referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Availability Recovery Subsystem of Polkadot.

#![warn(missing_docs)]

use std::{
	collections::{BTreeMap, VecDeque},
	iter::Iterator,
	num::NonZeroUsize,
	pin::Pin,
};

use futures::{
	channel::oneshot,
	future::{Future, FutureExt, RemoteHandle},
	pin_mut,
	prelude::*,
	sink::SinkExt,
	stream::{FuturesUnordered, StreamExt},
	task::{Context, Poll},
};
use sc_network::ProtocolName;
use schnellru::{ByLength, LruMap};
use task::{
	FetchChunks, FetchChunksParams, FetchFull, FetchFullParams, FetchSystematicChunks,
	FetchSystematicChunksParams,
};

use polkadot_erasure_coding::{
	branches, obtain_chunks_v1, recovery_threshold, systematic_recovery_threshold,
	Error as ErasureEncodingError,
};
use task::{RecoveryParams, RecoveryStrategy, RecoveryTask};

use error::{log_error, Error, FatalError, Result};
use polkadot_node_network_protocol::{
	request_response::{
		v1 as request_v1, v2 as request_v2, IncomingRequestReceiver, IsRequest, ReqProtocolNames,
	},
	UnifiedReputationChange as Rep,
};
use polkadot_node_primitives::AvailableData;
use polkadot_node_subsystem::{
	errors::RecoveryError,
	messages::{AvailabilityRecoveryMessage, AvailabilityStoreMessage},
	overseer, ActiveLeavesUpdate, FromOrchestra, OverseerSignal, SpawnedSubsystem,
	SubsystemContext, SubsystemError,
};
use polkadot_node_subsystem_util::{
	availability_chunks::availability_chunk_indices,
	runtime::{ExtendedSessionInfo, RuntimeInfo},
};
use polkadot_primitives::{
	node_features, vstaging::CandidateReceiptV2 as CandidateReceipt, BlockNumber, CandidateHash,
	ChunkIndex, CoreIndex, GroupIndex, Hash, SessionIndex, ValidatorIndex,
};

mod error;
mod futures_undead;
mod metrics;
mod task;
pub use metrics::Metrics;

#[cfg(test)]
mod tests;

type RecoveryResult = std::result::Result<AvailableData, RecoveryError>;

const LOG_TARGET: &str = "parachain::availability-recovery";

// Size of the LRU cache where we keep recovered data.
const LRU_SIZE: u32 = 16;

const COST_INVALID_REQUEST: Rep = Rep::CostMajor("Peer sent unparsable request");

/// PoV size limit in bytes for which prefer fetching from backers. (conservative, Polkadot for now)
pub(crate) const CONSERVATIVE_FETCH_CHUNKS_THRESHOLD: usize = 1 * 1024 * 1024;
/// PoV size limit in bytes for which prefer fetching from backers. (Kusama and all testnets)
pub const FETCH_CHUNKS_THRESHOLD: usize = 4 * 1024 * 1024;

#[derive(Clone, PartialEq)]
/// The strategy we use to recover the PoV.
pub enum RecoveryStrategyKind {
	/// We try the backing group first if PoV size is lower than specified, then fallback to
	/// validator chunks.
	BackersFirstIfSizeLower(usize),
	/// We try the backing group first if PoV size is lower than specified, then fallback to
	/// systematic chunks. Regular chunk recovery as a last resort.
	BackersFirstIfSizeLowerThenSystematicChunks(usize),

	/// The following variants are only helpful for integration tests.
	///
	/// We always try the backing group first, then fallback to validator chunks.
	#[allow(dead_code)]
	BackersFirstAlways,
	/// We always recover using validator chunks.
	#[allow(dead_code)]
	ChunksAlways,
	/// First try the backing group. Then systematic chunks.
	#[allow(dead_code)]
	BackersThenSystematicChunks,
	/// Always recover using systematic chunks, fall back to regular chunks.
	#[allow(dead_code)]
	SystematicChunks,
}

/// The Availability Recovery Subsystem.
pub struct AvailabilityRecoverySubsystem {
	/// PoV recovery strategy to use.
	recovery_strategy_kind: RecoveryStrategyKind,
	// If this is true, do not request data from the availability store.
	/// This is the useful for nodes where the
	/// availability-store subsystem is not expected to run,
	/// such as collators.
	bypass_availability_store: bool,
	/// Receiver for available data requests.
	req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
	/// Metrics for this subsystem.
	metrics: Metrics,
	/// The type of check to perform after available data was recovered.
	post_recovery_check: PostRecoveryCheck,
	/// Full protocol name for ChunkFetchingV1.
	req_v1_protocol_name: ProtocolName,
	/// Full protocol name for ChunkFetchingV2.
	req_v2_protocol_name: ProtocolName,
}

#[derive(Clone, PartialEq, Debug)]
/// The type of check to perform after available data was recovered.
enum PostRecoveryCheck {
	/// Reencode the data and check erasure root. For validators.
	Reencode,
	/// Only check the pov hash. For collators only.
	PovHash,
}

/// Expensive erasure coding computations that we want to run on a blocking thread.
enum ErasureTask {
	/// Reconstructs `AvailableData` from chunks given `n_validators`.
	Reconstruct(
		usize,
		BTreeMap<ChunkIndex, Vec<u8>>,
		oneshot::Sender<std::result::Result<AvailableData, ErasureEncodingError>>,
	),
	/// Re-encode `AvailableData` into erasure chunks in order to verify the provided root hash of
	/// the Merkle tree.
	Reencode(usize, Hash, AvailableData, oneshot::Sender<Option<AvailableData>>),
}

/// Re-encode the data into erasure chunks in order to verify
/// the root hash of the provided Merkle tree, which is built
/// on-top of the encoded chunks.
///
/// This (expensive) check is necessary, as otherwise we can't be sure that some chunks won't have
/// been tampered with by the backers, which would result in some validators considering the data
/// valid and some invalid as having fetched different set of chunks. The checking of the Merkle
/// proof for individual chunks only gives us guarantees, that we have fetched a chunk belonging to
/// a set the backers have committed to.
///
/// NOTE: It is fine to do this check with already decoded data, because if the decoding failed for
/// some validators, we can be sure that chunks have been tampered with (by the backers) or the
/// data was invalid to begin with. In the former case, validators fetching valid chunks will see
/// invalid data as well, because the root won't match. In the latter case the situation is the
/// same for anyone anyways.
fn reconstructed_data_matches_root(
	n_validators: usize,
	expected_root: &Hash,
	data: &AvailableData,
	metrics: &Metrics,
) -> bool {
	let _timer = metrics.time_reencode_chunks();

	let chunks = match obtain_chunks_v1(n_validators, data) {
		Ok(chunks) => chunks,
		Err(e) => {
			gum::debug!(
				target: LOG_TARGET,
				err = ?e,
				"Failed to obtain chunks",
			);
			return false
		},
	};

	let branches = branches(&chunks);

	branches.root() == *expected_root
}

/// Accumulate all awaiting sides for some particular `AvailableData`.
struct RecoveryHandle {
	candidate_hash: CandidateHash,
	remote: RemoteHandle<RecoveryResult>,
	awaiting: Vec<oneshot::Sender<RecoveryResult>>,
}

impl Future for RecoveryHandle {
	type Output = Option<(CandidateHash, RecoveryResult)>;

	fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
		let mut indices_to_remove = Vec::new();
		for (i, awaiting) in self.awaiting.iter_mut().enumerate().rev() {
			if let Poll::Ready(()) = awaiting.poll_canceled(cx) {
				indices_to_remove.push(i);
			}
		}

		// these are reverse order, so remove is fine.
		for index in indices_to_remove {
			gum::debug!(
				target: LOG_TARGET,
				candidate_hash = ?self.candidate_hash,
				"Receiver for available data dropped.",
			);

			self.awaiting.swap_remove(index);
		}

		if self.awaiting.is_empty() {
			gum::debug!(
				target: LOG_TARGET,
				candidate_hash = ?self.candidate_hash,
				"All receivers for available data dropped.",
			);

			return Poll::Ready(None)
		}

		let remote = &mut self.remote;
		futures::pin_mut!(remote);
		let result = futures::ready!(remote.poll(cx));

		for awaiting in self.awaiting.drain(..) {
			let _ = awaiting.send(result.clone());
		}

		Poll::Ready(Some((self.candidate_hash, result)))
	}
}

/// Cached result of an availability recovery operation.
#[derive(Debug, Clone)]
enum CachedRecovery {
	/// Availability was successfully retrieved before.
	Valid(AvailableData),
	/// Availability was successfully retrieved before, but was found to be invalid.
	Invalid,
}

impl CachedRecovery {
	/// Convert back to	`Result` to deliver responses.
	fn into_result(self) -> RecoveryResult {
		match self {
			Self::Valid(d) => Ok(d),
			Self::Invalid => Err(RecoveryError::Invalid),
		}
	}
}

impl TryFrom<RecoveryResult> for CachedRecovery {
	type Error = ();
	fn try_from(o: RecoveryResult) -> std::result::Result<CachedRecovery, Self::Error> {
		match o {
			Ok(d) => Ok(Self::Valid(d)),
			Err(RecoveryError::Invalid) => Ok(Self::Invalid),
			// We don't want to cache unavailable state, as that state might change, so if
			// requested again we want to try again!
			Err(RecoveryError::Unavailable) => Err(()),
			Err(RecoveryError::ChannelClosed) => Err(()),
		}
	}
}

struct State {
	/// Each recovery task is implemented as its own async task,
	/// and these handles are for communicating with them.
	ongoing_recoveries: FuturesUnordered<RecoveryHandle>,

	/// A recent block hash for which state should be available.
	live_block: (BlockNumber, Hash),

	/// An LRU cache of recently recovered data.
	availability_lru: LruMap<CandidateHash, CachedRecovery>,

	/// Cached runtime info.
	runtime_info: RuntimeInfo,
}

impl Default for State {
	fn default() -> Self {
		Self {
			ongoing_recoveries: FuturesUnordered::new(),
			live_block: (0, Hash::default()),
			availability_lru: LruMap::new(ByLength::new(LRU_SIZE)),
			runtime_info: RuntimeInfo::new(None),
		}
	}
}

#[overseer::subsystem(AvailabilityRecovery, error=SubsystemError, prefix=self::overseer)]
impl<Context> AvailabilityRecoverySubsystem {
	fn start(self, ctx: Context) -> SpawnedSubsystem {
		let future = self
			.run(ctx)
			.map_err(|e| SubsystemError::with_origin("availability-recovery", e))
			.boxed();
		SpawnedSubsystem { name: "availability-recovery-subsystem", future }
	}
}

/// Handles a signal from the overseer.
/// Returns true if subsystem receives a deadly signal.
async fn handle_signal(state: &mut State, signal: OverseerSignal) -> bool {
	match signal {
		OverseerSignal::Conclude => true,
		OverseerSignal::ActiveLeaves(ActiveLeavesUpdate { activated, .. }) => {
			// if activated is non-empty, set state.live_block to the highest block in `activated`
			if let Some(activated) = activated {
				if activated.number > state.live_block.0 {
					state.live_block = (activated.number, activated.hash)
				}
			}

			false
		},
		OverseerSignal::BlockFinalized(_, _) => false,
	}
}

/// Machinery around launching recovery tasks into the background.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn launch_recovery_task<Context>(
	state: &mut State,
	ctx: &mut Context,
	response_sender: oneshot::Sender<RecoveryResult>,
	recovery_strategies: VecDeque<Box<dyn RecoveryStrategy<<Context as SubsystemContext>::Sender>>>,
	params: RecoveryParams,
) -> Result<()> {
	let candidate_hash = params.candidate_hash;
	let recovery_task = RecoveryTask::new(ctx.sender().clone(), params, recovery_strategies);

	let (remote, remote_handle) = recovery_task.run().remote_handle();

	state.ongoing_recoveries.push(RecoveryHandle {
		candidate_hash,
		remote: remote_handle,
		awaiting: vec![response_sender],
	});

	ctx.spawn("recovery-task", Box::pin(remote))
		.map_err(|err| Error::SpawnTask(err))
}

/// Handles an availability recovery request.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn handle_recover<Context>(
	state: &mut State,
	ctx: &mut Context,
	receipt: CandidateReceipt,
	session_index: SessionIndex,
	backing_group: Option<GroupIndex>,
	response_sender: oneshot::Sender<RecoveryResult>,
	metrics: &Metrics,
	erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
	recovery_strategy_kind: RecoveryStrategyKind,
	bypass_availability_store: bool,
	post_recovery_check: PostRecoveryCheck,
	maybe_core_index: Option<CoreIndex>,
	req_v1_protocol_name: ProtocolName,
	req_v2_protocol_name: ProtocolName,
) -> Result<()> {
	let candidate_hash = receipt.hash();

	if let Some(result) =
		state.availability_lru.get(&candidate_hash).cloned().map(|v| v.into_result())
	{
		return response_sender.send(result).map_err(|_| Error::CanceledResponseSender)
	}

	if let Some(i) =
		state.ongoing_recoveries.iter_mut().find(|i| i.candidate_hash == candidate_hash)
	{
		i.awaiting.push(response_sender);
		return Ok(())
	}

	let session_info_res = state
		.runtime_info
		.get_session_info_by_index(ctx.sender(), state.live_block.1, session_index)
		.await;

	match session_info_res {
		Ok(ExtendedSessionInfo { session_info, node_features, .. }) => {
			let mut backer_group = None;
			let n_validators = session_info.validators.len();
			let systematic_threshold = systematic_recovery_threshold(n_validators)?;
			let mut recovery_strategies: VecDeque<
				Box<dyn RecoveryStrategy<<Context as SubsystemContext>::Sender>>,
			> = VecDeque::with_capacity(3);

			if let Some(backing_group) = backing_group {
				if let Some(backing_validators) = session_info.validator_groups.get(backing_group) {
					let mut small_pov_size = true;

					match recovery_strategy_kind {
						RecoveryStrategyKind::BackersFirstIfSizeLower(fetch_chunks_threshold) |
						RecoveryStrategyKind::BackersFirstIfSizeLowerThenSystematicChunks(
							fetch_chunks_threshold,
						) => {
							// Get our own chunk size to get an estimate of the PoV size.
							let chunk_size: Result<Option<usize>> =
								query_chunk_size(ctx, candidate_hash).await;
							if let Ok(Some(chunk_size)) = chunk_size {
								let pov_size_estimate = chunk_size * systematic_threshold;
								small_pov_size = pov_size_estimate < fetch_chunks_threshold;

								if small_pov_size {
									gum::trace!(
										target: LOG_TARGET,
										?candidate_hash,
										pov_size_estimate,
										fetch_chunks_threshold,
										"Prefer fetch from backing group",
									);
								}
							} else {
								// we have a POV limit but were not able to query the chunk size, so
								// don't use the backing group.
								small_pov_size = false;
							}
						},
						_ => {},
					};

					match (&recovery_strategy_kind, small_pov_size) {
						(RecoveryStrategyKind::BackersFirstAlways, _) |
						(RecoveryStrategyKind::BackersFirstIfSizeLower(_), true) |
						(
							RecoveryStrategyKind::BackersFirstIfSizeLowerThenSystematicChunks(_),
							true,
						) |
						(RecoveryStrategyKind::BackersThenSystematicChunks, _) =>
							recovery_strategies.push_back(Box::new(FetchFull::new(
								FetchFullParams { validators: backing_validators.to_vec() },
							))),
						_ => {},
					};

					backer_group = Some(backing_validators);
				}
			}

			let chunk_mapping_enabled = if let Some(&true) = node_features
				.get(usize::from(node_features::FeatureIndex::AvailabilityChunkMapping as u8))
				.as_deref()
			{
				true
			} else {
				false
			};

			// We can only attempt systematic recovery if we received the core index of the
			// candidate and chunk mapping is enabled.
			if let Some(core_index) = maybe_core_index {
				if matches!(
					recovery_strategy_kind,
					RecoveryStrategyKind::BackersThenSystematicChunks |
						RecoveryStrategyKind::SystematicChunks |
						RecoveryStrategyKind::BackersFirstIfSizeLowerThenSystematicChunks(_)
				) && chunk_mapping_enabled
				{
					let chunk_indices =
						availability_chunk_indices(Some(node_features), n_validators, core_index)?;

					let chunk_indices: VecDeque<_> = chunk_indices
						.iter()
						.enumerate()
						.map(|(v_index, c_index)| {
							(
								*c_index,
								ValidatorIndex(
									u32::try_from(v_index)
										.expect("validator count should not exceed u32"),
								),
							)
						})
						.collect();

					// Only get the validators according to the threshold.
					let validators = chunk_indices
						.clone()
						.into_iter()
						.filter(|(c_index, _)| {
							usize::try_from(c_index.0)
								.expect("usize is at least u32 bytes on all modern targets.") <
								systematic_threshold
						})
						.collect();

					recovery_strategies.push_back(Box::new(FetchSystematicChunks::new(
						FetchSystematicChunksParams {
							validators,
							backers: backer_group.map(|v| v.to_vec()).unwrap_or_else(|| vec![]),
						},
					)));
				}
			}

			recovery_strategies.push_back(Box::new(FetchChunks::new(FetchChunksParams {
				n_validators: session_info.validators.len(),
			})));

			let session_info = session_info.clone();

			let n_validators = session_info.validators.len();

			launch_recovery_task(
				state,
				ctx,
				response_sender,
				recovery_strategies,
				RecoveryParams {
					validator_authority_keys: session_info.discovery_keys.clone(),
					n_validators,
					threshold: recovery_threshold(n_validators)?,
					systematic_threshold,
					candidate_hash,
					erasure_root: receipt.descriptor.erasure_root(),
					metrics: metrics.clone(),
					bypass_availability_store,
					post_recovery_check,
					pov_hash: receipt.descriptor.pov_hash(),
					req_v1_protocol_name,
					req_v2_protocol_name,
					chunk_mapping_enabled,
					erasure_task_tx,
				},
			)
			.await
		},
		Err(_) => {
			response_sender
				.send(Err(RecoveryError::Unavailable))
				.map_err(|_| Error::CanceledResponseSender)?;

			Err(Error::SessionInfoUnavailable(state.live_block.1))
		},
	}
}

/// Queries the full `AvailableData` from av-store.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn query_full_data<Context>(
	ctx: &mut Context,
	candidate_hash: CandidateHash,
) -> Result<Option<AvailableData>> {
	let (tx, rx) = oneshot::channel();
	ctx.send_message(AvailabilityStoreMessage::QueryAvailableData(candidate_hash, tx))
		.await;

	rx.await.map_err(Error::CanceledQueryFullData)
}

/// Queries a chunk from av-store.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn query_chunk_size<Context>(
	ctx: &mut Context,
	candidate_hash: CandidateHash,
) -> Result<Option<usize>> {
	let (tx, rx) = oneshot::channel();
	ctx.send_message(AvailabilityStoreMessage::QueryChunkSize(candidate_hash, tx))
		.await;

	rx.await.map_err(Error::CanceledQueryFullData)
}

#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
impl AvailabilityRecoverySubsystem {
	/// Create a new instance of `AvailabilityRecoverySubsystem` suitable for collator nodes,
	/// which never requests the `AvailabilityStoreSubsystem` subsystem and only checks the POV hash
	/// instead of reencoding the available data.
	pub fn for_collator(
		fetch_chunks_threshold: Option<usize>,
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		req_protocol_names: &ReqProtocolNames,
		metrics: Metrics,
	) -> Self {
		Self {
			recovery_strategy_kind: RecoveryStrategyKind::BackersFirstIfSizeLower(
				fetch_chunks_threshold.unwrap_or(CONSERVATIVE_FETCH_CHUNKS_THRESHOLD),
			),
			bypass_availability_store: true,
			post_recovery_check: PostRecoveryCheck::PovHash,
			req_receiver,
			metrics,
			req_v1_protocol_name: req_protocol_names
				.get_name(request_v1::ChunkFetchingRequest::PROTOCOL),
			req_v2_protocol_name: req_protocol_names
				.get_name(request_v2::ChunkFetchingRequest::PROTOCOL),
		}
	}

	/// Create an optimised new instance of `AvailabilityRecoverySubsystem` suitable for validator
	/// nodes, which:
	/// - for small POVs (over the `fetch_chunks_threshold` or the
	///   `CONSERVATIVE_FETCH_CHUNKS_THRESHOLD`), it attempts full recovery from backers, if backing
	///   group supplied.
	/// - for large POVs, attempts systematic recovery, if core_index supplied and
	///   AvailabilityChunkMapping node feature is enabled.
	/// - as a last resort, attempt regular chunk recovery from all validators.
	pub fn for_validator(
		fetch_chunks_threshold: Option<usize>,
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		req_protocol_names: &ReqProtocolNames,
		metrics: Metrics,
	) -> Self {
		Self {
			recovery_strategy_kind:
				RecoveryStrategyKind::BackersFirstIfSizeLowerThenSystematicChunks(
					fetch_chunks_threshold.unwrap_or(CONSERVATIVE_FETCH_CHUNKS_THRESHOLD),
				),
			bypass_availability_store: false,
			post_recovery_check: PostRecoveryCheck::Reencode,
			req_receiver,
			metrics,
			req_v1_protocol_name: req_protocol_names
				.get_name(request_v1::ChunkFetchingRequest::PROTOCOL),
			req_v2_protocol_name: req_protocol_names
				.get_name(request_v2::ChunkFetchingRequest::PROTOCOL),
		}
	}

	/// Customise the recovery strategy kind
	/// Currently only useful for tests.
	#[cfg(any(test, feature = "subsystem-benchmarks"))]
	pub fn with_recovery_strategy_kind(
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		req_protocol_names: &ReqProtocolNames,
		metrics: Metrics,
		recovery_strategy_kind: RecoveryStrategyKind,
	) -> Self {
		Self {
			recovery_strategy_kind,
			bypass_availability_store: false,
			post_recovery_check: PostRecoveryCheck::Reencode,
			req_receiver,
			metrics,
			req_v1_protocol_name: req_protocol_names
				.get_name(request_v1::ChunkFetchingRequest::PROTOCOL),
			req_v2_protocol_name: req_protocol_names
				.get_name(request_v2::ChunkFetchingRequest::PROTOCOL),
		}
	}

	/// Starts the inner subsystem loop.
	pub async fn run<Context>(self, mut ctx: Context) -> std::result::Result<(), FatalError> {
		let mut state = State::default();
		let Self {
			mut req_receiver,
			metrics,
			recovery_strategy_kind,
			bypass_availability_store,
			post_recovery_check,
			req_v1_protocol_name,
			req_v2_protocol_name,
		} = self;

		let (erasure_task_tx, erasure_task_rx) = futures::channel::mpsc::channel(16);
		let mut erasure_task_rx = erasure_task_rx.fuse();

		// `ThreadPoolBuilder` spawns the tasks using `spawn_blocking`. For each worker there will
		// be a `mpsc` channel created. Each of these workers take the `Receiver` and poll it in an
		// infinite loop. All of the sender ends of the channel are sent as a vec which we then use
		// to create a `Cycle` iterator. We use this iterator to assign work in a round-robin
		// fashion to the workers in the pool.
		//
		// How work is dispatched to the pool from the recovery tasks:
		// - Once a recovery task finishes retrieving the availability data, it needs to reconstruct
		//   from chunks and/or
		// re-encode the data which are heavy CPU computations.
		// To do so it sends an `ErasureTask` to the main loop via the `erasure_task` channel, and
		// waits for the results over a `oneshot` channel.
		// - In the subsystem main loop we poll the `erasure_task_rx` receiver.
		// - We forward the received `ErasureTask` to the `next()` sender yielded by the `Cycle`
		//   iterator.
		// - Some worker thread handles it and sends the response over the `oneshot` channel.

		// Create a thread pool with 2 workers.
		let mut to_pool = ThreadPoolBuilder::build(
			// Pool is guaranteed to have at least 1 worker thread.
			NonZeroUsize::new(2).expect("There are 2 threads; qed"),
			metrics.clone(),
			&mut ctx,
		)
		.into_iter()
		.cycle();

		loop {
			let recv_req = req_receiver.recv(|| vec![COST_INVALID_REQUEST]).fuse();
			pin_mut!(recv_req);
			let res = futures::select! {
				erasure_task = erasure_task_rx.next() => {
					match erasure_task {
						Some(task) => {
							to_pool
								.next()
								.expect("Pool size is `NonZeroUsize`; qed")
								.send(task)
								.await
								.map_err(|_| RecoveryError::ChannelClosed)
						},
						None => {
							Err(RecoveryError::ChannelClosed)
						}
					}.map_err(Into::into)
				}
				signal = ctx.recv().fuse() => {
					match signal {
						Ok(signal) => {
							match signal {
								FromOrchestra::Signal(signal) => if handle_signal(
									&mut state,
									signal,
								).await {
									gum::debug!(target: LOG_TARGET, "subsystem concluded");
									return Ok(());
								} else {
									Ok(())
								},
								FromOrchestra::Communication {
									msg: AvailabilityRecoveryMessage::RecoverAvailableData(
										receipt,
										session_index,
										maybe_backing_group,
										maybe_core_index,
										response_sender,
									)
								} => handle_recover(
										&mut state,
										&mut ctx,
										receipt,
										session_index,
										maybe_backing_group,
										response_sender,
										&metrics,
										erasure_task_tx.clone(),
										recovery_strategy_kind.clone(),
										bypass_availability_store,
										post_recovery_check.clone(),
										maybe_core_index,
										req_v1_protocol_name.clone(),
										req_v2_protocol_name.clone(),
									).await
							}
						},
						Err(e) => Err(Error::SubsystemReceive(e))
					}
				}
				in_req = recv_req => {
					match in_req {
						Ok(req) => {
							if bypass_availability_store {
								gum::debug!(
									target: LOG_TARGET,
									"Skipping request to availability-store.",
								);
								let _ = req.send_response(None.into());
								Ok(())
							} else {
								match query_full_data(&mut ctx, req.payload.candidate_hash).await {
									Ok(res) => {
										let _ = req.send_response(res.into());
										Ok(())
									}
									Err(e) => {
										let _ = req.send_response(None.into());
										Err(e)
									}
								}
							}
						}
						Err(e) => Err(Error::IncomingRequest(e))
					}
				}
				output = state.ongoing_recoveries.select_next_some() => {
					let mut res = Ok(());
					if let Some((candidate_hash, result)) = output {
						if let Err(ref e) = result {
							res = Err(Error::Recovery(e.clone()));
						}

						if let Ok(recovery) = CachedRecovery::try_from(result) {
							state.availability_lru.insert(candidate_hash, recovery);
						}
					}

					res
				}
			};

			// Only bubble up fatal errors, but log all of them.
			if let Err(e) = res {
				log_error(Err(e))?;
			}
		}
	}
}

// A simple thread pool implementation using `spawn_blocking` threads.
struct ThreadPoolBuilder;

const MAX_THREADS: NonZeroUsize = match NonZeroUsize::new(4) {
	Some(max_threads) => max_threads,
	None => panic!("MAX_THREADS must be non-zero"),
};

impl ThreadPoolBuilder {
	// Creates a pool of `size` workers, where 1 <= `size` <= `MAX_THREADS`.
	//
	// Each worker is created by `spawn_blocking` and takes the receiver side of a channel
	// while all of the senders are returned to the caller. Each worker runs `erasure_task_thread`
	// that polls the `Receiver` for an `ErasureTask` which is expected to be CPU intensive. The
	// larger the input (more or larger chunks/availability data), the more CPU cycles will be
	// spent.
	//
	// For example, for 32KB PoVs, we'd expect re-encode to eat as much as 90ms and 500ms for
	// 2.5MiB.
	//
	// After executing such a task, the worker sends the response via a provided `oneshot` sender.
	//
	// The caller is responsible for routing work to the workers.
	#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
	pub fn build<Context>(
		size: NonZeroUsize,
		metrics: Metrics,
		ctx: &mut Context,
	) -> Vec<futures::channel::mpsc::Sender<ErasureTask>> {
		// At least 1 task, at most `MAX_THREADS.
		let size = std::cmp::min(size, MAX_THREADS);
		let mut senders = Vec::new();

		for index in 0..size.into() {
			let (tx, rx) = futures::channel::mpsc::channel(8);
			senders.push(tx);

			if let Err(e) = ctx
				.spawn_blocking("erasure-task", Box::pin(erasure_task_thread(metrics.clone(), rx)))
			{
				gum::warn!(
					target: LOG_TARGET,
					err = ?e,
					index,
					"Failed to spawn a erasure task",
				);
			}
		}
		senders
	}
}

// Handles CPU intensive operation on a dedicated blocking thread.
async fn erasure_task_thread(
	metrics: Metrics,
	mut ingress: futures::channel::mpsc::Receiver<ErasureTask>,
) {
	loop {
		match ingress.next().await {
			Some(ErasureTask::Reconstruct(n_validators, chunks, sender)) => {
				let _ = sender.send(polkadot_erasure_coding::reconstruct_v1(
					n_validators,
					chunks.iter().map(|(c_index, chunk)| {
						(
							&chunk[..],
							usize::try_from(c_index.0)
								.expect("usize is at least u32 bytes on all modern targets."),
						)
					}),
				));
			},
			Some(ErasureTask::Reencode(n_validators, root, available_data, sender)) => {
				let metrics = metrics.clone();

				let maybe_data = if reconstructed_data_matches_root(
					n_validators,
					&root,
					&available_data,
					&metrics,
				) {
					Some(available_data)
				} else {
					None
				};

				let _ = sender.send(maybe_data);
			},
			None => {
				gum::trace!(
					target: LOG_TARGET,
					"Erasure task channel closed. Node shutting down ?",
				);
				break
			},
		}

		// In benchmarks this is a very hot loop not yielding at all.
		// To update CPU metrics for the task we need to yield.
		#[cfg(feature = "subsystem-benchmarks")]
		tokio::task::yield_now().await;
	}
}