referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Implements the `CandidateBackingSubsystem`.
//!
//! This subsystem maintains the entire responsibility of tracking parachain
//! candidates which can be backed, as well as the issuance of statements
//! about candidates when run on a validator node.
//!
//! There are two types of statements: `Seconded` and `Valid`.
//! `Seconded` implies `Valid`, and nothing should be stated as
//! `Valid` unless its already been `Seconded`.
//!
//! Validators may only second candidates which fall under their own group
//! assignment, and they may only second one candidate per depth per active leaf.
//! Candidates which are stated as either `Second` or `Valid` by a majority of the
//! assigned group of validators may be backed on-chain and proceed to the availability
//! stage.
//!
//! Depth is a concept relating to asynchronous backing, by which
//! short sub-chains of candidates are backed and extended off-chain, and then placed
//! asynchronously into blocks of the relay chain as those are authored and as the
//! relay-chain state becomes ready for them. Asynchronous backing allows parachains to
//! grow mostly independently from the state of the relay chain, which gives more time for
//! parachains to be validated and thereby increases performance.
//!
//! Most of the work of asynchronous backing is handled by the Prospective Parachains
//! subsystem. The 'depth' of a parachain block with respect to a relay chain block is
//! a measure of how many parachain blocks are between the most recent included parachain block
//! in the post-state of the relay-chain block and the candidate. For instance,
//! a candidate that descends directly from the most recent parachain block in the relay-chain
//! state has depth 0. The child of that candidate would have depth 1. And so on.
//!
//! The candidate backing subsystem keeps track of a set of 'active leaves' which are the
//! most recent blocks in the relay-chain (which is in fact a tree) which could be built
//! upon. Depth is always measured against active leaves, and the valid relay-parent that
//! each candidate can have is determined by the active leaves. The Prospective Parachains
//! subsystem enforces that the relay-parent increases monotonically, so that logic
//! is not handled here. By communicating with the Prospective Parachains subsystem,
//! this subsystem extrapolates an "implicit view" from the set of currently active leaves,
//! which determines the set of all recent relay-chain block hashes which could be relay-parents
//! for candidates backed in children of the active leaves.
//!
//! In fact, this subsystem relies on the Statement Distribution subsystem to prevent spam
//! by enforcing the rule that each validator may second at most one candidate per depth per
//! active leaf. This bounds the number of candidates that the system needs to consider and
//! is not handled within this subsystem, except for candidates seconded locally.
//!
//! This subsystem also handles relay-chain heads which don't support asynchronous backing.
//! For such active leaves, the only valid relay-parent is the leaf hash itself and the only
//! allowed depth is 0.

#![deny(unused_crate_dependencies)]

use std::{
	collections::{HashMap, HashSet},
	sync::Arc,
};

use bitvec::vec::BitVec;
use futures::{
	channel::{mpsc, oneshot},
	future::BoxFuture,
	stream::FuturesOrdered,
	FutureExt, SinkExt, StreamExt, TryFutureExt,
};
use schnellru::{ByLength, LruMap};

use error::{Error, FatalResult};
use polkadot_node_primitives::{
	AvailableData, InvalidCandidate, PoV, SignedFullStatementWithPVD, StatementWithPVD,
	ValidationResult,
};
use polkadot_node_subsystem::{
	messages::{
		AvailabilityDistributionMessage, AvailabilityStoreMessage, CanSecondRequest,
		CandidateBackingMessage, CandidateValidationMessage, CollatorProtocolMessage,
		HypotheticalCandidate, HypotheticalMembershipRequest, IntroduceSecondedCandidateRequest,
		ProspectiveParachainsMessage, ProvisionableData, ProvisionerMessage, PvfExecKind,
		RuntimeApiMessage, RuntimeApiRequest, StatementDistributionMessage,
		StoreAvailableDataError,
	},
	overseer, ActiveLeavesUpdate, FromOrchestra, OverseerSignal, RuntimeApiError, SpawnedSubsystem,
	SubsystemError,
};
use polkadot_node_subsystem_util::{
	self as util,
	backing_implicit_view::View as ImplicitView,
	request_claim_queue, request_disabled_validators, request_session_executor_params,
	request_session_index_for_child, request_validator_groups, request_validators,
	runtime::{self, request_min_backing_votes, ClaimQueueSnapshot},
	Validator,
};
use polkadot_parachain_primitives::primitives::IsSystem;
use polkadot_primitives::{
	node_features::FeatureIndex,
	vstaging::{
		BackedCandidate, CandidateReceiptV2 as CandidateReceipt,
		CommittedCandidateReceiptV2 as CommittedCandidateReceipt,
	},
	CandidateCommitments, CandidateHash, CoreIndex, ExecutorParams, GroupIndex, GroupRotationInfo,
	Hash, Id as ParaId, IndexedVec, NodeFeatures, PersistedValidationData, SessionIndex,
	SigningContext, ValidationCode, ValidatorId, ValidatorIndex, ValidatorSignature,
	ValidityAttestation,
};
use polkadot_statement_table::{
	generic::AttestedCandidate as TableAttestedCandidate,
	v2::{
		SignedStatement as TableSignedStatement, Statement as TableStatement,
		Summary as TableSummary,
	},
	Context as TableContextTrait, Table,
};
use sp_keystore::KeystorePtr;
use util::runtime::request_node_features;

mod error;

mod metrics;
use self::metrics::Metrics;

#[cfg(test)]
mod tests;

const LOG_TARGET: &str = "parachain::candidate-backing";

/// PoV data to validate.
enum PoVData {
	/// Already available (from candidate selection).
	Ready(Arc<PoV>),
	/// Needs to be fetched from validator (we are checking a signed statement).
	FetchFromValidator {
		from_validator: ValidatorIndex,
		candidate_hash: CandidateHash,
		pov_hash: Hash,
	},
}

enum ValidatedCandidateCommand {
	// We were instructed to second the candidate that has been already validated.
	Second(BackgroundValidationResult),
	// We were instructed to validate the candidate.
	Attest(BackgroundValidationResult),
	// We were not able to `Attest` because backing validator did not send us the PoV.
	AttestNoPoV(CandidateHash),
}

impl std::fmt::Debug for ValidatedCandidateCommand {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		let candidate_hash = self.candidate_hash();
		match *self {
			ValidatedCandidateCommand::Second(_) => write!(f, "Second({})", candidate_hash),
			ValidatedCandidateCommand::Attest(_) => write!(f, "Attest({})", candidate_hash),
			ValidatedCandidateCommand::AttestNoPoV(_) => write!(f, "Attest({})", candidate_hash),
		}
	}
}

impl ValidatedCandidateCommand {
	fn candidate_hash(&self) -> CandidateHash {
		match *self {
			ValidatedCandidateCommand::Second(Ok(ref outputs)) => outputs.candidate.hash(),
			ValidatedCandidateCommand::Second(Err(ref candidate)) => candidate.hash(),
			ValidatedCandidateCommand::Attest(Ok(ref outputs)) => outputs.candidate.hash(),
			ValidatedCandidateCommand::Attest(Err(ref candidate)) => candidate.hash(),
			ValidatedCandidateCommand::AttestNoPoV(candidate_hash) => candidate_hash,
		}
	}
}

/// The candidate backing subsystem.
pub struct CandidateBackingSubsystem {
	keystore: KeystorePtr,
	metrics: Metrics,
}

impl CandidateBackingSubsystem {
	/// Create a new instance of the `CandidateBackingSubsystem`.
	pub fn new(keystore: KeystorePtr, metrics: Metrics) -> Self {
		Self { keystore, metrics }
	}
}

#[overseer::subsystem(CandidateBacking, error = SubsystemError, prefix = self::overseer)]
impl<Context> CandidateBackingSubsystem
where
	Context: Send + Sync,
{
	fn start(self, ctx: Context) -> SpawnedSubsystem {
		let future = async move {
			run(ctx, self.keystore, self.metrics)
				.await
				.map_err(|e| SubsystemError::with_origin("candidate-backing", e))
		}
		.boxed();

		SpawnedSubsystem { name: "candidate-backing-subsystem", future }
	}
}

struct PerRelayParentState {
	/// The hash of the relay parent on top of which this job is doing it's work.
	parent: Hash,
	/// The node features.
	node_features: NodeFeatures,
	/// The executor parameters.
	executor_params: Arc<ExecutorParams>,
	/// The `CoreIndex` assigned to the local validator at this relay parent.
	assigned_core: Option<CoreIndex>,
	/// The candidates that are backed by enough validators in their group, by hash.
	backed: HashSet<CandidateHash>,
	/// The table of candidates and statements under this relay-parent.
	table: Table<TableContext>,
	/// The table context, including groups.
	table_context: TableContext,
	/// We issued `Seconded` or `Valid` statements on about these candidates.
	issued_statements: HashSet<CandidateHash>,
	/// These candidates are undergoing validation in the background.
	awaiting_validation: HashSet<CandidateHash>,
	/// Data needed for retrying in case of `ValidatedCandidateCommand::AttestNoPoV`.
	fallbacks: HashMap<CandidateHash, AttestingData>,
	/// The minimum backing votes threshold.
	minimum_backing_votes: u32,
	/// If true, we're appending extra bits in the BackedCandidate validator indices bitfield,
	/// which represent the assigned core index. True if ElasticScalingMVP is enabled.
	inject_core_index: bool,
	/// The number of cores.
	n_cores: u32,
	/// Claim queue state. If the runtime API is not available, it'll be populated with info from
	/// availability cores.
	claim_queue: ClaimQueueSnapshot,
	/// The validator index -> group mapping at this relay parent.
	validator_to_group: Arc<IndexedVec<ValidatorIndex, Option<GroupIndex>>>,
	/// The associated group rotation information.
	group_rotation_info: GroupRotationInfo,
}

struct PerCandidateState {
	persisted_validation_data: PersistedValidationData,
	seconded_locally: bool,
	relay_parent: Hash,
}

/// A cache for storing data per-session to reduce repeated
/// runtime API calls and avoid redundant computations.
struct PerSessionCache {
	/// Cache for storing validators list, retrieved from the runtime.
	validators_cache: LruMap<SessionIndex, Arc<Vec<ValidatorId>>>,
	/// Cache for storing node features, retrieved from the runtime.
	node_features_cache: LruMap<SessionIndex, Option<NodeFeatures>>,
	/// Cache for storing executor parameters, retrieved from the runtime.
	executor_params_cache: LruMap<SessionIndex, Arc<ExecutorParams>>,
	/// Cache for storing the minimum backing votes threshold, retrieved from the runtime.
	minimum_backing_votes_cache: LruMap<SessionIndex, u32>,
	/// Cache for storing validator-to-group mappings, computed from validator groups.
	validator_to_group_cache:
		LruMap<SessionIndex, Arc<IndexedVec<ValidatorIndex, Option<GroupIndex>>>>,
}

impl Default for PerSessionCache {
	/// Creates a new `PerSessionCache` with a default capacity.
	fn default() -> Self {
		Self::new(2)
	}
}

impl PerSessionCache {
	/// Creates a new `PerSessionCache` with a given capacity.
	fn new(capacity: u32) -> Self {
		PerSessionCache {
			validators_cache: LruMap::new(ByLength::new(capacity)),
			node_features_cache: LruMap::new(ByLength::new(capacity)),
			executor_params_cache: LruMap::new(ByLength::new(capacity)),
			minimum_backing_votes_cache: LruMap::new(ByLength::new(capacity)),
			validator_to_group_cache: LruMap::new(ByLength::new(capacity)),
		}
	}

	/// Gets validators from the cache or fetches them from the runtime if not present.
	async fn validators(
		&mut self,
		session_index: SessionIndex,
		parent: Hash,
		sender: &mut impl overseer::SubsystemSender<RuntimeApiMessage>,
	) -> Result<Arc<Vec<ValidatorId>>, RuntimeApiError> {
		// Try to get the validators list from the cache.
		if let Some(validators) = self.validators_cache.get(&session_index) {
			return Ok(Arc::clone(validators));
		}

		// Fetch the validators list from the runtime since it was not in the cache.
		let validators: Vec<ValidatorId> =
			request_validators(parent, sender).await.await.map_err(|err| {
				RuntimeApiError::Execution { runtime_api_name: "Validators", source: Arc::new(err) }
			})??;

		// Wrap the validators list in an Arc to avoid a deep copy when storing it in the cache.
		let validators = Arc::new(validators);

		// Cache the fetched validators list for future use.
		self.validators_cache.insert(session_index, Arc::clone(&validators));

		Ok(validators)
	}

	/// Gets the node features from the cache or fetches it from the runtime if not present.
	async fn node_features(
		&mut self,
		session_index: SessionIndex,
		parent: Hash,
		sender: &mut impl overseer::SubsystemSender<RuntimeApiMessage>,
	) -> Result<Option<NodeFeatures>, Error> {
		// Try to get the node features from the cache.
		if let Some(node_features) = self.node_features_cache.get(&session_index) {
			return Ok(node_features.clone());
		}

		// Fetch the node features from the runtime since it was not in the cache.
		let node_features: Option<NodeFeatures> =
			request_node_features(parent, session_index, sender).await?;

		// Cache the fetched node features for future use.
		self.node_features_cache.insert(session_index, node_features.clone());

		Ok(node_features)
	}

	/// Gets the executor parameters from the cache or
	/// fetches them from the runtime if not present.
	async fn executor_params(
		&mut self,
		session_index: SessionIndex,
		parent: Hash,
		sender: &mut impl overseer::SubsystemSender<RuntimeApiMessage>,
	) -> Result<Arc<ExecutorParams>, RuntimeApiError> {
		// Try to get the executor parameters from the cache.
		if let Some(executor_params) = self.executor_params_cache.get(&session_index) {
			return Ok(Arc::clone(executor_params));
		}

		// Fetch the executor parameters from the runtime since it was not in the cache.
		let executor_params = request_session_executor_params(parent, session_index, sender)
			.await
			.await
			.map_err(|err| RuntimeApiError::Execution {
				runtime_api_name: "SessionExecutorParams",
				source: Arc::new(err),
			})??
			.ok_or_else(|| RuntimeApiError::Execution {
				runtime_api_name: "SessionExecutorParams",
				source: Arc::new(Error::MissingExecutorParams),
			})?;

		// Wrap the executor parameters in an Arc to avoid a deep copy when storing it in the cache.
		let executor_params = Arc::new(executor_params);

		// Cache the fetched executor parameters for future use.
		self.executor_params_cache.insert(session_index, Arc::clone(&executor_params));

		Ok(executor_params)
	}

	/// Gets the minimum backing votes threshold from the
	/// cache or fetches it from the runtime if not present.
	async fn minimum_backing_votes(
		&mut self,
		session_index: SessionIndex,
		parent: Hash,
		sender: &mut impl overseer::SubsystemSender<RuntimeApiMessage>,
	) -> Result<u32, RuntimeApiError> {
		// Try to get the value from the cache.
		if let Some(minimum_backing_votes) = self.minimum_backing_votes_cache.get(&session_index) {
			return Ok(*minimum_backing_votes);
		}

		// Fetch the value from the runtime since it was not in the cache.
		let minimum_backing_votes = request_min_backing_votes(parent, session_index, sender)
			.await
			.map_err(|err| RuntimeApiError::Execution {
				runtime_api_name: "MinimumBackingVotes",
				source: Arc::new(err),
			})?;

		// Cache the fetched value for future use.
		self.minimum_backing_votes_cache.insert(session_index, minimum_backing_votes);

		Ok(minimum_backing_votes)
	}

	/// Gets or computes the validator-to-group mapping for a session.
	fn validator_to_group(
		&mut self,
		session_index: SessionIndex,
		validators: &[ValidatorId],
		validator_groups: &[Vec<ValidatorIndex>],
	) -> Arc<IndexedVec<ValidatorIndex, Option<GroupIndex>>> {
		let validator_to_group = self
			.validator_to_group_cache
			.get_or_insert(session_index, || {
				let mut vector = vec![None; validators.len()];

				for (group_idx, validator_group) in validator_groups.iter().enumerate() {
					for validator in validator_group {
						vector[validator.0 as usize] = Some(GroupIndex(group_idx as u32));
					}
				}

				Arc::new(IndexedVec::<_, _>::from(vector))
			})
			.expect("Just inserted");

		Arc::clone(validator_to_group)
	}
}

/// The state of the subsystem.
struct State {
	/// The utility for managing the implicit and explicit views in a consistent way.
	implicit_view: ImplicitView,
	/// State tracked for all relay-parents backing work is ongoing for. This includes
	/// all active leaves.
	per_relay_parent: HashMap<Hash, PerRelayParentState>,
	/// State tracked for all candidates relevant to the implicit view.
	///
	/// This is guaranteed to have an entry for each candidate with a relay parent in the implicit
	/// or explicit view for which a `Seconded` statement has been successfully imported.
	per_candidate: HashMap<CandidateHash, PerCandidateState>,
	/// A local cache for storing per-session data. This cache helps to
	/// reduce repeated calls to the runtime and avoid redundant computations.
	per_session_cache: PerSessionCache,
	/// A clonable sender which is dispatched to background candidate validation tasks to inform
	/// the main task of the result.
	background_validation_tx: mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
	/// The handle to the keystore used for signing.
	keystore: KeystorePtr,
}

impl State {
	fn new(
		background_validation_tx: mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
		keystore: KeystorePtr,
	) -> Self {
		State {
			implicit_view: ImplicitView::default(),
			per_relay_parent: HashMap::default(),
			per_candidate: HashMap::new(),
			per_session_cache: PerSessionCache::default(),
			background_validation_tx,
			keystore,
		}
	}
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn run<Context>(
	mut ctx: Context,
	keystore: KeystorePtr,
	metrics: Metrics,
) -> FatalResult<()> {
	let (background_validation_tx, mut background_validation_rx) = mpsc::channel(16);
	let mut state = State::new(background_validation_tx, keystore);

	loop {
		let res =
			run_iteration(&mut ctx, &mut state, &metrics, &mut background_validation_rx).await;

		match res {
			Ok(()) => break,
			Err(e) => crate::error::log_error(Err(e))?,
		}
	}

	Ok(())
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn run_iteration<Context>(
	ctx: &mut Context,
	state: &mut State,
	metrics: &Metrics,
	background_validation_rx: &mut mpsc::Receiver<(Hash, ValidatedCandidateCommand)>,
) -> Result<(), Error> {
	loop {
		futures::select!(
			validated_command = background_validation_rx.next().fuse() => {
				if let Some((relay_parent, command)) = validated_command {
					handle_validated_candidate_command(
						&mut *ctx,
						state,
						relay_parent,
						command,
						metrics,
					).await?;
				} else {
					panic!("background_validation_tx always alive at this point; qed");
				}
			}
			from_overseer = ctx.recv().fuse() => {
				match from_overseer.map_err(Error::OverseerExited)? {
					FromOrchestra::Signal(OverseerSignal::ActiveLeaves(update)) => {
						handle_active_leaves_update(
							&mut *ctx,
							update,
							state,
						).await?;
					}
					FromOrchestra::Signal(OverseerSignal::BlockFinalized(..)) => {}
					FromOrchestra::Signal(OverseerSignal::Conclude) => return Ok(()),
					FromOrchestra::Communication { msg } => {
						handle_communication(&mut *ctx, state, msg, metrics).await?;
					}
				}
			}
		)
	}
}

/// In case a backing validator does not provide a PoV, we need to retry with other backing
/// validators.
///
/// This is the data needed to accomplish this. Basically all the data needed for spawning a
/// validation job and a list of backing validators, we can try.
#[derive(Clone)]
struct AttestingData {
	/// The candidate to attest.
	candidate: CandidateReceipt,
	/// Hash of the PoV we need to fetch.
	pov_hash: Hash,
	/// Validator we are currently trying to get the PoV from.
	from_validator: ValidatorIndex,
	/// Other backing validators we can try in case `from_validator` failed.
	backing: Vec<ValidatorIndex>,
}

#[derive(Default, Debug)]
struct TableContext {
	validator: Option<Validator>,
	groups: HashMap<CoreIndex, Vec<ValidatorIndex>>,
	validators: Vec<ValidatorId>,
	disabled_validators: Vec<ValidatorIndex>,
}

impl TableContext {
	// Returns `true` if the provided `ValidatorIndex` is in the disabled validators list
	pub fn validator_is_disabled(&self, validator_idx: &ValidatorIndex) -> bool {
		self.disabled_validators
			.iter()
			.any(|disabled_val_idx| *disabled_val_idx == *validator_idx)
	}

	// Returns `true` if the local validator is in the disabled validators list
	pub fn local_validator_is_disabled(&self) -> Option<bool> {
		self.validator.as_ref().map(|v| v.disabled())
	}
}

impl TableContextTrait for TableContext {
	type AuthorityId = ValidatorIndex;
	type Digest = CandidateHash;
	type GroupId = CoreIndex;
	type Signature = ValidatorSignature;
	type Candidate = CommittedCandidateReceipt;

	fn candidate_digest(candidate: &CommittedCandidateReceipt) -> CandidateHash {
		candidate.hash()
	}

	fn is_member_of(&self, authority: &ValidatorIndex, core: &CoreIndex) -> bool {
		self.groups.get(core).map_or(false, |g| g.iter().any(|a| a == authority))
	}

	fn get_group_size(&self, group: &CoreIndex) -> Option<usize> {
		self.groups.get(group).map(|g| g.len())
	}
}

// It looks like it's not possible to do an `impl From` given the current state of
// the code. So this does the necessary conversion.
fn primitive_statement_to_table(s: &SignedFullStatementWithPVD) -> TableSignedStatement {
	let statement = match s.payload() {
		StatementWithPVD::Seconded(c, _) => TableStatement::Seconded(c.clone()),
		StatementWithPVD::Valid(h) => TableStatement::Valid(*h),
	};

	TableSignedStatement {
		statement,
		signature: s.signature().clone(),
		sender: s.validator_index(),
	}
}

fn table_attested_to_backed(
	attested: TableAttestedCandidate<
		CoreIndex,
		CommittedCandidateReceipt,
		ValidatorIndex,
		ValidatorSignature,
	>,
	table_context: &TableContext,
	inject_core_index: bool,
) -> Option<BackedCandidate> {
	let TableAttestedCandidate { candidate, validity_votes, group_id: core_index } = attested;

	let (ids, validity_votes): (Vec<_>, Vec<ValidityAttestation>) =
		validity_votes.into_iter().map(|(id, vote)| (id, vote.into())).unzip();

	let group = table_context.groups.get(&core_index)?;

	let mut validator_indices = BitVec::with_capacity(group.len());

	validator_indices.resize(group.len(), false);

	// The order of the validity votes in the backed candidate must match
	// the order of bits set in the bitfield, which is not necessarily
	// the order of the `validity_votes` we got from the table.
	let mut vote_positions = Vec::with_capacity(validity_votes.len());
	for (orig_idx, id) in ids.iter().enumerate() {
		if let Some(position) = group.iter().position(|x| x == id) {
			validator_indices.set(position, true);
			vote_positions.push((orig_idx, position));
		} else {
			gum::warn!(
				target: LOG_TARGET,
				"Logic error: Validity vote from table does not correspond to group",
			);

			return None
		}
	}
	vote_positions.sort_by_key(|(_orig, pos_in_group)| *pos_in_group);

	Some(BackedCandidate::new(
		candidate,
		vote_positions
			.into_iter()
			.map(|(pos_in_votes, _pos_in_group)| validity_votes[pos_in_votes].clone())
			.collect(),
		validator_indices,
		inject_core_index.then_some(core_index),
	))
}

async fn store_available_data(
	sender: &mut impl overseer::CandidateBackingSenderTrait,
	n_validators: u32,
	candidate_hash: CandidateHash,
	available_data: AvailableData,
	expected_erasure_root: Hash,
	core_index: CoreIndex,
	node_features: NodeFeatures,
) -> Result<(), Error> {
	let (tx, rx) = oneshot::channel();
	// Important: the `av-store` subsystem will check if the erasure root of the `available_data`
	// matches `expected_erasure_root` which was provided by the collator in the `CandidateReceipt`.
	// This check is consensus critical and the `backing` subsystem relies on it for ensuring
	// candidate validity.
	sender
		.send_message(AvailabilityStoreMessage::StoreAvailableData {
			candidate_hash,
			n_validators,
			available_data,
			expected_erasure_root,
			core_index,
			node_features,
			tx,
		})
		.await;

	rx.await
		.map_err(Error::StoreAvailableDataChannel)?
		.map_err(Error::StoreAvailableData)
}

// Make a `PoV` available.
//
// This calls the AV store to write the available data to storage. The AV store also checks the
// erasure root matches the `expected_erasure_root`.
// This returns `Err()` on erasure root mismatch or due to any AV store subsystem error.
//
// Otherwise, it returns `Ok(())`.
async fn make_pov_available(
	sender: &mut impl overseer::CandidateBackingSenderTrait,
	n_validators: usize,
	pov: Arc<PoV>,
	candidate_hash: CandidateHash,
	validation_data: PersistedValidationData,
	expected_erasure_root: Hash,
	core_index: CoreIndex,
	node_features: NodeFeatures,
) -> Result<(), Error> {
	store_available_data(
		sender,
		n_validators as u32,
		candidate_hash,
		AvailableData { pov, validation_data },
		expected_erasure_root,
		core_index,
		node_features,
	)
	.await
}

async fn request_pov(
	sender: &mut impl overseer::CandidateBackingSenderTrait,
	relay_parent: Hash,
	from_validator: ValidatorIndex,
	para_id: ParaId,
	candidate_hash: CandidateHash,
	pov_hash: Hash,
) -> Result<Arc<PoV>, Error> {
	let (tx, rx) = oneshot::channel();
	sender
		.send_message(AvailabilityDistributionMessage::FetchPoV {
			relay_parent,
			from_validator,
			para_id,
			candidate_hash,
			pov_hash,
			tx,
		})
		.await;

	let pov = rx.await.map_err(|_| Error::FetchPoV)?;
	Ok(Arc::new(pov))
}

async fn request_candidate_validation(
	sender: &mut impl overseer::CandidateBackingSenderTrait,
	validation_data: PersistedValidationData,
	validation_code: ValidationCode,
	candidate_receipt: CandidateReceipt,
	pov: Arc<PoV>,
	executor_params: ExecutorParams,
) -> Result<ValidationResult, Error> {
	let (tx, rx) = oneshot::channel();
	let is_system = candidate_receipt.descriptor.para_id().is_system();
	let relay_parent = candidate_receipt.descriptor.relay_parent();

	sender
		.send_message(CandidateValidationMessage::ValidateFromExhaustive {
			validation_data,
			validation_code,
			candidate_receipt,
			pov,
			executor_params,
			exec_kind: if is_system {
				PvfExecKind::BackingSystemParas(relay_parent)
			} else {
				PvfExecKind::Backing(relay_parent)
			},
			response_sender: tx,
		})
		.await;

	match rx.await {
		Ok(Ok(validation_result)) => Ok(validation_result),
		Ok(Err(err)) => Err(Error::ValidationFailed(err)),
		Err(err) => Err(Error::ValidateFromExhaustive(err)),
	}
}

struct BackgroundValidationOutputs {
	candidate: CandidateReceipt,
	commitments: CandidateCommitments,
	persisted_validation_data: PersistedValidationData,
}

type BackgroundValidationResult = Result<BackgroundValidationOutputs, CandidateReceipt>;

struct BackgroundValidationParams<S: overseer::CandidateBackingSenderTrait, F> {
	sender: S,
	tx_command: mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
	candidate: CandidateReceipt,
	relay_parent: Hash,
	node_features: NodeFeatures,
	executor_params: Arc<ExecutorParams>,
	persisted_validation_data: PersistedValidationData,
	pov: PoVData,
	n_validators: usize,
	make_command: F,
}

async fn validate_and_make_available(
	params: BackgroundValidationParams<
		impl overseer::CandidateBackingSenderTrait,
		impl Fn(BackgroundValidationResult) -> ValidatedCandidateCommand + Sync,
	>,
	core_index: CoreIndex,
) -> Result<(), Error> {
	let BackgroundValidationParams {
		mut sender,
		mut tx_command,
		candidate,
		relay_parent,
		node_features,
		executor_params,
		persisted_validation_data,
		pov,
		n_validators,
		make_command,
	} = params;

	let validation_code = {
		let validation_code_hash = candidate.descriptor().validation_code_hash();
		let (tx, rx) = oneshot::channel();
		sender
			.send_message(RuntimeApiMessage::Request(
				relay_parent,
				RuntimeApiRequest::ValidationCodeByHash(validation_code_hash, tx),
			))
			.await;

		let code = rx.await.map_err(Error::RuntimeApiUnavailable)?;
		match code {
			Err(e) => return Err(Error::FetchValidationCode(validation_code_hash, e)),
			Ok(None) => return Err(Error::NoValidationCode(validation_code_hash)),
			Ok(Some(c)) => c,
		}
	};

	let pov = match pov {
		PoVData::Ready(pov) => pov,
		PoVData::FetchFromValidator { from_validator, candidate_hash, pov_hash } =>
			match request_pov(
				&mut sender,
				relay_parent,
				from_validator,
				candidate.descriptor.para_id(),
				candidate_hash,
				pov_hash,
			)
			.await
			{
				Err(Error::FetchPoV) => {
					tx_command
						.send((
							relay_parent,
							ValidatedCandidateCommand::AttestNoPoV(candidate.hash()),
						))
						.await
						.map_err(Error::BackgroundValidationMpsc)?;
					return Ok(())
				},
				Err(err) => return Err(err),
				Ok(pov) => pov,
			},
	};

	let v = {
		request_candidate_validation(
			&mut sender,
			persisted_validation_data,
			validation_code,
			candidate.clone(),
			pov.clone(),
			executor_params.as_ref().clone(),
		)
		.await?
	};

	let res = match v {
		ValidationResult::Valid(commitments, validation_data) => {
			gum::debug!(
				target: LOG_TARGET,
				candidate_hash = ?candidate.hash(),
				"Validation successful",
			);

			let erasure_valid = make_pov_available(
				&mut sender,
				n_validators,
				pov.clone(),
				candidate.hash(),
				validation_data.clone(),
				candidate.descriptor.erasure_root(),
				core_index,
				node_features,
			)
			.await;

			match erasure_valid {
				Ok(()) => Ok(BackgroundValidationOutputs {
					candidate,
					commitments,
					persisted_validation_data: validation_data,
				}),
				Err(Error::StoreAvailableData(StoreAvailableDataError::InvalidErasureRoot)) => {
					gum::debug!(
						target: LOG_TARGET,
						candidate_hash = ?candidate.hash(),
						actual_commitments = ?commitments,
						"Erasure root doesn't match the announced by the candidate receipt",
					);
					Err(candidate)
				},
				// Bubble up any other error.
				Err(e) => return Err(e),
			}
		},
		ValidationResult::Invalid(InvalidCandidate::CommitmentsHashMismatch) => {
			// If validation produces a new set of commitments, we vote the candidate as invalid.
			gum::warn!(
				target: LOG_TARGET,
				candidate_hash = ?candidate.hash(),
				"Validation yielded different commitments",
			);
			Err(candidate)
		},
		ValidationResult::Invalid(reason) => {
			gum::warn!(
				target: LOG_TARGET,
				candidate_hash = ?candidate.hash(),
				reason = ?reason,
				"Validation yielded an invalid candidate",
			);
			Err(candidate)
		},
	};

	tx_command.send((relay_parent, make_command(res))).await.map_err(Into::into)
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_communication<Context>(
	ctx: &mut Context,
	state: &mut State,
	message: CandidateBackingMessage,
	metrics: &Metrics,
) -> Result<(), Error> {
	match message {
		CandidateBackingMessage::Second(_relay_parent, candidate, pvd, pov) => {
			handle_second_message(ctx, state, candidate, pvd, pov, metrics).await?;
		},
		CandidateBackingMessage::Statement(relay_parent, statement) => {
			handle_statement_message(ctx, state, relay_parent, statement, metrics).await?;
		},
		CandidateBackingMessage::GetBackableCandidates(requested_candidates, tx) =>
			handle_get_backable_candidates_message(state, requested_candidates, tx, metrics)?,
		CandidateBackingMessage::CanSecond(request, tx) =>
			handle_can_second_request(ctx, state, request, tx).await,
	}

	Ok(())
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_active_leaves_update<Context>(
	ctx: &mut Context,
	update: ActiveLeavesUpdate,
	state: &mut State,
) -> Result<(), Error> {
	// Activate in implicit view before deactivate, per the docs
	// on ImplicitView, this is more efficient.
	let res = if let Some(leaf) = update.activated {
		let leaf_hash = leaf.hash;
		Some((leaf, state.implicit_view.activate_leaf(ctx.sender(), leaf_hash).await.map(|_| ())))
	} else {
		None
	};

	for deactivated in update.deactivated {
		state.implicit_view.deactivate_leaf(deactivated);
	}

	// clean up `per_relay_parent` according to ancestry
	// of leaves. we do this so we can clean up candidates right after
	// as a result.
	{
		let remaining: HashSet<_> = state.implicit_view.all_allowed_relay_parents().collect();

		state.per_relay_parent.retain(|r, _| remaining.contains(&r));
	}

	// clean up `per_candidate` according to which relay-parents
	// are known.
	state
		.per_candidate
		.retain(|_, pc| state.per_relay_parent.contains_key(&pc.relay_parent));

	// Get relay parents which might be fresh but might be known already
	// that are explicit or implicit from the new active leaf.
	let fresh_relay_parents = match res {
		None => return Ok(()),
		Some((leaf, Ok(_))) => {
			let fresh_relay_parents =
				state.implicit_view.known_allowed_relay_parents_under(&leaf.hash, None);

			let fresh_relay_parent = match fresh_relay_parents {
				Some(f) => f.to_vec(),
				None => {
					gum::warn!(
						target: LOG_TARGET,
						leaf_hash = ?leaf.hash,
						"Implicit view gave no relay-parents"
					);

					vec![leaf.hash]
				},
			};
			fresh_relay_parent
		},
		Some((leaf, Err(e))) => {
			gum::debug!(
				target: LOG_TARGET,
				leaf_hash = ?leaf.hash,
				err = ?e,
				"Failed to load implicit view for leaf."
			);

			return Ok(())
		},
	};

	// add entries in `per_relay_parent`. for all new relay-parents.
	for maybe_new in fresh_relay_parents {
		if state.per_relay_parent.contains_key(&maybe_new) {
			continue
		}

		// construct a `PerRelayParent` from the runtime API
		// and insert it.
		let per = construct_per_relay_parent_state(
			ctx,
			maybe_new,
			&state.keystore,
			&mut state.per_session_cache,
		)
		.await?;

		if let Some(per) = per {
			state.per_relay_parent.insert(maybe_new, per);
		}
	}

	Ok(())
}

macro_rules! try_runtime_api {
	($x: expr) => {
		match $x {
			Ok(x) => x,
			Err(err) => {
				// Only bubble up fatal errors.
				error::log_error(Err(Into::<runtime::Error>::into(err).into()))?;

				// We can't do candidate validation work if we don't have the
				// requisite runtime API data. But these errors should not take
				// down the node.
				return Ok(None)
			},
		}
	};
}

fn core_index_from_statement(
	validator_to_group: &IndexedVec<ValidatorIndex, Option<GroupIndex>>,
	group_rotation_info: &GroupRotationInfo,
	n_cores: u32,
	claim_queue: &ClaimQueueSnapshot,
	statement: &SignedFullStatementWithPVD,
) -> Option<CoreIndex> {
	let compact_statement = statement.as_unchecked();
	let candidate_hash = CandidateHash(*compact_statement.unchecked_payload().candidate_hash());

	gum::trace!(
		target:LOG_TARGET,
		?group_rotation_info,
		?statement,
		?validator_to_group,
		n_cores,
		?candidate_hash,
		"Extracting core index from statement"
	);

	let statement_validator_index = statement.validator_index();
	let Some(Some(group_index)) = validator_to_group.get(statement_validator_index) else {
		gum::debug!(
			target: LOG_TARGET,
			?group_rotation_info,
			?statement,
			?validator_to_group,
			n_cores,
			?candidate_hash,
			"Invalid validator index: {:?}",
			statement_validator_index
		);
		return None
	};

	// First check if the statement para id matches the core assignment.
	let core_index = group_rotation_info.core_for_group(*group_index, n_cores as _);

	if core_index.0 > n_cores {
		gum::warn!(target: LOG_TARGET, ?candidate_hash, ?core_index, n_cores, "Invalid CoreIndex");
		return None
	}

	if let StatementWithPVD::Seconded(candidate, _pvd) = statement.payload() {
		let candidate_para_id = candidate.descriptor.para_id();
		let mut assigned_paras = claim_queue.iter_claims_for_core(&core_index);

		if !assigned_paras.any(|id| id == &candidate_para_id) {
			gum::debug!(
				target: LOG_TARGET,
				?candidate_hash,
				?core_index,
				assigned_paras = ?claim_queue.iter_claims_for_core(&core_index).collect::<Vec<_>>(),
				?candidate_para_id,
				"Invalid CoreIndex, core is not assigned to this para_id"
			);
			return None
		}
		return Some(core_index)
	} else {
		return Some(core_index)
	}
}

/// Load the data necessary to do backing work on top of a relay-parent.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn construct_per_relay_parent_state<Context>(
	ctx: &mut Context,
	relay_parent: Hash,
	keystore: &KeystorePtr,
	per_session_cache: &mut PerSessionCache,
) -> Result<Option<PerRelayParentState>, Error> {
	let parent = relay_parent;

	let (session_index, groups, claim_queue, disabled_validators) = futures::try_join!(
		request_session_index_for_child(parent, ctx.sender()).await,
		request_validator_groups(parent, ctx.sender()).await,
		request_claim_queue(parent, ctx.sender()).await,
		request_disabled_validators(parent, ctx.sender()).await,
	)
	.map_err(Error::JoinMultiple)?;

	let session_index = try_runtime_api!(session_index);

	let validators = per_session_cache.validators(session_index, parent, ctx.sender()).await;
	let validators = try_runtime_api!(validators);

	let node_features = per_session_cache
		.node_features(session_index, parent, ctx.sender())
		.await?
		.unwrap_or(NodeFeatures::EMPTY);

	let inject_core_index = node_features
		.get(FeatureIndex::ElasticScalingMVP as usize)
		.map(|b| *b)
		.unwrap_or(false);

	let executor_params =
		per_session_cache.executor_params(session_index, parent, ctx.sender()).await;
	let executor_params = try_runtime_api!(executor_params);

	gum::debug!(target: LOG_TARGET, inject_core_index, ?parent, "New state");

	let (validator_groups, group_rotation_info) = try_runtime_api!(groups);

	let minimum_backing_votes = per_session_cache
		.minimum_backing_votes(session_index, parent, ctx.sender())
		.await;
	let minimum_backing_votes = try_runtime_api!(minimum_backing_votes);
	let claim_queue = try_runtime_api!(claim_queue);
	let disabled_validators = try_runtime_api!(disabled_validators);

	let signing_context = SigningContext { parent_hash: parent, session_index };
	let validator = match Validator::construct(
		&validators,
		&disabled_validators,
		signing_context.clone(),
		keystore.clone(),
	) {
		Ok(v) => Some(v),
		Err(util::Error::NotAValidator) => None,
		Err(e) => {
			gum::warn!(
				target: LOG_TARGET,
				err = ?e,
				"Cannot participate in candidate backing",
			);

			return Ok(None)
		},
	};

	let n_cores = validator_groups.len();

	let mut groups = HashMap::<CoreIndex, Vec<ValidatorIndex>>::new();
	let mut assigned_core = None;

	for idx in 0..n_cores {
		let core_index = CoreIndex(idx as _);

		if !claim_queue.contains_key(&core_index) {
			continue
		}

		let group_index = group_rotation_info.group_for_core(core_index, n_cores);
		if let Some(g) = validator_groups.get(group_index.0 as usize) {
			if validator.as_ref().map_or(false, |v| g.contains(&v.index())) {
				assigned_core = Some(core_index);
			}
			groups.insert(core_index, g.clone());
		}
	}
	gum::debug!(target: LOG_TARGET, ?groups, "TableContext");

	let validator_to_group =
		per_session_cache.validator_to_group(session_index, &validators, &validator_groups);

	let table_context =
		TableContext { validator, groups, validators: validators.to_vec(), disabled_validators };

	Ok(Some(PerRelayParentState {
		parent,
		node_features,
		executor_params,
		assigned_core,
		backed: HashSet::new(),
		table: Table::new(),
		table_context,
		issued_statements: HashSet::new(),
		awaiting_validation: HashSet::new(),
		fallbacks: HashMap::new(),
		minimum_backing_votes,
		inject_core_index,
		n_cores: validator_groups.len() as u32,
		claim_queue: ClaimQueueSnapshot::from(claim_queue),
		validator_to_group,
		group_rotation_info,
	}))
}

enum SecondingAllowed {
	No,
	// On which leaves is seconding allowed.
	Yes(Vec<Hash>),
}

/// Checks whether a candidate can be seconded based on its hypothetical membership in the fragment
/// chain.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn seconding_sanity_check<Context>(
	ctx: &mut Context,
	implicit_view: &ImplicitView,
	hypothetical_candidate: HypotheticalCandidate,
) -> SecondingAllowed {
	let mut leaves_for_seconding = Vec::new();
	let mut responses = FuturesOrdered::<BoxFuture<'_, Result<_, oneshot::Canceled>>>::new();

	let candidate_para = hypothetical_candidate.candidate_para();
	let candidate_relay_parent = hypothetical_candidate.relay_parent();
	let candidate_hash = hypothetical_candidate.candidate_hash();

	for head in implicit_view.leaves() {
		// Check that the candidate relay parent is allowed for para, skip the
		// leaf otherwise.
		let allowed_parents_for_para =
			implicit_view.known_allowed_relay_parents_under(head, Some(candidate_para));
		if !allowed_parents_for_para.unwrap_or_default().contains(&candidate_relay_parent) {
			continue
		}

		let (tx, rx) = oneshot::channel();
		ctx.send_message(ProspectiveParachainsMessage::GetHypotheticalMembership(
			HypotheticalMembershipRequest {
				candidates: vec![hypothetical_candidate.clone()],
				fragment_chain_relay_parent: Some(*head),
			},
			tx,
		))
		.await;
		let response = rx.map_ok(move |candidate_memberships| {
			let is_member_or_potential = candidate_memberships
				.into_iter()
				.find_map(|(candidate, leaves)| {
					(candidate.candidate_hash() == candidate_hash).then_some(leaves)
				})
				.and_then(|leaves| leaves.into_iter().find(|leaf| leaf == head))
				.is_some();

			(is_member_or_potential, head)
		});
		responses.push_back(response.boxed());
	}

	if responses.is_empty() {
		return SecondingAllowed::No
	}

	while let Some(response) = responses.next().await {
		match response {
			Err(oneshot::Canceled) => {
				gum::warn!(
					target: LOG_TARGET,
					"Failed to reach prospective parachains subsystem for hypothetical membership",
				);

				return SecondingAllowed::No
			},
			Ok((is_member_or_potential, head)) => match is_member_or_potential {
				false => {
					gum::debug!(
						target: LOG_TARGET,
						?candidate_hash,
						leaf_hash = ?head,
						"Refusing to second candidate at leaf. Is not a potential member.",
					);
				},
				true => {
					leaves_for_seconding.push(*head);
				},
			},
		}
	}

	if leaves_for_seconding.is_empty() {
		SecondingAllowed::No
	} else {
		SecondingAllowed::Yes(leaves_for_seconding)
	}
}

/// Performs seconding sanity check for an advertisement.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_can_second_request<Context>(
	ctx: &mut Context,
	state: &State,
	request: CanSecondRequest,
	tx: oneshot::Sender<bool>,
) {
	let relay_parent = request.candidate_relay_parent;
	let response = if state.per_relay_parent.get(&relay_parent).is_some() {
		let hypothetical_candidate = HypotheticalCandidate::Incomplete {
			candidate_hash: request.candidate_hash,
			candidate_para: request.candidate_para_id,
			parent_head_data_hash: request.parent_head_data_hash,
			candidate_relay_parent: relay_parent,
		};

		let result =
			seconding_sanity_check(ctx, &state.implicit_view, hypothetical_candidate).await;

		match result {
			SecondingAllowed::No => false,
			SecondingAllowed::Yes(leaves) => !leaves.is_empty(),
		}
	} else {
		// Relay parent is unknown or async backing is disabled.
		false
	};

	let _ = tx.send(response);
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_validated_candidate_command<Context>(
	ctx: &mut Context,
	state: &mut State,
	relay_parent: Hash,
	command: ValidatedCandidateCommand,
	metrics: &Metrics,
) -> Result<(), Error> {
	match state.per_relay_parent.get_mut(&relay_parent) {
		Some(rp_state) => {
			let candidate_hash = command.candidate_hash();
			rp_state.awaiting_validation.remove(&candidate_hash);

			match command {
				ValidatedCandidateCommand::Second(res) => match res {
					Ok(outputs) => {
						let BackgroundValidationOutputs {
							candidate,
							commitments,
							persisted_validation_data,
						} = outputs;

						if rp_state.issued_statements.contains(&candidate_hash) {
							return Ok(())
						}

						let receipt = CommittedCandidateReceipt {
							descriptor: candidate.descriptor.clone(),
							commitments,
						};

						let hypothetical_candidate = HypotheticalCandidate::Complete {
							candidate_hash,
							receipt: Arc::new(receipt.clone()),
							persisted_validation_data: persisted_validation_data.clone(),
						};
						// sanity check that we're allowed to second the candidate
						// and that it doesn't conflict with other candidates we've
						// seconded.
						if let SecondingAllowed::No = seconding_sanity_check(
							ctx,
							&state.implicit_view,
							hypothetical_candidate,
						)
						.await
						{
							return Ok(())
						};

						let statement =
							StatementWithPVD::Seconded(receipt, persisted_validation_data);

						// If we get an Error::RejectedByProspectiveParachains,
						// then the statement has not been distributed or imported into
						// the table.
						let res = sign_import_and_distribute_statement(
							ctx,
							rp_state,
							&mut state.per_candidate,
							statement,
							state.keystore.clone(),
							metrics,
						)
						.await;

						if let Err(Error::RejectedByProspectiveParachains) = res {
							let candidate_hash = candidate.hash();
							gum::debug!(
								target: LOG_TARGET,
								relay_parent = ?candidate.descriptor().relay_parent(),
								?candidate_hash,
								"Attempted to second candidate but was rejected by prospective parachains",
							);

							// Ensure the collator is reported.
							ctx.send_message(CollatorProtocolMessage::Invalid(
								candidate.descriptor().relay_parent(),
								candidate,
							))
							.await;

							return Ok(())
						}

						if let Some(stmt) = res? {
							match state.per_candidate.get_mut(&candidate_hash) {
								None => {
									gum::warn!(
										target: LOG_TARGET,
										?candidate_hash,
										"Missing `per_candidate` for seconded candidate.",
									);
								},
								Some(p) => p.seconded_locally = true,
							}

							rp_state.issued_statements.insert(candidate_hash);

							metrics.on_candidate_seconded();
							ctx.send_message(CollatorProtocolMessage::Seconded(
								rp_state.parent,
								StatementWithPVD::drop_pvd_from_signed(stmt),
							))
							.await;
						}
					},
					Err(candidate) => {
						ctx.send_message(CollatorProtocolMessage::Invalid(
							rp_state.parent,
							candidate,
						))
						.await;
					},
				},
				ValidatedCandidateCommand::Attest(res) => {
					// We are done - avoid new validation spawns:
					rp_state.fallbacks.remove(&candidate_hash);
					// sanity check.
					if !rp_state.issued_statements.contains(&candidate_hash) {
						if res.is_ok() {
							let statement = StatementWithPVD::Valid(candidate_hash);

							sign_import_and_distribute_statement(
								ctx,
								rp_state,
								&mut state.per_candidate,
								statement,
								state.keystore.clone(),
								metrics,
							)
							.await?;
						}
						rp_state.issued_statements.insert(candidate_hash);
					}
				},
				ValidatedCandidateCommand::AttestNoPoV(candidate_hash) => {
					if let Some(attesting) = rp_state.fallbacks.get_mut(&candidate_hash) {
						if let Some(index) = attesting.backing.pop() {
							attesting.from_validator = index;
							let attesting = attesting.clone();

							// The candidate state should be available because we've
							// validated it before, the relay-parent is still around,
							// and candidates are pruned on the basis of relay-parents.
							//
							// If it's not, then no point in validating it anyway.
							if let Some(pvd) = state
								.per_candidate
								.get(&candidate_hash)
								.map(|pc| pc.persisted_validation_data.clone())
							{
								kick_off_validation_work(
									ctx,
									rp_state,
									pvd,
									&state.background_validation_tx,
									attesting,
								)
								.await?;
							}
						}
					} else {
						gum::warn!(
							target: LOG_TARGET,
							"AttestNoPoV was triggered without fallback being available."
						);
						debug_assert!(false);
					}
				},
			}
		},
		None => {
			// simple race condition; can be ignored = this relay-parent
			// is no longer relevant.
		},
	}

	Ok(())
}

fn sign_statement(
	rp_state: &PerRelayParentState,
	statement: StatementWithPVD,
	keystore: KeystorePtr,
	metrics: &Metrics,
) -> Option<SignedFullStatementWithPVD> {
	let signed = rp_state
		.table_context
		.validator
		.as_ref()?
		.sign(keystore, statement)
		.ok()
		.flatten()?;
	metrics.on_statement_signed();
	Some(signed)
}

/// Import a statement into the statement table and return the summary of the import.
///
/// This will fail with `Error::RejectedByProspectiveParachains` if the message type is seconded,
/// the candidate is fresh, and any of the following are true:
/// 1. There is no `PersistedValidationData` attached.
/// 2. Prospective parachains subsystem returned an empty `HypotheticalMembership` i.e. did not
///    recognize the candidate as being applicable to any of the active leaves.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn import_statement<Context>(
	ctx: &mut Context,
	rp_state: &mut PerRelayParentState,
	per_candidate: &mut HashMap<CandidateHash, PerCandidateState>,
	statement: &SignedFullStatementWithPVD,
) -> Result<Option<TableSummary>, Error> {
	let candidate_hash = statement.payload().candidate_hash();

	gum::debug!(
		target: LOG_TARGET,
		statement = ?statement.payload().to_compact(),
		validator_index = statement.validator_index().0,
		?candidate_hash,
		"Importing statement",
	);

	// If this is a new candidate (statement is 'seconded' and candidate is unknown),
	// we need to create an entry in the `PerCandidateState` map.
	//
	// We also need to inform the prospective parachains subsystem of the seconded candidate.
	// If `ProspectiveParachainsMessage::Second` fails, then we return
	// Error::RejectedByProspectiveParachains.
	//
	// Persisted Validation Data should be available - it may already be available
	// if this is a candidate we are seconding.
	//
	// We should also not accept any candidates which have no valid depths under any of
	// our active leaves.
	if let StatementWithPVD::Seconded(candidate, pvd) = statement.payload() {
		if !per_candidate.contains_key(&candidate_hash) {
			let (tx, rx) = oneshot::channel();
			ctx.send_message(ProspectiveParachainsMessage::IntroduceSecondedCandidate(
				IntroduceSecondedCandidateRequest {
					candidate_para: candidate.descriptor.para_id(),
					candidate_receipt: candidate.clone(),
					persisted_validation_data: pvd.clone(),
				},
				tx,
			))
			.await;

			match rx.await {
				Err(oneshot::Canceled) => {
					gum::warn!(
						target: LOG_TARGET,
						"Could not reach the Prospective Parachains subsystem."
					);

					return Err(Error::RejectedByProspectiveParachains)
				},
				Ok(false) => return Err(Error::RejectedByProspectiveParachains),
				Ok(true) => {},
			}

			// Only save the candidate if it was approved by prospective parachains.
			per_candidate.insert(
				candidate_hash,
				PerCandidateState {
					persisted_validation_data: pvd.clone(),
					// This is set after importing when seconding locally.
					seconded_locally: false,
					relay_parent: candidate.descriptor.relay_parent(),
				},
			);
		}
	}

	let stmt = primitive_statement_to_table(statement);

	let core = core_index_from_statement(
		&rp_state.validator_to_group,
		&rp_state.group_rotation_info,
		rp_state.n_cores,
		&rp_state.claim_queue,
		statement,
	)
	.ok_or(Error::CoreIndexUnavailable)?;

	Ok(rp_state.table.import_statement(&rp_state.table_context, core, stmt))
}

/// Handles a summary received from [`import_statement`] and dispatches `Backed` notifications and
/// misbehaviors as a result of importing a statement.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn post_import_statement_actions<Context>(
	ctx: &mut Context,
	rp_state: &mut PerRelayParentState,
	summary: Option<&TableSummary>,
) {
	if let Some(attested) = summary.as_ref().and_then(|s| {
		rp_state.table.attested_candidate(
			&s.candidate,
			&rp_state.table_context,
			rp_state.minimum_backing_votes,
		)
	}) {
		let candidate_hash = attested.candidate.hash();

		// `HashSet::insert` returns true if the thing wasn't in there already.
		if rp_state.backed.insert(candidate_hash) {
			if let Some(backed) = table_attested_to_backed(
				attested,
				&rp_state.table_context,
				rp_state.inject_core_index,
			) {
				let para_id = backed.candidate().descriptor.para_id();
				gum::debug!(
					target: LOG_TARGET,
					candidate_hash = ?candidate_hash,
					relay_parent = ?rp_state.parent,
					%para_id,
					"Candidate backed",
				);

				// Inform the prospective parachains subsystem
				// that the candidate is now backed.
				ctx.send_message(ProspectiveParachainsMessage::CandidateBacked(
					para_id,
					candidate_hash,
				))
				.await;
				// Notify statement distribution of backed candidate.
				ctx.send_message(StatementDistributionMessage::Backed(candidate_hash)).await;
			} else {
				gum::debug!(target: LOG_TARGET, ?candidate_hash, "Cannot get BackedCandidate");
			}
		} else {
			gum::debug!(target: LOG_TARGET, ?candidate_hash, "Candidate already known");
		}
	} else {
		gum::debug!(target: LOG_TARGET, "No attested candidate");
	}

	issue_new_misbehaviors(ctx, rp_state.parent, &mut rp_state.table);
}

/// Check if there have happened any new misbehaviors and issue necessary messages.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
fn issue_new_misbehaviors<Context>(
	ctx: &mut Context,
	relay_parent: Hash,
	table: &mut Table<TableContext>,
) {
	// collect the misbehaviors to avoid double mutable self borrow issues
	let misbehaviors: Vec<_> = table.drain_misbehaviors().collect();
	for (validator_id, report) in misbehaviors {
		// The provisioner waits on candidate-backing, which means
		// that we need to send unbounded messages to avoid cycles.
		//
		// Misbehaviors are bounded by the number of validators and
		// the block production protocol.
		ctx.send_unbounded_message(ProvisionerMessage::ProvisionableData(
			relay_parent,
			ProvisionableData::MisbehaviorReport(relay_parent, validator_id, report),
		));
	}
}

/// Sign, import, and distribute a statement.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn sign_import_and_distribute_statement<Context>(
	ctx: &mut Context,
	rp_state: &mut PerRelayParentState,
	per_candidate: &mut HashMap<CandidateHash, PerCandidateState>,
	statement: StatementWithPVD,
	keystore: KeystorePtr,
	metrics: &Metrics,
) -> Result<Option<SignedFullStatementWithPVD>, Error> {
	if let Some(signed_statement) = sign_statement(&*rp_state, statement, keystore, metrics) {
		let summary = import_statement(ctx, rp_state, per_candidate, &signed_statement).await?;

		// `Share` must always be sent before `Backed`. We send the latter in
		// `post_import_statement_action` below.
		let smsg = StatementDistributionMessage::Share(rp_state.parent, signed_statement.clone());
		ctx.send_unbounded_message(smsg);

		post_import_statement_actions(ctx, rp_state, summary.as_ref()).await;

		Ok(Some(signed_statement))
	} else {
		Ok(None)
	}
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn background_validate_and_make_available<Context>(
	ctx: &mut Context,
	rp_state: &mut PerRelayParentState,
	params: BackgroundValidationParams<
		impl overseer::CandidateBackingSenderTrait,
		impl Fn(BackgroundValidationResult) -> ValidatedCandidateCommand + Send + 'static + Sync,
	>,
) -> Result<(), Error> {
	let candidate_hash = params.candidate.hash();
	let Some(core_index) = rp_state.assigned_core else { return Ok(()) };
	if rp_state.awaiting_validation.insert(candidate_hash) {
		// spawn background task.
		let bg = async move {
			if let Err(error) = validate_and_make_available(params, core_index).await {
				if let Error::BackgroundValidationMpsc(error) = error {
					gum::debug!(
						target: LOG_TARGET,
						?candidate_hash,
						?error,
						"Mpsc background validation mpsc died during validation- leaf no longer active?"
					);
				} else {
					gum::error!(
						target: LOG_TARGET,
						?candidate_hash,
						?error,
						"Failed to validate and make available",
					);
				}
			}
		};

		ctx.spawn("backing-validation", bg.boxed())
			.map_err(|_| Error::FailedToSpawnBackgroundTask)?;
	}

	Ok(())
}

/// Kick off validation work and distribute the result as a signed statement.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn kick_off_validation_work<Context>(
	ctx: &mut Context,
	rp_state: &mut PerRelayParentState,
	persisted_validation_data: PersistedValidationData,
	background_validation_tx: &mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
	attesting: AttestingData,
) -> Result<(), Error> {
	// Do nothing if the local validator is disabled or not a validator at all
	match rp_state.table_context.local_validator_is_disabled() {
		Some(true) => {
			gum::info!(target: LOG_TARGET, "We are disabled - don't kick off validation");
			return Ok(())
		},
		Some(false) => {}, // we are not disabled - move on
		None => {
			gum::debug!(target: LOG_TARGET, "We are not a validator - don't kick off validation");
			return Ok(())
		},
	}

	let candidate_hash = attesting.candidate.hash();
	if rp_state.issued_statements.contains(&candidate_hash) {
		return Ok(())
	}

	gum::debug!(
		target: LOG_TARGET,
		candidate_hash = ?candidate_hash,
		candidate_receipt = ?attesting.candidate,
		"Kicking off validation",
	);

	let bg_sender = ctx.sender().clone();
	let pov = PoVData::FetchFromValidator {
		from_validator: attesting.from_validator,
		candidate_hash,
		pov_hash: attesting.pov_hash,
	};

	background_validate_and_make_available(
		ctx,
		rp_state,
		BackgroundValidationParams {
			sender: bg_sender,
			tx_command: background_validation_tx.clone(),
			candidate: attesting.candidate,
			relay_parent: rp_state.parent,
			node_features: rp_state.node_features.clone(),
			executor_params: Arc::clone(&rp_state.executor_params),
			persisted_validation_data,
			pov,
			n_validators: rp_state.table_context.validators.len(),
			make_command: ValidatedCandidateCommand::Attest,
		},
	)
	.await
}

/// Import the statement and kick off validation work if it is a part of our assignment.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn maybe_validate_and_import<Context>(
	ctx: &mut Context,
	state: &mut State,
	relay_parent: Hash,
	statement: SignedFullStatementWithPVD,
) -> Result<(), Error> {
	let rp_state = match state.per_relay_parent.get_mut(&relay_parent) {
		Some(r) => r,
		None => {
			gum::trace!(
				target: LOG_TARGET,
				?relay_parent,
				"Received statement for unknown relay-parent"
			);

			return Ok(())
		},
	};

	// Don't import statement if the sender is disabled
	if rp_state.table_context.validator_is_disabled(&statement.validator_index()) {
		gum::debug!(
			target: LOG_TARGET,
			sender_validator_idx = ?statement.validator_index(),
			"Not importing statement because the sender is disabled"
		);
		return Ok(())
	}

	let res = import_statement(ctx, rp_state, &mut state.per_candidate, &statement).await;

	// if we get an Error::RejectedByProspectiveParachains,
	// we will do nothing.
	if let Err(Error::RejectedByProspectiveParachains) = res {
		gum::debug!(
			target: LOG_TARGET,
			?relay_parent,
			"Statement rejected by prospective parachains."
		);

		return Ok(())
	}

	let summary = res?;
	post_import_statement_actions(ctx, rp_state, summary.as_ref()).await;

	if let Some(summary) = summary {
		// import_statement already takes care of communicating with the
		// prospective parachains subsystem. At this point, the candidate
		// has already been accepted by the subsystem.

		let candidate_hash = summary.candidate;

		if Some(summary.group_id) != rp_state.assigned_core {
			return Ok(())
		}

		let attesting = match statement.payload() {
			StatementWithPVD::Seconded(receipt, _) => {
				let attesting = AttestingData {
					candidate: rp_state
						.table
						.get_candidate(&candidate_hash)
						.ok_or(Error::CandidateNotFound)?
						.to_plain(),
					pov_hash: receipt.descriptor.pov_hash(),
					from_validator: statement.validator_index(),
					backing: Vec::new(),
				};
				rp_state.fallbacks.insert(summary.candidate, attesting.clone());
				attesting
			},
			StatementWithPVD::Valid(candidate_hash) => {
				if let Some(attesting) = rp_state.fallbacks.get_mut(candidate_hash) {
					let our_index = rp_state.table_context.validator.as_ref().map(|v| v.index());
					if our_index == Some(statement.validator_index()) {
						return Ok(())
					}

					if rp_state.awaiting_validation.contains(candidate_hash) {
						// Job already running:
						attesting.backing.push(statement.validator_index());
						return Ok(())
					} else {
						// No job, so start another with current validator:
						attesting.from_validator = statement.validator_index();
						attesting.clone()
					}
				} else {
					return Ok(())
				}
			},
		};

		// After `import_statement` succeeds, the candidate entry is guaranteed
		// to exist.
		if let Some(pvd) = state
			.per_candidate
			.get(&candidate_hash)
			.map(|pc| pc.persisted_validation_data.clone())
		{
			kick_off_validation_work(
				ctx,
				rp_state,
				pvd,
				&state.background_validation_tx,
				attesting,
			)
			.await?;
		}
	}
	Ok(())
}

/// Kick off background validation with intent to second.
#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn validate_and_second<Context>(
	ctx: &mut Context,
	rp_state: &mut PerRelayParentState,
	persisted_validation_data: PersistedValidationData,
	candidate: &CandidateReceipt,
	pov: Arc<PoV>,
	background_validation_tx: &mpsc::Sender<(Hash, ValidatedCandidateCommand)>,
) -> Result<(), Error> {
	let candidate_hash = candidate.hash();

	gum::debug!(
		target: LOG_TARGET,
		candidate_hash = ?candidate_hash,
		candidate_receipt = ?candidate,
		"Validate and second candidate",
	);

	let bg_sender = ctx.sender().clone();
	background_validate_and_make_available(
		ctx,
		rp_state,
		BackgroundValidationParams {
			sender: bg_sender,
			tx_command: background_validation_tx.clone(),
			candidate: candidate.clone(),
			relay_parent: rp_state.parent,
			node_features: rp_state.node_features.clone(),
			executor_params: Arc::clone(&rp_state.executor_params),
			persisted_validation_data,
			pov: PoVData::Ready(pov),
			n_validators: rp_state.table_context.validators.len(),
			make_command: ValidatedCandidateCommand::Second,
		},
	)
	.await?;

	Ok(())
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_second_message<Context>(
	ctx: &mut Context,
	state: &mut State,
	candidate: CandidateReceipt,
	persisted_validation_data: PersistedValidationData,
	pov: PoV,
	metrics: &Metrics,
) -> Result<(), Error> {
	let _timer = metrics.time_process_second();

	let candidate_hash = candidate.hash();
	let relay_parent = candidate.descriptor().relay_parent();

	if candidate.descriptor().persisted_validation_data_hash() != persisted_validation_data.hash() {
		gum::warn!(
			target: LOG_TARGET,
			?candidate_hash,
			"Candidate backing was asked to second candidate with wrong PVD",
		);

		return Ok(())
	}

	let rp_state = match state.per_relay_parent.get_mut(&relay_parent) {
		None => {
			gum::trace!(
				target: LOG_TARGET,
				?relay_parent,
				?candidate_hash,
				"We were asked to second a candidate outside of our view."
			);

			return Ok(())
		},
		Some(r) => r,
	};

	// Just return if the local validator is disabled. If we are here the local node should be a
	// validator but defensively use `unwrap_or(false)` to continue processing in this case.
	if rp_state.table_context.local_validator_is_disabled().unwrap_or(false) {
		gum::warn!(target: LOG_TARGET, "Local validator is disabled. Don't validate and second");
		return Ok(())
	}

	let assigned_paras = rp_state.assigned_core.and_then(|core| rp_state.claim_queue.0.get(&core));

	// Sanity check that candidate is from our assignment.
	if !matches!(assigned_paras, Some(paras) if paras.contains(&candidate.descriptor().para_id())) {
		gum::debug!(
			target: LOG_TARGET,
			our_assignment_core = ?rp_state.assigned_core,
			our_assignment_paras = ?assigned_paras,
			collation = ?candidate.descriptor().para_id(),
			"Subsystem asked to second for para outside of our assignment",
		);
		return Ok(());
	}

	gum::debug!(
		target: LOG_TARGET,
		our_assignment_core = ?rp_state.assigned_core,
		our_assignment_paras = ?assigned_paras,
		collation = ?candidate.descriptor().para_id(),
		"Current assignments vs collation",
	);

	// If the message is a `CandidateBackingMessage::Second`, sign and dispatch a
	// Seconded statement only if we have not signed a Valid statement for the requested candidate.
	//
	// The actual logic of issuing the signed statement checks that this isn't
	// conflicting with other seconded candidates. Not doing that check here
	// gives other subsystems the ability to get us to execute arbitrary candidates,
	// but no more.
	if !rp_state.issued_statements.contains(&candidate_hash) {
		let pov = Arc::new(pov);

		validate_and_second(
			ctx,
			rp_state,
			persisted_validation_data,
			&candidate,
			pov,
			&state.background_validation_tx,
		)
		.await?;
	}

	Ok(())
}

#[overseer::contextbounds(CandidateBacking, prefix = self::overseer)]
async fn handle_statement_message<Context>(
	ctx: &mut Context,
	state: &mut State,
	relay_parent: Hash,
	statement: SignedFullStatementWithPVD,
	metrics: &Metrics,
) -> Result<(), Error> {
	let _timer = metrics.time_process_statement();

	// Validator disabling is handled in `maybe_validate_and_import`
	match maybe_validate_and_import(ctx, state, relay_parent, statement).await {
		Err(Error::ValidationFailed(_)) => Ok(()),
		Err(e) => Err(e),
		Ok(()) => Ok(()),
	}
}

fn handle_get_backable_candidates_message(
	state: &State,
	requested_candidates: HashMap<ParaId, Vec<(CandidateHash, Hash)>>,
	tx: oneshot::Sender<HashMap<ParaId, Vec<BackedCandidate>>>,
	metrics: &Metrics,
) -> Result<(), Error> {
	let _timer = metrics.time_get_backed_candidates();

	let mut backed = HashMap::with_capacity(requested_candidates.len());

	for (para_id, para_candidates) in requested_candidates {
		for (candidate_hash, relay_parent) in para_candidates.iter() {
			let rp_state = match state.per_relay_parent.get(&relay_parent) {
				Some(rp_state) => rp_state,
				None => {
					gum::debug!(
						target: LOG_TARGET,
						?relay_parent,
						?candidate_hash,
						"Requested candidate's relay parent is out of view",
					);
					break
				},
			};
			let maybe_backed_candidate = rp_state
				.table
				.attested_candidate(
					candidate_hash,
					&rp_state.table_context,
					rp_state.minimum_backing_votes,
				)
				.and_then(|attested| {
					table_attested_to_backed(
						attested,
						&rp_state.table_context,
						rp_state.inject_core_index,
					)
				});

			if let Some(backed_candidate) = maybe_backed_candidate {
				backed
					.entry(para_id)
					.or_insert_with(|| Vec::with_capacity(para_candidates.len()))
					.push(backed_candidate);
			} else {
				break
			}
		}
	}

	tx.send(backed).map_err(|data| Error::Send(data))?;
	Ok(())
}