhase::current_phase().is_unsigned());
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
		})
	}

	#[test]
	fn validate_unsigned_retracts_low_score() {
		ExtBuilder::default().desired_targets(0).build_and_execute(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			let solution = RawSolution::<TestNposSolution> {
				score: ElectionScore { minimal_stake: 5, ..Default::default() },
				..Default::default()
			};
			let call = Call::submit_unsigned {
				raw_solution: Box::new(solution.clone()),
				witness: witness(),
			};

			// initial
			assert!(<MultiPhase as ValidateUnsigned>::validate_unsigned(
				TransactionSource::Local,
				&call
			)
			.is_ok());
			assert!(<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).is_ok());

			// set a better score
			let ready = ReadySolution {
				score: ElectionScore { minimal_stake: 10, ..Default::default() },
				..Default::default()
			};
			<QueuedSolution<Runtime>>::put(ready);

			// won't work anymore.
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(2))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(2))
			));
		})
	}

	#[test]
	fn validate_unsigned_retracts_incorrect_winner_count() {
		ExtBuilder::default().desired_targets(1).build_and_execute(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			let raw = RawSolution::<TestNposSolution> {
				score: ElectionScore { minimal_stake: 5, ..Default::default() },
				..Default::default()
			};
			let call =
				Call::submit_unsigned { raw_solution: Box::new(raw.clone()), witness: witness() };
			assert_eq!(raw.solution.unique_targets().len(), 0);

			// won't work anymore.
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(1))
			));
		})
	}

	#[test]
	fn priority_is_set() {
		ExtBuilder::default()
			.miner_tx_priority(20)
			.desired_targets(0)
			.build_and_execute(|| {
				roll_to_unsigned();
				assert!(MultiPhase::current_phase().is_unsigned());

				let solution = RawSolution::<TestNposSolution> {
					score: ElectionScore { minimal_stake: 5, ..Default::default() },
					..Default::default()
				};
				let call = Call::submit_unsigned {
					raw_solution: Box::new(solution.clone()),
					witness: witness(),
				};

				assert_eq!(
					<MultiPhase as ValidateUnsigned>::validate_unsigned(
						TransactionSource::Local,
						&call
					)
					.unwrap()
					.priority,
					25
				);
			})
	}

	#[test]
	#[should_panic(expected = "Invalid unsigned submission must produce invalid block and \
	                           deprive validator from their authoring reward.: \
	                           Module(ModuleError { index: 2, error: [1, 0, 0, 0], message: \
	                           Some(\"PreDispatchWrongWinnerCount\") })")]
	fn unfeasible_solution_panics() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// This is in itself an invalid BS solution.
			let solution = RawSolution::<TestNposSolution> {
				score: ElectionScore { minimal_stake: 5, ..Default::default() },
				..Default::default()
			};
			let call = Call::submit_unsigned {
				raw_solution: Box::new(solution.clone()),
				witness: witness(),
			};
			let runtime_call: RuntimeCall = call.into();
			let _ = runtime_call.dispatch(RuntimeOrigin::none());
		})
	}

	#[test]
	#[should_panic(expected = "Invalid unsigned submission must produce invalid block and \
	                           deprive validator from their authoring reward.")]
	fn wrong_witness_panics() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// This solution is unfeasible as well, but we won't even get there.
			let solution = RawSolution::<TestNposSolution> {
				score: ElectionScore { minimal_stake: 5, ..Default::default() },
				..Default::default()
			};

			let mut correct_witness = witness();
			correct_witness.voters += 1;
			correct_witness.targets -= 1;
			let call = Call::submit_unsigned {
				raw_solution: Box::new(solution.clone()),
				witness: correct_witness,
			};
			let runtime_call: RuntimeCall = call.into();
			let _ = runtime_call.dispatch(RuntimeOrigin::none());
		})
	}

	#[test]
	fn miner_works() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// ensure we have snapshots in place.
			assert!(MultiPhase::snapshot().is_some());
			assert_eq!(MultiPhase::desired_targets().unwrap(), 2);

			// mine seq_phragmen solution with 2 iters.
			let (solution, witness, _) = MultiPhase::mine_solution().unwrap();

			// ensure this solution is valid.
			assert!(MultiPhase::queued_solution().is_none());
			assert_ok!(MultiPhase::submit_unsigned(
				RuntimeOrigin::none(),
				Box::new(solution),
				witness
			));
			assert!(MultiPhase::queued_solution().is_some());
			assert_eq!(
				multi_phase_events(),
				vec![
					Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
					Event::PhaseTransitioned {
						from: Phase::Signed,
						to: Phase::Unsigned((true, 25)),
						round: 1
					},
					Event::SolutionStored {
						compute: ElectionCompute::Unsigned,
						origin: None,
						prev_ejected: false
					}
				]
			);
		})
	}

	#[test]
	fn miner_trims_weight() {
		ExtBuilder::default()
			.miner_weight(Weight::from_parts(100, u64::MAX))
			.mock_weight_info(crate::mock::MockedWeightInfo::Basic)
			.build_and_execute(|| {
				roll_to_unsigned();
				assert!(MultiPhase::current_phase().is_unsigned());

				let (raw, witness, t) = MultiPhase::mine_solution().unwrap();
				let solution_weight = <Runtime as MinerConfig>::solution_weight(
					witness.voters,
					witness.targets,
					raw.solution.voter_count() as u32,
					raw.solution.unique_targets().len() as u32,
				);
				// default solution will have 5 edges (5 * 5 + 10)
				assert_eq!(solution_weight, Weight::from_parts(35, 0));
				assert_eq!(raw.solution.voter_count(), 5);
				assert_eq!(t.trimmed_weight(), 0);

				// now reduce the max weight
				<MinerMaxWeight>::set(Weight::from_parts(25, u64::MAX));

				let (raw, witness, t) = MultiPhase::mine_solution().unwrap();
				let solution_weight = <Runtime as MinerConfig>::solution_weight(
					witness.voters,
					witness.targets,
					raw.solution.voter_count() as u32,
					raw.solution.unique_targets().len() as u32,
				);
				// default solution will have 5 edges (5 * 5 + 10)
				assert_eq!(solution_weight, Weight::from_parts(25, 0));
				assert_eq!(raw.solution.voter_count(), 3);
				assert_eq!(t.trimmed_weight(), 2);
			})
	}

	#[test]
	fn miner_will_not_submit_if_not_enough_winners() {
		let (mut ext, _) = ExtBuilder::default().desired_targets(8).build_offchainify(0);
		ext.execute_with(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// Force the number of winners to be bigger to fail
			let (mut solution, _, _) = MultiPhase::mine_solution().unwrap();
			solution.solution.votes1[0].1 = 4;

			assert_eq!(
				MultiPhase::basic_checks(&solution, "mined").unwrap_err(),
				MinerError::PreDispatchChecksFailed(DispatchError::Module(ModuleError {
					index: 2,
					error: [1, 0, 0, 0],
					message: Some("PreDispatchWrongWinnerCount"),
				})),
			);
		})
	}

	#[test]
	fn unsigned_per_dispatch_checks_can_only_submit_threshold_better() {
		ExtBuilder::default()
			.desired_targets(1)
			.add_voter(7, 2, bounded_vec![10])
			.add_voter(8, 5, bounded_vec![10])
			.add_voter(9, 1, bounded_vec![10])
			.build_and_execute(|| {
				roll_to_unsigned();
				assert!(MultiPhase::current_phase().is_unsigned());
				assert_eq!(MultiPhase::desired_targets().unwrap(), 1);

				// an initial solution
				let result = ElectionResult {
					winners: vec![(10, 12)],
					assignments: vec![
						Assignment { who: 10, distribution: vec![(10, PerU16::one())] },
						Assignment {
							who: 7,
							// note: this percent doesn't even matter, in solution it is 100%.
							distribution: vec![(10, PerU16::one())],
						},
					],
				};

				let RoundSnapshot { voters, targets } = MultiPhase::snapshot().unwrap();
				let desired_targets = MultiPhase::desired_targets().unwrap();

				let (raw, score, witness, _) =
					Miner::<Runtime>::prepare_election_result_with_snapshot(
						result,
						voters.clone(),
						targets.clone(),
						desired_targets,
					)
					.unwrap();
				let solution = RawSolution { solution: raw, score, round: MultiPhase::round() };
				assert_ok!(MultiPhase::unsigned_pre_dispatch_checks(&solution));
				assert_ok!(MultiPhase::submit_unsigned(
					RuntimeOrigin::none(),
					Box::new(solution),
					witness
				));
				assert_eq!(MultiPhase::queued_solution().unwrap().score.minimal_stake, 12);

				// trial 1: a solution who's minimal stake is 10, i.e. worse than the first solution
				// of 12.
				let result = ElectionResult {
					winners: vec![(10, 10)],
					assignments: vec![Assignment {
						who: 10,
						distribution: vec![(10, PerU16::one())],
					}],
				};
				let (raw, score, _, _) = Miner::<Runtime>::prepare_election_result_with_snapshot(
					result,
					voters.clone(),
					targets.clone(),
					desired_targets,
				)
				.unwrap();
				let solution = RawSolution { solution: raw, score, round: MultiPhase::round() };
				// 10 is not better than 12
				assert_eq!(solution.score.minimal_stake, 10);
				// submitting this will actually panic.
				assert_noop!(
					MultiPhase::unsigned_pre_dispatch_checks(&solution),
					Error::<Runtime>::PreDispatchWeakSubmission,
				);

				// trial 2: try resubmitting another solution with same score (12) as the queued
				// solution.
				let result = ElectionResult {
					winners: vec![(10, 12)],
					assignments: vec![
						Assignment { who: 10, distribution: vec![(10, PerU16::one())] },
						Assignment {
							who: 7,
							// note: this percent doesn't even matter, in solution it is 100%.
							distribution: vec![(10, PerU16::one())],
						},
					],
				};

				let (raw, score, _, _) = Miner::<Runtime>::prepare_election_result_with_snapshot(
					result,
					voters.clone(),
					targets.clone(),
					desired_targets,
				)
				.unwrap();
				let solution = RawSolution { solution: raw, score, round: MultiPhase::round() };
				// 12 is not better than 12. We need score of atleast 13 to be accepted.
				assert_eq!(solution.score.minimal_stake, 12);
				// submitting this will panic.
				assert_noop!(
					MultiPhase::unsigned_pre_dispatch_checks(&solution),
					Error::<Runtime>::PreDispatchWeakSubmission,
				);

				// trial 3: a solution who's minimal stake is 13, i.e. 1 better than the queued
				// solution of 12.
				let result = ElectionResult {
					winners: vec![(10, 12)],
					assignments: vec![
						Assignment { who: 10, distribution: vec![(10, PerU16::one())] },
						Assignment { who: 7, distribution: vec![(10, PerU16::one())] },
						Assignment { who: 9, distribution: vec![(10, PerU16::one())] },
					],
				};
				let (raw, score, witness, _) =
					Miner::<Runtime>::prepare_election_result_with_snapshot(
						result,
						voters.clone(),
						targets.clone(),
						desired_targets,
					)
					.unwrap();
				let solution = RawSolution { solution: raw, score, round: MultiPhase::round() };
				assert_eq!(solution.score.minimal_stake, 13);

				// this should work
				assert_ok!(MultiPhase::unsigned_pre_dispatch_checks(&solution));
				assert_ok!(MultiPhase::submit_unsigned(
					RuntimeOrigin::none(),
					Box::new(solution),
					witness
				));

				// trial 4: a solution who's minimal stake is 17, i.e. 4 better than the last
				// soluton.
				let result = ElectionResult {
					winners: vec![(10, 12)],
					assignments: vec![
						Assignment { who: 10, distribution: vec![(10, PerU16::one())] },
						Assignment { who: 7, distribution: vec![(10, PerU16::one())] },
						Assignment {
							who: 8,
							// note: this percent doesn't even matter, in solution it is 100%.
							distribution: vec![(10, PerU16::one())],
						},
					],
				};
				let (raw, score, witness, _) =
					Miner::<Runtime>::prepare_election_result_with_snapshot(
						result,
						voters.clone(),
						targets.clone(),
						desired_targets,
					)
					.unwrap();
				let solution = RawSolution { solution: raw, score, round: MultiPhase::round() };
				assert_eq!(solution.score.minimal_stake, 17);

				// and it is fine
				assert_ok!(MultiPhase::unsigned_pre_dispatch_checks(&solution));
				assert_ok!(MultiPhase::submit_unsigned(
					RuntimeOrigin::none(),
					Box::new(solution),
					witness
				));
			})
	}

	#[test]
	fn ocw_lock_prevents_frequent_execution() {
		let (mut ext, _) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// first execution -- okay.
			assert!(MultiPhase::ensure_offchain_repeat_frequency(25).is_ok());

			// next block: rejected.
			assert_noop!(
				MultiPhase::ensure_offchain_repeat_frequency(26),
				MinerError::Lock("recently executed.")
			);

			// allowed after `OFFCHAIN_REPEAT`
			assert!(
				MultiPhase::ensure_offchain_repeat_frequency((26 + offchain_repeat).into()).is_ok()
			);

			// a fork like situation: re-execute last 3.
			assert!(MultiPhase::ensure_offchain_repeat_frequency(
				(26 + offchain_repeat - 3).into()
			)
			.is_err());
			assert!(MultiPhase::ensure_offchain_repeat_frequency(
				(26 + offchain_repeat - 2).into()
			)
			.is_err());
			assert!(MultiPhase::ensure_offchain_repeat_frequency(
				(26 + offchain_repeat - 1).into()
			)
			.is_err());
		})
	}

	#[test]
	fn ocw_lock_released_after_successful_execution() {
		// first, ensure that a successful execution releases the lock
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			let guard = StorageValueRef::persistent(&OFFCHAIN_LOCK);
			let last_block = StorageValueRef::persistent(OFFCHAIN_LAST_BLOCK);

			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// initially, the lock is not set.
			assert!(guard.get::<bool>().unwrap().is_none());

			// a successful a-z execution.
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 1);

			// afterwards, the lock is not set either..
			assert!(guard.get::<bool>().unwrap().is_none());
			assert_eq!(last_block.get::<BlockNumber>().unwrap(), Some(25));
		});
	}

	#[test]
	fn ocw_lock_prevents_overlapping_execution() {
		// ensure that if the guard is in hold, a new execution is not allowed.
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to_unsigned();
			assert!(MultiPhase::current_phase().is_unsigned());

			// artificially set the value, as if another thread is mid-way.
			let mut lock = StorageLock::<BlockAndTime<System>>::with_block_deadline(
				OFFCHAIN_LOCK,
				UnsignedPhase::get().saturated_into(),
			);
			let guard = lock.lock();

			// nothing submitted.
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 0);
			MultiPhase::offchain_worker(26);
			assert_eq!(pool.read().transactions.len(), 0);

			drop(guard);

			// 🎉 !
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 1);
		});
	}

	#[test]
	fn ocw_only_runs_when_unsigned_open_now() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to_unsigned();
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

			MultiPhase::offchain_worker(24);
			assert!(pool.read().transactions.len().is_zero());
			storage.clear();

			// creates, caches, submits without expecting previous cache value
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 1);
			// assume that the tx has been processed
			pool.try_write().unwrap().transactions.clear();

			// locked, but also, has previously cached.
			MultiPhase::offchain_worker(26);
			assert!(pool.read().transactions.len().is_zero());
		})
	}

	#[test]
	fn ocw_clears_cache_on_unsigned_phase_open() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			const BLOCK: u64 = 25;
			let block_plus = |delta: u64| BLOCK + delta;
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to(BLOCK);
			// we are on the first block of the unsigned phase
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, BLOCK)));

			assert!(
				!ocw_solution_exists::<Runtime>(),
				"no solution should be present before we mine one",
			);

			// create and cache a solution on the first block of the unsigned phase
			MultiPhase::offchain_worker(BLOCK);
			assert!(
				ocw_solution_exists::<Runtime>(),
				"a solution must be cached after running the worker",
			);

			// record the submitted tx,
			let tx_cache_1 = pool.read().transactions[0].clone();
			// and assume it has been processed.
			pool.try_write().unwrap().transactions.clear();

			// after an election, the solution is not cleared
			// we don't actually care about the result of the election
			let _ = MultiPhase::do_elect();
			MultiPhase::offchain_worker(block_plus(1));
			assert!(ocw_solution_exists::<Runtime>(), "elections does not clear the ocw cache");

			// submit a solution with the offchain worker after the repeat interval
			MultiPhase::offchain_worker(block_plus(offchain_repeat + 1));

			// record the submitted tx,
			let tx_cache_2 = pool.read().transactions[0].clone();
			// and assume it has been processed.
			pool.try_write().unwrap().transactions.clear();

			// the OCW submitted the same solution twice since the cache was not cleared.
			assert_eq!(tx_cache_1, tx_cache_2);

			let current_block = block_plus(offchain_repeat * 2 + 2);
			// force the unsigned phase to start on the current block.
			MultiPhase::phase_transition(Phase::Unsigned((true, current_block)));

			// clear the cache and create a solution since we are on the first block of the unsigned
			// phase.
			MultiPhase::offchain_worker(current_block);
			let tx_cache_3 = pool.read().transactions[0].clone();

			// the submitted solution changes because the cache was cleared.
			assert_eq!(tx_cache_1, tx_cache_3);
			assert_eq!(
				multi_phase_events(),
				vec![
					Event::PhaseTransitioned { from: Phase::Off, to: Phase::Signed, round: 1 },
					Event::PhaseTransitioned {
						from: Phase::Signed,
						to: Phase::Unsigned((true, 25)),
						round: 1
					},
					Event::ElectionFinalized {
						compute: ElectionCompute::Fallback,
						score: ElectionScore {
							minimal_stake: 0,
							sum_stake: 0,
							sum_stake_squared: 0
						}
					},
					Event::PhaseTransitioned {
						from: Phase::Unsigned((true, 25)),
						to: Phase::Unsigned((true, 37)),
						round: 1
					},
				]
			);
		})
	}

	#[test]
	fn ocw_resubmits_after_offchain_repeat() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			const BLOCK: u64 = 25;
			let block_plus = |delta: i32| ((BLOCK as i32) + delta) as u64;
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to(BLOCK);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, BLOCK)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

			MultiPhase::offchain_worker(block_plus(-1));
			assert!(pool.read().transactions.len().is_zero());
			storage.clear();

			// creates, caches, submits without expecting previous cache value
			MultiPhase::offchain_worker(BLOCK);
			assert_eq!(pool.read().transactions.len(), 1);
			let tx_cache = pool.read().transactions[0].clone();
			// assume that the tx has been processed
			pool.try_write().unwrap().transactions.clear();

			// attempts to resubmit the tx after the threshold has expired
			// note that we have to add 1: the semantics forbid resubmission at
			// BLOCK + offchain_repeat
			MultiPhase::offchain_worker(block_plus(1 + offchain_repeat as i32));
			assert_eq!(pool.read().transactions.len(), 1);

			// resubmitted tx is identical to first submission
			let tx = &pool.read().transactions[0];
			assert_eq!(&tx_cache, tx);
		})
	}

	#[test]
	fn ocw_regenerates_and_resubmits_after_offchain_repeat() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			const BLOCK: u64 = 25;
			let block_plus = |delta: i32| ((BLOCK as i32) + delta) as u64;
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to(BLOCK);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, BLOCK)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

			MultiPhase::offchain_worker(block_plus(-1));
			assert!(pool.read().transactions.len().is_zero());
			storage.clear();

			// creates, caches, submits without expecting previous cache value
			MultiPhase::offchain_worker(BLOCK);
			assert_eq!(pool.read().transactions.len(), 1);
			let tx_cache = pool.read().transactions[0].clone();
			// assume that the tx has been processed
			pool.try_write().unwrap().transactions.clear();

			// remove the cached submitted tx
			// this ensures that when the resubmit window rolls around, we're ready to regenerate
			// from scratch if necessary
			let mut call_cache = StorageValueRef::persistent(&OFFCHAIN_CACHED_CALL);
			assert!(matches!(call_cache.get::<Call<Runtime>>(), Ok(Some(_call))));
			call_cache.clear();

			// attempts to resubmit the tx after the threshold has expired
			// note that we have to add 1: the semantics forbid resubmission at
			// BLOCK + offchain_repeat
			MultiPhase::offchain_worker(block_plus(1 + offchain_repeat as i32));
			assert_eq!(pool.read().transactions.len(), 1);

			// resubmitted tx is identical to first submission
			let tx = &pool.read().transactions[0];
			assert_eq!(&tx_cache, tx);
		})
	}

	#[test]
	fn ocw_can_submit_to_pool() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to_with_ocw(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			// OCW must have submitted now

			let encoded = pool.read().transactions[0].clone();
			let extrinsic: Extrinsic = codec::Decode::decode(&mut &*encoded).unwrap();
			let call = extrinsic.call;
			assert!(matches!(call, RuntimeCall::MultiPhase(Call::submit_unsigned { .. })));
		})
	}

	#[test]
	fn ocw_solution_must_have_correct_round() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to_with_ocw(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			// OCW must have submitted now
			// now, before we check the call, update the round
			<crate::Round<Runtime>>::mutate(|round| *round += 1);

			let encoded = pool.read().transactions[0].clone();
			let extrinsic = Extrinsic::decode(&mut &*encoded).unwrap();
			let call = match extrinsic.call {
				RuntimeCall::MultiPhase(call @ Call::submit_unsigned { .. }) => call,
				_ => panic!("bad call: unexpected submission"),
			};

			// Custom(7) maps to PreDispatchChecksFailed
			let pre_dispatch_check_error =
				TransactionValidityError::Invalid(InvalidTransaction::Custom(7));
			assert_eq!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call,
				)
				.unwrap_err(),
				pre_dispatch_check_error,
			);
			assert_eq!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				pre_dispatch_check_error,
			);
		})
	}

	#[test]
	fn trim_assignments_length_does_not_modify_when_short_enough() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to_unsigned();

			// given
			let TrimHelpers { mut assignments, encoded_size_of, .. } = trim_helpers();
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			let encoded_len = solution.encoded_size() as u32;
			let solution_clone = solution.clone();

			// when
			let trimmed_len = Miner::<Runtime>::trim_assignments_length(
				encoded_len,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();

			// then
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			assert_eq!(solution, solution_clone);
			assert_eq!(trimmed_len, 0);
		});
	}

	#[test]
	fn trim_assignments_length_modifies_when_too_long() {
		ExtBuilder::default().build().execute_with(|| {
			roll_to_unsigned();

			// given
			let TrimHelpers { mut assignments, encoded_size_of, .. } = trim_helpers();
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			let encoded_len = solution.encoded_size();
			let solution_clone = solution.clone();

			// when
			let trimmed_len = Miner::<Runtime>::trim_assignments_length(
				encoded_len as u32 - 1,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();

			// then
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			assert_ne!(solution, solution_clone);
			assert!(solution.encoded_size() < encoded_len);
			assert_eq!(trimmed_len, 1);
		});
	}

	#[test]
	fn trim_assignments_length_trims_lowest_stake() {
		ExtBuilder::default().build().execute_with(|| {
			roll_to_unsigned();

			// given
			let TrimHelpers { voters, mut assignments, encoded_size_of, voter_index } =
				trim_helpers();
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			let encoded_len = solution.encoded_size() as u32;
			let count = assignments.len();
			let min_stake_voter = voters
				.iter()
				.map(|(id, weight, _)| (weight, id))
				.min()
				.and_then(|(_, id)| voter_index(id))
				.unwrap();

			// when
			Miner::<Runtime>::trim_assignments_length(
				encoded_len - 1,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();

			// then
			assert_eq!(assignments.len(), count - 1, "we must have removed exactly one assignment");
			assert!(
				assignments.iter().all(|IndexAssignment { who, .. }| *who != min_stake_voter),
				"min_stake_voter must no longer be in the set of voters",
			);
		});
	}

	#[test]
	fn trim_assignments_length_wont_panic() {
		// we shan't panic if assignments are initially empty.
		ExtBuilder::default().build_and_execute(|| {
			let encoded_size_of = Box::new(|assignments: &[IndexAssignmentOf<Runtime>]| {
				SolutionOf::<Runtime>::try_from(assignments).map(|solution| solution.encoded_size())
			});

			let mut assignments = vec![];

			// since we have 16 fields, we need to store the length fields of 16 vecs, thus 16 bytes
			// minimum.
			let min_solution_size = encoded_size_of(&assignments).unwrap();
			assert_eq!(min_solution_size, SolutionOf::<Runtime>::LIMIT);

			// all of this should not panic.
			Miner::<Runtime>::trim_assignments_length(0, &mut assignments, encoded_size_of.clone())
				.unwrap();
			Miner::<Runtime>::trim_assignments_length(1, &mut assignments, encoded_size_of.clone())
				.unwrap();
			Miner::<Runtime>::trim_assignments_length(
				min_solution_size as u32,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();
		});

		// or when we trim it to zero.
		ExtBuilder::default().build_and_execute(|| {
			// we need snapshot for `trim_helpers` to work.
			roll_to_unsigned();
			let TrimHelpers { mut assignments, encoded_size_of, .. } = trim_helpers();
			assert!(assignments.len() > 0);

			// trim to min solution size.
			let min_solution_size = SolutionOf::<Runtime>::LIMIT as u32;
			Miner::<Runtime>::trim_assignments_length(
				min_solution_size,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();
			assert_eq!(assignments.len(), 0);
		});
	}

	// all the other solution-generation functions end up delegating to `mine_solution`, so if we
	// demonstrate that `mine_solution` solutions are all trimmed to an acceptable length, then
	// we know that higher-level functions will all also have short-enough solutions.
	#[test]
	fn mine_solution_solutions_always_within_acceptable_length() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to_unsigned();

			// how long would the default solution be?
			let solution = MultiPhase::mine_solution().unwrap();
			let max_length = <Runtime as MinerConfig>::MaxLength::get();
			let solution_size = solution.0.solution.encoded_size();
			assert!(solution_size <= max_length as usize);

			// now set the max size to less than the actual size and regenerate
			<Runtime as MinerConfig>::MaxLength::set(solution_size as u32 - 1);
			let solution = MultiPhase::mine_solution().unwrap();
			let max_length = <Runtime as MinerConfig>::MaxLength::get();
			let solution_size = solution.0.solution.encoded_size();
			assert!(solution_size <= max_length as usize);
		});
	}
}