referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Session Pallet
//!
//! The Session pallet allows validators to manage their session keys, provides a function for
//! changing the session length, and handles session rotation.
//!
//! - [`Config`]
//! - [`Call`]
//! - [`Pallet`]
//!
//! ## Overview
//!
//! ### Terminology
//! <!-- Original author of paragraph: @gavofyork -->
//!
//! - **Session:** A session is a period of time that has a constant set of validators. Validators
//!   can only join or exit the validator set at a session change. It is measured in block numbers.
//!   The block where a session is ended is determined by the `ShouldEndSession` trait. When the
//!   session is ending, a new validator set can be chosen by `OnSessionEnding` implementations.
//!
//! - **Session key:** A session key is actually several keys kept together that provide the various
//!   signing functions required by network authorities/validators in pursuit of their duties.
//! - **Validator ID:** Every account has an associated validator ID. For some simple staking
//!   systems, this may just be the same as the account ID. For staking systems using a
//!   stash/controller model, the validator ID would be the stash account ID of the controller.
//!
//! - **Session key configuration process:** Session keys are set using `set_keys` for use not in
//!   the next session, but the session after next. They are stored in `NextKeys`, a mapping between
//!   the caller's `ValidatorId` and the session keys provided. `set_keys` allows users to set their
//!   session key prior to being selected as validator. It is a public call since it uses
//!   `ensure_signed`, which checks that the origin is a signed account. As such, the account ID of
//!   the origin stored in `NextKeys` may not necessarily be associated with a block author or a
//!   validator. The session keys of accounts are removed once their account balance is zero.
//!
//! - **Session length:** This pallet does not assume anything about the length of each session.
//!   Rather, it relies on an implementation of `ShouldEndSession` to dictate a new session's start.
//!   This pallet provides the `PeriodicSessions` struct for simple periodic sessions.
//!
//! - **Session rotation configuration:** Configure as either a 'normal' (rewardable session where
//!   rewards are applied) or 'exceptional' (slashable) session rotation.
//!
//! - **Session rotation process:** At the beginning of each block, the `on_initialize` function
//!   queries the provided implementation of `ShouldEndSession`. If the session is to end the newly
//!   activated validator IDs and session keys are taken from storage and passed to the
//!   `SessionHandler`. The validator set supplied by `SessionManager::new_session` and the
//!   corresponding session keys, which may have been registered via `set_keys` during the previous
//!   session, are written to storage where they will wait one session before being passed to the
//!   `SessionHandler` themselves.
//!
//! ### Goals
//!
//! The Session pallet is designed to make the following possible:
//!
//! - Set session keys of the validator set for upcoming sessions.
//! - Control the length of sessions.
//! - Configure and switch between either normal or exceptional session rotations.
//!
//! ## Interface
//!
//! ### Dispatchable Functions
//!
//! - `set_keys` - Set a validator's session keys for upcoming sessions.
//!
//! ### Public Functions
//!
//! - `rotate_session` - Change to the next session. Register the new authority set. Queue changes
//!   for next session rotation.
//! - `disable_index` - Disable a validator by index.
//! - `disable` - Disable a validator by Validator ID
//!
//! ## Usage
//!
//! ### Example from the FRAME
//!
//! The [Staking pallet](../pallet_staking/index.html) uses the Session pallet to get the validator
//! set.
//!
//! ```
//! use pallet_session as session;
//!
//! fn validators<T: pallet_session::Config>() -> Vec<<T as pallet_session::Config>::ValidatorId> {
//! 	pallet_session::Validators::<T>::get()
//! }
//! # fn main(){}
//! ```
//!
//! ## Related Pallets
//!
//! - [Staking](../pallet_staking/index.html)

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "historical")]
pub mod historical;
pub mod migrations;
#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;
pub mod weights;

extern crate alloc;

use alloc::{boxed::Box, vec::Vec};
use codec::{Decode, MaxEncodedLen};
use core::{
	marker::PhantomData,
	ops::{Rem, Sub},
};
use frame_support::{
	dispatch::DispatchResult,
	ensure,
	traits::{
		Defensive, EstimateNextNewSession, EstimateNextSessionRotation, FindAuthor, Get,
		OneSessionHandler, ValidatorRegistration, ValidatorSet,
	},
	weights::Weight,
	Parameter,
};
use frame_system::pallet_prelude::BlockNumberFor;
use sp_runtime::{
	traits::{AtLeast32BitUnsigned, Convert, Member, One, OpaqueKeys, Zero},
	ConsensusEngineId, DispatchError, KeyTypeId, Permill, RuntimeAppPublic,
};
use sp_staking::SessionIndex;

pub use pallet::*;
pub use weights::WeightInfo;

/// Decides whether the session should be ended.
pub trait ShouldEndSession<BlockNumber> {
	/// Return `true` if the session should be ended.
	fn should_end_session(now: BlockNumber) -> bool;
}

/// Ends the session after a fixed period of blocks.
///
/// The first session will have length of `Offset`, and
/// the following sessions will have length of `Period`.
/// This may prove nonsensical if `Offset` >= `Period`.
pub struct PeriodicSessions<Period, Offset>(PhantomData<(Period, Offset)>);

impl<
		BlockNumber: Rem<Output = BlockNumber> + Sub<Output = BlockNumber> + Zero + PartialOrd,
		Period: Get<BlockNumber>,
		Offset: Get<BlockNumber>,
	> ShouldEndSession<BlockNumber> for PeriodicSessions<Period, Offset>
{
	fn should_end_session(now: BlockNumber) -> bool {
		let offset = Offset::get();
		now >= offset && ((now - offset) % Period::get()).is_zero()
	}
}

impl<
		BlockNumber: AtLeast32BitUnsigned + Clone,
		Period: Get<BlockNumber>,
		Offset: Get<BlockNumber>,
	> EstimateNextSessionRotation<BlockNumber> for PeriodicSessions<Period, Offset>
{
	fn average_session_length() -> BlockNumber {
		Period::get()
	}

	fn estimate_current_session_progress(now: BlockNumber) -> (Option<Permill>, Weight) {
		let offset = Offset::get();
		let period = Period::get();

		// NOTE: we add one since we assume that the current block has already elapsed,
		// i.e. when evaluating the last block in the session the progress should be 100%
		// (0% is never returned).
		let progress = if now >= offset {
			let current = (now - offset) % period.clone() + One::one();
			Some(Permill::from_rational(current, period))
		} else {
			Some(Permill::from_rational(now + One::one(), offset))
		};

		// Weight note: `estimate_current_session_progress` has no storage reads and trivial
		// computational overhead. There should be no risk to the chain having this weight value be
		// zero for now. However, this value of zero was not properly calculated, and so it would be
		// reasonable to come back here and properly calculate the weight of this function.
		(progress, Zero::zero())
	}

	fn estimate_next_session_rotation(now: BlockNumber) -> (Option<BlockNumber>, Weight) {
		let offset = Offset::get();
		let period = Period::get();

		let next_session = if now > offset {
			let block_after_last_session = (now.clone() - offset) % period.clone();
			if block_after_last_session > Zero::zero() {
				now.saturating_add(period.saturating_sub(block_after_last_session))
			} else {
				// this branch happens when the session is already rotated or will rotate in this
				// block (depending on being called before or after `session::on_initialize`). Here,
				// we assume the latter, namely that this is called after `session::on_initialize`,
				// and thus we add period to it as well.
				now + period
			}
		} else {
			offset
		};

		// Weight note: `estimate_next_session_rotation` has no storage reads and trivial
		// computational overhead. There should be no risk to the chain having this weight value be
		// zero for now. However, this value of zero was not properly calculated, and so it would be
		// reasonable to come back here and properly calculate the weight of this function.
		(Some(next_session), Zero::zero())
	}
}

/// A trait for managing creation of new validator set.
pub trait SessionManager<ValidatorId> {
	/// Plan a new session, and optionally provide the new validator set.
	///
	/// Even if the validator-set is the same as before, if any underlying economic conditions have
	/// changed (i.e. stake-weights), the new validator set must be returned. This is necessary for
	/// consensus engines making use of the session pallet to issue a validator-set change so
	/// misbehavior can be provably associated with the new economic conditions as opposed to the
	/// old. The returned validator set, if any, will not be applied until `new_index`. `new_index`
	/// is strictly greater than from previous call.
	///
	/// The first session start at index 0.
	///
	/// `new_session(session)` is guaranteed to be called before `end_session(session-1)`. In other
	/// words, a new session must always be planned before an ongoing one can be finished.
	fn new_session(new_index: SessionIndex) -> Option<Vec<ValidatorId>>;
	/// Same as `new_session`, but it this should only be called at genesis.
	///
	/// The session manager might decide to treat this in a different way. Default impl is simply
	/// using [`new_session`](Self::new_session).
	fn new_session_genesis(new_index: SessionIndex) -> Option<Vec<ValidatorId>> {
		Self::new_session(new_index)
	}
	/// End the session.
	///
	/// Because the session pallet can queue validator set the ending session can be lower than the
	/// last new session index.
	fn end_session(end_index: SessionIndex);
	/// Start an already planned session.
	///
	/// The session start to be used for validation.
	fn start_session(start_index: SessionIndex);
}

impl<A> SessionManager<A> for () {
	fn new_session(_: SessionIndex) -> Option<Vec<A>> {
		None
	}
	fn start_session(_: SessionIndex) {}
	fn end_session(_: SessionIndex) {}
}

/// Handler for session life cycle events.
pub trait SessionHandler<ValidatorId> {
	/// All the key type ids this session handler can process.
	///
	/// The order must be the same as it expects them in
	/// [`on_new_session`](Self::on_new_session<Ks>) and
	/// [`on_genesis_session`](Self::on_genesis_session<Ks>).
	const KEY_TYPE_IDS: &'static [KeyTypeId];

	/// The given validator set will be used for the genesis session.
	/// It is guaranteed that the given validator set will also be used
	/// for the second session, therefore the first call to `on_new_session`
	/// should provide the same validator set.
	fn on_genesis_session<Ks: OpaqueKeys>(validators: &[(ValidatorId, Ks)]);

	/// Session set has changed; act appropriately. Note that this can be called
	/// before initialization of your pallet.
	///
	/// `changed` is true whenever any of the session keys or underlying economic
	/// identities or weightings behind `validators` keys has changed. `queued_validators`
	/// could change without `validators` changing. Example of possible sequent calls:
	///     Session N: on_new_session(false, unchanged_validators, unchanged_queued_validators)
	///     Session N + 1: on_new_session(false, unchanged_validators, new_queued_validators)
	/// 	Session N + 2: on_new_session(true, new_queued_validators, new_queued_validators)
	fn on_new_session<Ks: OpaqueKeys>(
		changed: bool,
		validators: &[(ValidatorId, Ks)],
		queued_validators: &[(ValidatorId, Ks)],
	);

	/// A notification for end of the session.
	///
	/// Note it is triggered before any [`SessionManager::end_session`] handlers,
	/// so we can still affect the validator set.
	fn on_before_session_ending() {}

	/// A validator got disabled. Act accordingly until a new session begins.
	fn on_disabled(validator_index: u32);
}

#[impl_trait_for_tuples::impl_for_tuples(1, 30)]
#[tuple_types_custom_trait_bound(OneSessionHandler<AId>)]
impl<AId> SessionHandler<AId> for Tuple {
	for_tuples!(
		const KEY_TYPE_IDS: &'static [KeyTypeId] = &[ #( <Tuple::Key as RuntimeAppPublic>::ID ),* ];
	);

	fn on_genesis_session<Ks: OpaqueKeys>(validators: &[(AId, Ks)]) {
		for_tuples!(
			#(
				let our_keys: Box<dyn Iterator<Item=_>> = Box::new(validators.iter()
					.filter_map(|k|
						k.1.get::<Tuple::Key>(<Tuple::Key as RuntimeAppPublic>::ID).map(|k1| (&k.0, k1))
					)
				);

				Tuple::on_genesis_session(our_keys);
			)*
		)
	}

	fn on_new_session<Ks: OpaqueKeys>(
		changed: bool,
		validators: &[(AId, Ks)],
		queued_validators: &[(AId, Ks)],
	) {
		for_tuples!(
			#(
				let our_keys: Box<dyn Iterator<Item=_>> = Box::new(validators.iter()
					.filter_map(|k|
						k.1.get::<Tuple::Key>(<Tuple::Key as RuntimeAppPublic>::ID).map(|k1| (&k.0, k1))
					));
				let queued_keys: Box<dyn Iterator<Item=_>> = Box::new(queued_validators.iter()
					.filter_map(|k|
						k.1.get::<Tuple::Key>(<Tuple::Key as RuntimeAppPublic>::ID).map(|k1| (&k.0, k1))
					));
				Tuple::on_new_session(changed, our_keys, queued_keys);
			)*
		)
	}

	fn on_before_session_ending() {
		for_tuples!( #( Tuple::on_before_session_ending(); )* )
	}

	fn on_disabled(i: u32) {
		for_tuples!( #( Tuple::on_disabled(i); )* )
	}
}

/// `SessionHandler` for tests that use `UintAuthorityId` as `Keys`.
pub struct TestSessionHandler;
impl<AId> SessionHandler<AId> for TestSessionHandler {
	const KEY_TYPE_IDS: &'static [KeyTypeId] = &[sp_runtime::key_types::DUMMY];
	fn on_genesis_session<Ks: OpaqueKeys>(_: &[(AId, Ks)]) {}
	fn on_new_session<Ks: OpaqueKeys>(_: bool, _: &[(AId, Ks)], _: &[(AId, Ks)]) {}
	fn on_before_session_ending() {}
	fn on_disabled(_: u32) {}
}

#[frame_support::pallet]
pub mod pallet {
	use super::*;
	use frame_support::pallet_prelude::*;
	use frame_system::pallet_prelude::*;

	/// The in-code storage version.
	const STORAGE_VERSION: StorageVersion = StorageVersion::new(0);

	#[pallet::pallet]
	#[pallet::storage_version(STORAGE_VERSION)]
	#[pallet::without_storage_info]
	pub struct Pallet<T>(_);

	#[pallet::config]
	pub trait Config: frame_system::Config {
		/// The overarching event type.
		type RuntimeEvent: From<Event> + IsType<<Self as frame_system::Config>::RuntimeEvent>;

		/// A stable ID for a validator.
		type ValidatorId: Member
			+ Parameter
			+ MaybeSerializeDeserialize
			+ MaxEncodedLen
			+ TryFrom<Self::AccountId>;

		/// A conversion from account ID to validator ID.
		///
		/// Its cost must be at most one storage read.
		type ValidatorIdOf: Convert<Self::AccountId, Option<Self::ValidatorId>>;

		/// Indicator for when to end the session.
		type ShouldEndSession: ShouldEndSession<BlockNumberFor<Self>>;

		/// Something that can predict the next session rotation. This should typically come from
		/// the same logical unit that provides [`ShouldEndSession`], yet, it gives a best effort
		/// estimate. It is helpful to implement [`EstimateNextNewSession`].
		type NextSessionRotation: EstimateNextSessionRotation<BlockNumberFor<Self>>;

		/// Handler for managing new session.
		type SessionManager: SessionManager<Self::ValidatorId>;

		/// Handler when a session has changed.
		type SessionHandler: SessionHandler<Self::ValidatorId>;

		/// The keys.
		type Keys: OpaqueKeys + Member + Parameter + MaybeSerializeDeserialize;

		/// Weight information for extrinsics in this pallet.
		type WeightInfo: WeightInfo;
	}

	#[pallet::genesis_config]
	#[derive(frame_support::DefaultNoBound)]
	pub struct GenesisConfig<T: Config> {
		/// Initial list of validator at genesis representing by their `(AccountId, ValidatorId,
		/// Keys)`. These keys will be considered authorities for the first two sessions and they
		/// will be valid at least until session 2
		pub keys: Vec<(T::AccountId, T::ValidatorId, T::Keys)>,
		/// List of (AccountId, ValidatorId, Keys) that will be registered at genesis, but not as
		/// active validators. These keys are set, together with `keys`, as authority candidates
		/// for future sessions (enactable from session 2 onwards)
		pub non_authority_keys: Vec<(T::AccountId, T::ValidatorId, T::Keys)>,
	}

	#[pallet::genesis_build]
	impl<T: Config> BuildGenesisConfig for GenesisConfig<T> {
		fn build(&self) {
			if T::SessionHandler::KEY_TYPE_IDS.len() != T::Keys::key_ids().len() {
				panic!("Number of keys in session handler and session keys does not match");
			}

			T::SessionHandler::KEY_TYPE_IDS
				.iter()
				.zip(T::Keys::key_ids())
				.enumerate()
				.for_each(|(i, (sk, kk))| {
					if sk != kk {
						panic!(
							"Session handler and session key expect different key type at index: {}",
							i,
						);
					}
				});

			for (account, val, keys) in
				self.keys.iter().chain(self.non_authority_keys.iter()).cloned()
			{
				Pallet::<T>::inner_set_keys(&val, keys)
					.expect("genesis config must not contain duplicates; qed");
				if frame_system::Pallet::<T>::inc_consumers_without_limit(&account).is_err() {
					// This will leak a provider reference, however it only happens once (at
					// genesis) so it's really not a big deal and we assume that the user wants to
					// do this since it's the only way a non-endowed account can contain a session
					// key.
					frame_system::Pallet::<T>::inc_providers(&account);
				}
			}

			let initial_validators_0 =
				T::SessionManager::new_session_genesis(0).unwrap_or_else(|| {
					frame_support::print(
						"No initial validator provided by `SessionManager`, use \
						session config keys to generate initial validator set.",
					);
					self.keys.iter().map(|x| x.1.clone()).collect()
				});

			let initial_validators_1 = T::SessionManager::new_session_genesis(1)
				.unwrap_or_else(|| initial_validators_0.clone());

			let queued_keys: Vec<_> = initial_validators_1
				.into_iter()
				.filter_map(|v| Pallet::<T>::load_keys(&v).map(|k| (v, k)))
				.collect();

			// Tell everyone about the genesis session keys
			T::SessionHandler::on_genesis_session::<T::Keys>(&queued_keys);

			Validators::<T>::put(initial_validators_0);
			QueuedKeys::<T>::put(queued_keys);

			T::SessionManager::start_session(0);
		}
	}

	/// The current set of validators.
	#[pallet::storage]
	pub type Validators<T: Config> = StorageValue<_, Vec<T::ValidatorId>, ValueQuery>;

	/// Current index of the session.
	#[pallet::storage]
	pub type CurrentIndex<T> = StorageValue<_, SessionIndex, ValueQuery>;

	/// True if the underlying economic identities or weighting behind the validators
	/// has changed in the queued validator set.
	#[pallet::storage]
	pub type QueuedChanged<T> = StorageValue<_, bool, ValueQuery>;

	/// The queued keys for the next session. When the next session begins, these keys
	/// will be used to determine the validator's session keys.
	#[pallet::storage]
	pub type QueuedKeys<T: Config> = StorageValue<_, Vec<(T::ValidatorId, T::Keys)>, ValueQuery>;

	/// Indices of disabled validators.
	///
	/// The vec is always kept sorted so that we can find whether a given validator is
	/// disabled using binary search. It gets cleared when `on_session_ending` returns
	/// a new set of identities.
	#[pallet::storage]
	pub type DisabledValidators<T> = StorageValue<_, Vec<u32>, ValueQuery>;

	/// The next session keys for a validator.
	#[pallet::storage]
	pub type NextKeys<T: Config> =
		StorageMap<_, Twox64Concat, T::ValidatorId, T::Keys, OptionQuery>;

	/// The owner of a key. The key is the `KeyTypeId` + the encoded key.
	#[pallet::storage]
	pub type KeyOwner<T: Config> =
		StorageMap<_, Twox64Concat, (KeyTypeId, Vec<u8>), T::ValidatorId, OptionQuery>;

	#[pallet::event]
	#[pallet::generate_deposit(pub(super) fn deposit_event)]
	pub enum Event {
		/// New session has happened. Note that the argument is the session index, not the
		/// block number as the type might suggest.
		NewSession { session_index: SessionIndex },
	}

	/// Error for the session pallet.
	#[pallet::error]
	pub enum Error<T> {
		/// Invalid ownership proof.
		InvalidProof,
		/// No associated validator ID for account.
		NoAssociatedValidatorId,
		/// Registered duplicate key.
		DuplicatedKey,
		/// No keys are associated with this account.
		NoKeys,
		/// Key setting account is not live, so it's impossible to associate keys.
		NoAccount,
	}

	#[pallet::hooks]
	impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
		/// Called when a block is initialized. Will rotate session if it is the last
		/// block of the current session.
		fn on_initialize(n: BlockNumberFor<T>) -> Weight {
			if T::ShouldEndSession::should_end_session(n) {
				Self::rotate_session();
				T::BlockWeights::get().max_block
			} else {
				// NOTE: the non-database part of the weight for `should_end_session(n)` is
				// included as weight for empty block, the database part is expected to be in
				// cache.
				Weight::zero()
			}
		}
	}

	#[pallet::call]
	impl<T: Config> Pallet<T> {
		/// Sets the session key(s) of the function caller to `keys`.
		/// Allows an account to set its session key prior to becoming a validator.
		/// This doesn't take effect until the next session.
		///
		/// The dispatch origin of this function must be signed.
		///
		/// ## Complexity
		/// - `O(1)`. Actual cost depends on the number of length of `T::Keys::key_ids()` which is
		///   fixed.
		#[pallet::call_index(0)]
		#[pallet::weight(T::WeightInfo::set_keys())]
		pub fn set_keys(origin: OriginFor<T>, keys: T::Keys, proof: Vec<u8>) -> DispatchResult {
			let who = ensure_signed(origin)?;
			ensure!(keys.ownership_proof_is_valid(&proof), Error::<T>::InvalidProof);

			Self::do_set_keys(&who, keys)?;
			Ok(())
		}

		/// Removes any session key(s) of the function caller.
		///
		/// This doesn't take effect until the next session.
		///
		/// The dispatch origin of this function must be Signed and the account must be either be
		/// convertible to a validator ID using the chain's typical addressing system (this usually
		/// means being a controller account) or directly convertible into a validator ID (which
		/// usually means being a stash account).
		///
		/// ## Complexity
		/// - `O(1)` in number of key types. Actual cost depends on the number of length of
		///   `T::Keys::key_ids()` which is fixed.
		#[pallet::call_index(1)]
		#[pallet::weight(T::WeightInfo::purge_keys())]
		pub fn purge_keys(origin: OriginFor<T>) -> DispatchResult {
			let who = ensure_signed(origin)?;
			Self::do_purge_keys(&who)?;
			Ok(())
		}
	}
}

impl<T: Config> Pallet<T> {
	/// Public function to access the current set of validators.
	pub fn validators() -> Vec<T::ValidatorId> {
		Validators::<T>::get()
	}

	/// Public function to access the current session index.
	pub fn current_index() -> SessionIndex {
		CurrentIndex::<T>::get()
	}

	/// Public function to access the queued keys.
	pub fn queued_keys() -> Vec<(T::ValidatorId, T::Keys)> {
		QueuedKeys::<T>::get()
	}

	/// Public function to access the disabled validators.
	pub fn disabled_validators() -> Vec<u32> {
		DisabledValidators::<T>::get()
	}

	/// Move on to next session. Register new validator set and session keys. Changes to the
	/// validator set have a session of delay to take effect. This allows for equivocation
	/// punishment after a fork.
	pub fn rotate_session() {
		let session_index = CurrentIndex::<T>::get();
		log::trace!(target: "runtime::session", "rotating session {:?}", session_index);

		let changed = QueuedChanged::<T>::get();

		// Inform the session handlers that a session is going to end.
		T::SessionHandler::on_before_session_ending();
		T::SessionManager::end_session(session_index);

		// Get queued session keys and validators.
		let session_keys = QueuedKeys::<T>::get();
		let validators =
			session_keys.iter().map(|(validator, _)| validator.clone()).collect::<Vec<_>>();
		Validators::<T>::put(&validators);

		if changed {
			// reset disabled validators if active set was changed
			DisabledValidators::<T>::take();
		}

		// Increment session index.
		let session_index = session_index + 1;
		CurrentIndex::<T>::put(session_index);

		T::SessionManager::start_session(session_index);

		// Get next validator set.
		let maybe_next_validators = T::SessionManager::new_session(session_index + 1);
		let (next_validators, next_identities_changed) =
			if let Some(validators) = maybe_next_validators {
				// NOTE: as per the documentation on `OnSessionEnding`, we consider
				// the validator set as having changed even if the validators are the
				// same as before, as underlying economic conditions may have changed.
				(validators, true)
			} else {
				(Validators::<T>::get(), false)
			};

		// Queue next session keys.
		let (queued_amalgamated, next_changed) = {
			// until we are certain there has been a change, iterate the prior
			// validators along with the current and check for changes
			let mut changed = next_identities_changed;

			let mut now_session_keys = session_keys.iter();
			let mut check_next_changed = |keys: &T::Keys| {
				if changed {
					return;
				}
				// since a new validator set always leads to `changed` starting
				// as true, we can ensure that `now_session_keys` and `next_validators`
				// have the same length. this function is called once per iteration.
				if let Some((_, old_keys)) = now_session_keys.next() {
					if old_keys != keys {
						changed = true;
					}
				}
			};
			let queued_amalgamated = next_validators
				.into_iter()
				.filter_map(|a| {
					let k = Self::load_keys(&a)?;
					check_next_changed(&k);
					Some((a, k))
				})
				.collect::<Vec<_>>();

			(queued_amalgamated, changed)
		};

		QueuedKeys::<T>::put(queued_amalgamated.clone());
		QueuedChanged::<T>::put(next_changed);

		// Record that this happened.
		Self::deposit_event(Event::NewSession { session_index });

		// Tell everyone about the new session keys.
		T::SessionHandler::on_new_session::<T::Keys>(changed, &session_keys, &queued_amalgamated);
	}

	/// Disable the validator of index `i`, returns `false` if the validator was already disabled.
	pub fn disable_index(i: u32) -> bool {
		if i >= Validators::<T>::decode_len().unwrap_or(0) as u32 {
			return false
		}

		DisabledValidators::<T>::mutate(|disabled| {
			if let Err(index) = disabled.binary_search(&i) {
				disabled.insert(index, i);
				T::SessionHandler::on_disabled(i);
				return true
			}

			false
		})
	}

	/// Re-enable the validator of index `i`, returns `false` if the validator was already enabled.
	pub fn enable_index(i: u32) -> bool {
		if i >= Validators::<T>::decode_len().defensive_unwrap_or(0) as u32 {
			return false
		}

		// If the validator is not disabled, return false.
		DisabledValidators::<T>::mutate(|disabled| {
			if let Ok(index) = disabled.binary_search(&i) {
				disabled.remove(index);
				true
			} else {
				false
			}
		})
	}

	/// Disable the validator identified by `c`. (If using with the staking pallet,
	/// this would be their *stash* account.)
	///
	/// Returns `false` either if the validator could not be found or it was already
	/// disabled.
	pub fn disable(c: &T::ValidatorId) -> bool {
		Validators::<T>::get()
			.iter()
			.position(|i| i == c)
			.map(|i| Self::disable_index(i as u32))
			.unwrap_or(false)
	}

	/// Upgrade the key type from some old type to a new type. Supports adding
	/// and removing key types.
	///
	/// This function should be used with extreme care and only during an
	/// `on_runtime_upgrade` block. Misuse of this function can put your blockchain
	/// into an unrecoverable state.
	///
	/// Care should be taken that the raw versions of the
	/// added keys are unique for every `ValidatorId, KeyTypeId` combination.
	/// This is an invariant that the session pallet typically maintains internally.
	///
	/// As the actual values of the keys are typically not known at runtime upgrade,
	/// it's recommended to initialize the keys to a (unique) dummy value with the expectation
	/// that all validators should invoke `set_keys` before those keys are actually
	/// required.
	pub fn upgrade_keys<Old, F>(upgrade: F)
	where
		Old: OpaqueKeys + Member + Decode,
		F: Fn(T::ValidatorId, Old) -> T::Keys,
	{
		let old_ids = Old::key_ids();
		let new_ids = T::Keys::key_ids();

		// Translate NextKeys, and key ownership relations at the same time.
		NextKeys::<T>::translate::<Old, _>(|val, old_keys| {
			// Clear all key ownership relations. Typically the overlap should
			// stay the same, but no guarantees by the upgrade function.
			for i in old_ids.iter() {
				Self::clear_key_owner(*i, old_keys.get_raw(*i));
			}

			let new_keys = upgrade(val.clone(), old_keys);

			// And now set the new ones.
			for i in new_ids.iter() {
				Self::put_key_owner(*i, new_keys.get_raw(*i), &val);
			}

			Some(new_keys)
		});

		let _ = QueuedKeys::<T>::translate::<Vec<(T::ValidatorId, Old)>, _>(|k| {
			k.map(|k| {
				k.into_iter()
					.map(|(val, old_keys)| (val.clone(), upgrade(val, old_keys)))
					.collect::<Vec<_>>()
			})
		});
	}

	/// Perform the set_key operation, checking for duplicates. Does not set `Changed`.
	///
	/// This ensures that the reference counter in system is incremented appropriately and as such
	/// must accept an account ID, rather than a validator ID.
	fn do_set_keys(account: &T::AccountId, keys: T::Keys) -> DispatchResult {
		let who = T::ValidatorIdOf::convert(account.clone())
			.ok_or(Error::<T>::NoAssociatedValidatorId)?;

		ensure!(frame_system::Pallet::<T>::can_inc_consumer(account), Error::<T>::NoAccount);
		let old_keys = Self::inner_set_keys(&who, keys)?;
		if old_keys.is_none() {
			let assertion = frame_system::Pallet::<T>::inc_consumers(account).is_ok();
			debug_assert!(assertion, "can_inc_consumer() returned true; no change since; qed");
		}

		Ok(())
	}

	/// Perform the set_key operation, checking for duplicates. Does not set `Changed`.
	///
	/// The old keys for this validator are returned, or `None` if there were none.
	///
	/// This does not ensure that the reference counter in system is incremented appropriately, it
	/// must be done by the caller or the keys will be leaked in storage.
	fn inner_set_keys(
		who: &T::ValidatorId,
		keys: T::Keys,
	) -> Result<Option<T::Keys>, DispatchError> {
		let old_keys = Self::load_keys(who);

		for id in T::Keys::key_ids() {
			let key = keys.get_raw(*id);

			// ensure keys are without duplication.
			ensure!(
				Self::key_owner(*id, key).map_or(true, |owner| &owner == who),
				Error::<T>::DuplicatedKey,
			);
		}

		for id in T::Keys::key_ids() {
			let key = keys.get_raw(*id);

			if let Some(old) = old_keys.as_ref().map(|k| k.get_raw(*id)) {
				if key == old {
					continue
				}

				Self::clear_key_owner(*id, old);
			}

			Self::put_key_owner(*id, key, who);
		}

		Self::put_keys(who, &keys);
		Ok(old_keys)
	}

	fn do_purge_keys(account: &T::AccountId) -> DispatchResult {
		let who = T::ValidatorIdOf::convert(account.clone())
			// `purge_keys` may not have a controller-stash pair any more. If so then we expect the
			// stash account to be passed in directly and convert that to a `ValidatorId` using the
			// `TryFrom` trait if supported.
			.or_else(|| T::ValidatorId::try_from(account.clone()).ok())
			.ok_or(Error::<T>::NoAssociatedValidatorId)?;

		let old_keys = Self::take_keys(&who).ok_or(Error::<T>::NoKeys)?;
		for id in T::Keys::key_ids() {
			let key_data = old_keys.get_raw(*id);
			Self::clear_key_owner(*id, key_data);
		}
		frame_system::Pallet::<T>::dec_consumers(account);

		Ok(())
	}

	fn load_keys(v: &T::ValidatorId) -> Option<T::Keys> {
		NextKeys::<T>::get(v)
	}

	fn take_keys(v: &T::ValidatorId) -> Option<T::Keys> {
		NextKeys::<T>::take(v)
	}

	fn put_keys(v: &T::ValidatorId, keys: &T::Keys) {
		NextKeys::<T>::insert(v, keys);
	}

	/// Query the owner of a session key by returning the owner's validator ID.
	pub fn key_owner(id: KeyTypeId, key_data: &[u8]) -> Option<T::ValidatorId> {
		KeyOwner::<T>::get((id, key_data))
	}

	fn put_key_owner(id: KeyTypeId, key_data: &[u8], v: &T::ValidatorId) {
		KeyOwner::<T>::insert((id, key_data), v)
	}

	fn clear_key_owner(id: KeyTypeId, key_data: &[u8]) {
		KeyOwner::<T>::remove((id, key_data));
	}
}

impl<T: Config> ValidatorRegistration<T::ValidatorId> for Pallet<T> {
	fn is_registered(id: &T::ValidatorId) -> bool {
		Self::load_keys(id).is_some()
	}
}

impl<T: Config> ValidatorSet<T::AccountId> for Pallet<T> {
	type ValidatorId = T::ValidatorId;
	type ValidatorIdOf = T::ValidatorIdOf;

	fn session_index() -> sp_staking::SessionIndex {
		CurrentIndex::<T>::get()
	}

	fn validators() -> Vec<Self::ValidatorId> {
		Validators::<T>::get()
	}
}

impl<T: Config> EstimateNextNewSession<BlockNumberFor<T>> for Pallet<T> {
	fn average_session_length() -> BlockNumberFor<T> {
		T::NextSessionRotation::average_session_length()
	}

	/// This session pallet always calls new_session and next_session at the same time, hence we
	/// do a simple proxy and pass the function to next rotation.
	fn estimate_next_new_session(now: BlockNumberFor<T>) -> (Option<BlockNumberFor<T>>, Weight) {
		T::NextSessionRotation::estimate_next_session_rotation(now)
	}
}

impl<T: Config> frame_support::traits::DisabledValidators for Pallet<T> {
	fn is_disabled(index: u32) -> bool {
		DisabledValidators::<T>::get().binary_search(&index).is_ok()
	}

	fn disabled_validators() -> Vec<u32> {
		DisabledValidators::<T>::get()
	}
}

/// Wraps the author-scraping logic for consensus engines that can recover
/// the canonical index of an author. This then transforms it into the
/// registering account-ID of that session key index.
pub struct FindAccountFromAuthorIndex<T, Inner>(core::marker::PhantomData<(T, Inner)>);

impl<T: Config, Inner: FindAuthor<u32>> FindAuthor<T::ValidatorId>
	for FindAccountFromAuthorIndex<T, Inner>
{
	fn find_author<'a, I>(digests: I) -> Option<T::ValidatorId>
	where
		I: 'a + IntoIterator<Item = (ConsensusEngineId, &'a [u8])>,
	{
		let i = Inner::find_author(digests)?;

		let validators = Validators::<T>::get();
		validators.get(i as usize).cloned()
	}
}