1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Requester takes care of requesting erasure chunks for candidates that are pending
//! availability.
use std::{
collections::{hash_map::HashMap, hash_set::HashSet},
iter::IntoIterator,
pin::Pin,
};
use futures::{
channel::{mpsc, oneshot},
task::{Context, Poll},
Stream,
};
use polkadot_node_network_protocol::request_response::{v1, v2, IsRequest, ReqProtocolNames};
use polkadot_node_subsystem::{
messages::{ChainApiMessage, RuntimeApiMessage},
overseer, ActivatedLeaf, ActiveLeavesUpdate,
};
use polkadot_node_subsystem_util::{
availability_chunks::availability_chunk_index,
runtime::{get_occupied_cores, RuntimeInfo},
};
use polkadot_primitives::{vstaging::OccupiedCore, CandidateHash, CoreIndex, Hash, SessionIndex};
use super::{FatalError, Metrics, Result, LOG_TARGET};
#[cfg(test)]
mod tests;
/// Cache for session information.
mod session_cache;
use session_cache::SessionCache;
/// A task fetching a particular chunk.
mod fetch_task;
use fetch_task::{FetchTask, FetchTaskConfig, FromFetchTask};
/// Requester takes care of requesting erasure chunks from backing groups and stores them in the
/// av store.
///
/// It implements a stream that needs to be advanced for it making progress.
pub struct Requester {
/// Candidates we need to fetch our chunk for.
///
/// We keep those around as long as a candidate is pending availability on some leaf, so we
/// won't fetch chunks multiple times.
///
/// We remove them on failure, so we get retries on the next block still pending availability.
fetches: HashMap<CandidateHash, FetchTask>,
/// Localized information about sessions we are currently interested in.
session_cache: SessionCache,
/// Sender to be cloned for `FetchTask`s.
tx: mpsc::Sender<FromFetchTask>,
/// Receive messages from `FetchTask`.
rx: mpsc::Receiver<FromFetchTask>,
/// Prometheus Metrics
metrics: Metrics,
/// Mapping of the req-response protocols to the full protocol names.
req_protocol_names: ReqProtocolNames,
}
#[overseer::contextbounds(AvailabilityDistribution, prefix = self::overseer)]
impl Requester {
/// How many ancestors of the leaf should we consider along with it.
pub(crate) const LEAF_ANCESTRY_LEN_WITHIN_SESSION: usize = 3;
/// Create a new `Requester`.
///
/// You must feed it with `ActiveLeavesUpdate` via `update_fetching_heads` and make it progress
/// by advancing the stream.
pub fn new(req_protocol_names: ReqProtocolNames, metrics: Metrics) -> Self {
let (tx, rx) = mpsc::channel(1);
Requester {
fetches: HashMap::new(),
session_cache: SessionCache::new(),
tx,
rx,
metrics,
req_protocol_names,
}
}
/// Update heads that need availability distribution.
///
/// For all active heads we will be fetching our chunks for availability distribution.
pub async fn update_fetching_heads<Context>(
&mut self,
ctx: &mut Context,
runtime: &mut RuntimeInfo,
update: ActiveLeavesUpdate,
) -> Result<()> {
gum::trace!(target: LOG_TARGET, ?update, "Update fetching heads");
let ActiveLeavesUpdate { activated, deactivated } = update;
if let Some(leaf) = activated {
// Order important! We need to handle activated, prior to deactivated, otherwise we
// might cancel still needed jobs.
self.start_requesting_chunks(ctx, runtime, leaf).await?;
}
self.stop_requesting_chunks(deactivated.into_iter());
Ok(())
}
/// Start requesting chunks for newly imported head.
///
/// This will also request [`SESSION_ANCESTRY_LEN`] leaf ancestors from the same session
/// and start requesting chunks for them too.
async fn start_requesting_chunks<Context>(
&mut self,
ctx: &mut Context,
runtime: &mut RuntimeInfo,
new_head: ActivatedLeaf,
) -> Result<()> {
let sender = &mut ctx.sender().clone();
let ActivatedLeaf { hash: leaf, .. } = new_head;
let (leaf_session_index, ancestors_in_session) = get_block_ancestors_in_same_session(
sender,
runtime,
leaf,
Self::LEAF_ANCESTRY_LEN_WITHIN_SESSION,
)
.await?;
// Also spawn or bump tasks for candidates in ancestry in the same session.
for hash in std::iter::once(leaf).chain(ancestors_in_session) {
let cores = get_occupied_cores(sender, hash).await?;
gum::trace!(
target: LOG_TARGET,
occupied_cores = ?cores,
"Query occupied core"
);
// Important:
// We mark the whole ancestry as live in the **leaf** hash, so we don't need to track
// any tasks separately.
//
// The next time the subsystem receives leaf update, some of spawned task will be bumped
// to be live in fresh relay parent, while some might get dropped due to the current
// leaf being deactivated.
self.add_cores(ctx, runtime, leaf, leaf_session_index, cores).await?;
}
Ok(())
}
/// Stop requesting chunks for obsolete heads.
fn stop_requesting_chunks(&mut self, obsolete_leaves: impl Iterator<Item = Hash>) {
let obsolete_leaves: HashSet<_> = obsolete_leaves.collect();
self.fetches.retain(|_, task| {
task.remove_leaves(&obsolete_leaves);
task.is_live()
})
}
/// Add candidates corresponding for a particular relay parent.
///
/// Starting requests where necessary.
///
/// Note: The passed in `leaf` is not the same as `CandidateDescriptor::relay_parent` in the
/// given cores. The latter is the `relay_parent` this candidate considers its parent, while the
/// passed in leaf might be some later block where the candidate is still pending availability.
async fn add_cores<Context>(
&mut self,
context: &mut Context,
runtime: &mut RuntimeInfo,
leaf: Hash,
leaf_session_index: SessionIndex,
cores: impl IntoIterator<Item = (CoreIndex, OccupiedCore)>,
) -> Result<()> {
for (core_index, core) in cores {
if let Some(e) = self.fetches.get_mut(&core.candidate_hash) {
// Just book keeping - we are already requesting that chunk:
e.add_leaf(leaf);
} else {
let tx = self.tx.clone();
let metrics = self.metrics.clone();
let session_info = self
.session_cache
.get_session_info(
context,
runtime,
// We use leaf here, the relay_parent must be in the same session as
// the leaf. This is guaranteed by runtime which ensures that cores are
// cleared at session boundaries. At the same time, only leaves are
// guaranteed to be fetchable by the state trie.
leaf,
leaf_session_index,
)
.await
.map_err(|err| {
gum::warn!(
target: LOG_TARGET,
error = ?err,
"Failed to spawn a fetch task"
);
err
})?;
if let Some(session_info) = session_info {
let n_validators =
session_info.validator_groups.iter().fold(0usize, |mut acc, group| {
acc = acc.saturating_add(group.len());
acc
});
let chunk_index = availability_chunk_index(
session_info.node_features.as_ref(),
n_validators,
core_index,
session_info.our_index,
)?;
let task_cfg = FetchTaskConfig::new(
leaf,
&core,
tx,
metrics,
session_info,
chunk_index,
self.req_protocol_names.get_name(v1::ChunkFetchingRequest::PROTOCOL),
self.req_protocol_names.get_name(v2::ChunkFetchingRequest::PROTOCOL),
);
self.fetches
.insert(core.candidate_hash, FetchTask::start(task_cfg, context).await?);
}
}
}
Ok(())
}
}
impl Stream for Requester {
type Item = overseer::AvailabilityDistributionOutgoingMessages;
fn poll_next(mut self: Pin<&mut Self>, ctx: &mut Context) -> Poll<Option<Self::Item>> {
loop {
match Pin::new(&mut self.rx).poll_next(ctx) {
Poll::Ready(Some(FromFetchTask::Message(m))) => return Poll::Ready(Some(m)),
Poll::Ready(Some(FromFetchTask::Concluded(Some(bad_boys)))) => {
self.session_cache.report_bad_log(bad_boys);
continue
},
Poll::Ready(Some(FromFetchTask::Concluded(None))) => continue,
Poll::Ready(Some(FromFetchTask::Failed(candidate_hash))) => {
// Make sure we retry on next block still pending availability.
self.fetches.remove(&candidate_hash);
},
Poll::Ready(None) => return Poll::Ready(None),
Poll::Pending => return Poll::Pending,
}
}
}
}
/// Requests up to `limit` ancestor hashes of relay parent in the same session.
///
/// Also returns session index of the `head`.
async fn get_block_ancestors_in_same_session<Sender>(
sender: &mut Sender,
runtime: &mut RuntimeInfo,
head: Hash,
limit: usize,
) -> Result<(SessionIndex, Vec<Hash>)>
where
Sender:
overseer::SubsystemSender<RuntimeApiMessage> + overseer::SubsystemSender<ChainApiMessage>,
{
// The order is parent, grandparent, ...
//
// `limit + 1` since a session index for the last element in ancestry
// is obtained through its parent. It always gets truncated because
// `session_ancestry_len` can only be incremented `ancestors.len() - 1` times.
let mut ancestors = get_block_ancestors(sender, head, limit + 1).await?;
let mut ancestors_iter = ancestors.iter();
// `head` is the child of the first block in `ancestors`, request its session index.
let head_session_index = match ancestors_iter.next() {
Some(parent) => runtime.get_session_index_for_child(sender, *parent).await?,
None => {
// No first element, i.e. empty.
return Ok((0, ancestors))
},
};
let mut session_ancestry_len = 0;
// The first parent is skipped.
for parent in ancestors_iter {
// Parent is the i-th ancestor, request session index for its child -- (i-1)th element.
let session_index = runtime.get_session_index_for_child(sender, *parent).await?;
if session_index == head_session_index {
session_ancestry_len += 1;
} else {
break
}
}
// Drop the rest.
ancestors.truncate(session_ancestry_len);
Ok((head_session_index, ancestors))
}
/// Request up to `limit` ancestor hashes of relay parent from the Chain API.
async fn get_block_ancestors<Sender>(
sender: &mut Sender,
relay_parent: Hash,
limit: usize,
) -> Result<Vec<Hash>>
where
Sender: overseer::SubsystemSender<ChainApiMessage>,
{
let (tx, rx) = oneshot::channel();
sender
.send_message(ChainApiMessage::Ancestors {
hash: relay_parent,
k: limit,
response_channel: tx,
})
.await;
let ancestors = rx
.await
.map_err(FatalError::ChainApiSenderDropped)?
.map_err(FatalError::ChainApi)?;
Ok(ancestors)
}