referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Validation host - is the primary interface for this crate. It allows the clients to enqueue
//! jobs for PVF execution or preparation.
//!
//! The validation host is represented by a future/task that runs an event-loop and by a handle,
//! [`ValidationHost`], that allows communication with that event-loop.

use crate::{
	artifacts::{ArtifactId, ArtifactPathId, ArtifactState, Artifacts, ArtifactsCleanupConfig},
	execute::{self, PendingExecutionRequest},
	metrics::Metrics,
	prepare, Priority, SecurityStatus, ValidationError, LOG_TARGET,
};
use always_assert::never;
use futures::{
	channel::{mpsc, oneshot},
	Future, FutureExt, SinkExt, StreamExt,
};
use polkadot_node_core_pvf_common::{
	error::{PrecheckResult, PrepareError},
	prepare::PrepareSuccess,
	pvf::PvfPrepData,
};
use polkadot_node_primitives::PoV;
use polkadot_node_subsystem::{
	messages::PvfExecKind, ActiveLeavesUpdate, SubsystemError, SubsystemResult,
};
use polkadot_parachain_primitives::primitives::ValidationResult;
use polkadot_primitives::{Hash, PersistedValidationData};
use std::{
	collections::HashMap,
	path::PathBuf,
	sync::Arc,
	time::{Duration, SystemTime},
};

/// The time period after which a failed preparation artifact is considered ready to be retried.
/// Note that we will only retry if another request comes in after this cooldown has passed.
#[cfg(not(test))]
pub const PREPARE_FAILURE_COOLDOWN: Duration = Duration::from_secs(15 * 60);
#[cfg(test)]
pub const PREPARE_FAILURE_COOLDOWN: Duration = Duration::from_millis(200);

/// The amount of times we will retry failed prepare jobs.
pub const NUM_PREPARE_RETRIES: u32 = 5;

/// The name of binary spawned to prepare a PVF artifact
pub const PREPARE_BINARY_NAME: &str = "polkadot-prepare-worker";

/// The name of binary spawned to execute a PVF
pub const EXECUTE_BINARY_NAME: &str = "polkadot-execute-worker";

/// The size of incoming message queue
pub const HOST_MESSAGE_QUEUE_SIZE: usize = 10;

/// An alias to not spell the type for the oneshot sender for the PVF execution result.
pub(crate) type ResultSender = oneshot::Sender<Result<ValidationResult, ValidationError>>;

/// Transmission end used for sending the PVF preparation result.
pub(crate) type PrecheckResultSender = oneshot::Sender<PrecheckResult>;

/// A handle to the async process serving the validation host requests.
#[derive(Clone)]
pub struct ValidationHost {
	to_host_tx: mpsc::Sender<ToHost>,
	/// Available security features, detected by the host during startup.
	pub security_status: SecurityStatus,
}

impl ValidationHost {
	/// Precheck PVF with the given code, i.e. verify that it compiles within a reasonable time
	/// limit. This will prepare the PVF. The result of preparation will be sent to the provided
	/// result sender.
	///
	/// This is async to accommodate the possibility of back-pressure. In the vast majority of
	/// situations this function should return immediately.
	///
	/// Returns an error if the request cannot be sent to the validation host, i.e. if it shut down.
	pub async fn precheck_pvf(
		&mut self,
		pvf: PvfPrepData,
		result_tx: PrecheckResultSender,
	) -> Result<(), String> {
		self.to_host_tx
			.send(ToHost::PrecheckPvf { pvf, result_tx })
			.await
			.map_err(|_| "the inner loop hung up".to_string())
	}

	/// Execute PVF with the given code, execution timeout, parameters and priority.
	/// The result of execution will be sent to the provided result sender.
	///
	/// This is async to accommodate the possibility of back-pressure. In the vast majority of
	/// situations this function should return immediately.
	///
	/// Returns an error if the request cannot be sent to the validation host, i.e. if it shut down.
	pub async fn execute_pvf(
		&mut self,
		pvf: PvfPrepData,
		exec_timeout: Duration,
		pvd: Arc<PersistedValidationData>,
		pov: Arc<PoV>,
		priority: Priority,
		exec_kind: PvfExecKind,
		result_tx: ResultSender,
	) -> Result<(), String> {
		self.to_host_tx
			.send(ToHost::ExecutePvf(ExecutePvfInputs {
				pvf,
				exec_timeout,
				pvd,
				pov,
				priority,
				exec_kind,
				result_tx,
			}))
			.await
			.map_err(|_| "the inner loop hung up".to_string())
	}

	/// Sends a signal to the validation host requesting to prepare a list of the given PVFs.
	///
	/// This is async to accommodate the possibility of back-pressure. In the vast majority of
	/// situations this function should return immediately.
	///
	/// Returns an error if the request cannot be sent to the validation host, i.e. if it shut down.
	pub async fn heads_up(&mut self, active_pvfs: Vec<PvfPrepData>) -> Result<(), String> {
		self.to_host_tx
			.send(ToHost::HeadsUp { active_pvfs })
			.await
			.map_err(|_| "the inner loop hung up".to_string())
	}

	/// Sends a signal to the validation host requesting to update best block.
	///
	/// Returns an error if the request cannot be sent to the validation host, i.e. if it shut down.
	pub async fn update_active_leaves(
		&mut self,
		update: ActiveLeavesUpdate,
		ancestors: Vec<Hash>,
	) -> Result<(), String> {
		self.to_host_tx
			.send(ToHost::UpdateActiveLeaves { update, ancestors })
			.await
			.map_err(|_| "the inner loop hung up".to_string())
	}
}

enum ToHost {
	PrecheckPvf { pvf: PvfPrepData, result_tx: PrecheckResultSender },
	ExecutePvf(ExecutePvfInputs),
	HeadsUp { active_pvfs: Vec<PvfPrepData> },
	UpdateActiveLeaves { update: ActiveLeavesUpdate, ancestors: Vec<Hash> },
}

struct ExecutePvfInputs {
	pvf: PvfPrepData,
	exec_timeout: Duration,
	pvd: Arc<PersistedValidationData>,
	pov: Arc<PoV>,
	priority: Priority,
	exec_kind: PvfExecKind,
	result_tx: ResultSender,
}

/// Configuration for the validation host.
#[derive(Debug)]
pub struct Config {
	/// The root directory where the prepared artifacts can be stored.
	pub cache_path: PathBuf,
	/// The version of the node. `None` can be passed to skip the version check (only for tests).
	pub node_version: Option<String>,
	/// Whether the node is attempting to run as a secure validator.
	pub secure_validator_mode: bool,

	/// The path to the program that can be used to spawn the prepare workers.
	pub prepare_worker_program_path: PathBuf,
	/// The time allotted for a prepare worker to spawn and report to the host.
	pub prepare_worker_spawn_timeout: Duration,
	/// The maximum number of workers that can be spawned in the prepare pool for tasks with the
	/// priority below critical.
	pub prepare_workers_soft_max_num: usize,
	/// The absolute number of workers that can be spawned in the prepare pool.
	pub prepare_workers_hard_max_num: usize,

	/// The path to the program that can be used to spawn the execute workers.
	pub execute_worker_program_path: PathBuf,
	/// The time allotted for an execute worker to spawn and report to the host.
	pub execute_worker_spawn_timeout: Duration,
	/// The maximum number of execute workers that can run at the same time.
	pub execute_workers_max_num: usize,
}

impl Config {
	/// Create a new instance of the configuration.
	pub fn new(
		cache_path: PathBuf,
		node_version: Option<String>,
		secure_validator_mode: bool,
		prepare_worker_program_path: PathBuf,
		execute_worker_program_path: PathBuf,
		execute_workers_max_num: usize,
		prepare_workers_soft_max_num: usize,
		prepare_workers_hard_max_num: usize,
	) -> Self {
		Self {
			cache_path,
			node_version,
			secure_validator_mode,

			prepare_worker_program_path,
			prepare_worker_spawn_timeout: Duration::from_secs(3),
			prepare_workers_soft_max_num,
			prepare_workers_hard_max_num,

			execute_worker_program_path,
			execute_worker_spawn_timeout: Duration::from_secs(3),
			execute_workers_max_num,
		}
	}
}

/// Start the validation host.
///
/// Returns a [handle][`ValidationHost`] to the started validation host and the future. The future
/// must be polled in order for validation host to function.
///
/// The future should not return normally but if it does then that indicates an unrecoverable error.
/// In that case all pending requests will be canceled, dropping the result senders and new ones
/// will be rejected.
pub async fn start(
	config: Config,
	metrics: Metrics,
) -> SubsystemResult<(ValidationHost, impl Future<Output = ()>)> {
	gum::debug!(target: LOG_TARGET, ?config, "starting PVF validation host");

	// Make sure the cache is initialized before doing anything else.
	let artifacts = Artifacts::new(&config.cache_path).await;

	// Run checks for supported security features once per host startup. If some checks fail, warn
	// if Secure Validator Mode is disabled and return an error otherwise.
	#[cfg(target_os = "linux")]
	let security_status = match crate::security::check_security_status(&config).await {
		Ok(ok) => ok,
		Err(err) => return Err(SubsystemError::Context(err)),
	};
	#[cfg(not(target_os = "linux"))]
	let security_status = if config.secure_validator_mode {
		gum::error!(
			target: LOG_TARGET,
			"{}{}{}",
			crate::SECURE_MODE_ERROR,
			crate::SECURE_LINUX_NOTE,
			crate::IGNORE_SECURE_MODE_TIP
		);
		return Err(SubsystemError::Context(
			"could not enable Secure Validator Mode for non-Linux; check logs".into(),
		));
	} else {
		gum::warn!(
			target: LOG_TARGET,
			"{}{}",
			crate::SECURE_MODE_WARNING,
			crate::SECURE_LINUX_NOTE,
		);
		SecurityStatus::default()
	};

	let (to_host_tx, to_host_rx) = mpsc::channel(HOST_MESSAGE_QUEUE_SIZE);

	let validation_host = ValidationHost { to_host_tx, security_status: security_status.clone() };

	let (to_prepare_pool, from_prepare_pool, run_prepare_pool) = prepare::start_pool(
		metrics.clone(),
		config.prepare_worker_program_path.clone(),
		config.cache_path.clone(),
		config.prepare_worker_spawn_timeout,
		config.node_version.clone(),
		security_status.clone(),
	);

	let (to_prepare_queue_tx, from_prepare_queue_rx, run_prepare_queue) = prepare::start_queue(
		metrics.clone(),
		config.prepare_workers_soft_max_num,
		config.prepare_workers_hard_max_num,
		config.cache_path.clone(),
		to_prepare_pool,
		from_prepare_pool,
	);

	let (to_execute_queue_tx, from_execute_queue_rx, run_execute_queue) = execute::start(
		metrics,
		config.execute_worker_program_path.to_owned(),
		config.cache_path.clone(),
		config.execute_workers_max_num,
		config.execute_worker_spawn_timeout,
		config.node_version,
		security_status,
	);

	let (to_sweeper_tx, to_sweeper_rx) = mpsc::channel(100);
	let run_sweeper = sweeper_task(to_sweeper_rx);

	let run_host = async move {
		run(Inner {
			cleanup_pulse_interval: Duration::from_secs(3600),
			cleanup_config: ArtifactsCleanupConfig::default(),
			artifacts,
			to_host_rx,
			to_prepare_queue_tx,
			from_prepare_queue_rx,
			to_execute_queue_tx,
			from_execute_queue_rx,
			to_sweeper_tx,
			awaiting_prepare: AwaitingPrepare::default(),
		})
		.await
	};

	let task = async move {
		// Bundle the sub-components' tasks together into a single future.
		futures::select! {
			_ = run_host.fuse() => {},
			_ = run_prepare_queue.fuse() => {},
			_ = run_prepare_pool.fuse() => {},
			_ = run_execute_queue.fuse() => {},
			_ = run_sweeper.fuse() => {},
		};
	};

	Ok((validation_host, task))
}

/// A mapping from an artifact ID which is in preparation state to the list of pending execution
/// requests that should be executed once the artifact's preparation is finished.
#[derive(Default)]
struct AwaitingPrepare(HashMap<ArtifactId, Vec<PendingExecutionRequest>>);

impl AwaitingPrepare {
	fn add(&mut self, artifact_id: ArtifactId, pending_execution_request: PendingExecutionRequest) {
		self.0.entry(artifact_id).or_default().push(pending_execution_request);
	}

	fn take(&mut self, artifact_id: &ArtifactId) -> Vec<PendingExecutionRequest> {
		self.0.remove(artifact_id).unwrap_or_default()
	}
}

struct Inner {
	cleanup_pulse_interval: Duration,
	cleanup_config: ArtifactsCleanupConfig,
	artifacts: Artifacts,

	to_host_rx: mpsc::Receiver<ToHost>,

	to_prepare_queue_tx: mpsc::Sender<prepare::ToQueue>,
	from_prepare_queue_rx: mpsc::UnboundedReceiver<prepare::FromQueue>,

	to_execute_queue_tx: mpsc::Sender<execute::ToQueue>,
	from_execute_queue_rx: mpsc::UnboundedReceiver<execute::FromQueue>,

	to_sweeper_tx: mpsc::Sender<PathBuf>,

	awaiting_prepare: AwaitingPrepare,
}

#[derive(Debug)]
struct Fatal;

async fn run(
	Inner {
		cleanup_pulse_interval,
		cleanup_config,
		mut artifacts,
		to_host_rx,
		from_prepare_queue_rx,
		mut to_prepare_queue_tx,
		from_execute_queue_rx,
		mut to_execute_queue_tx,
		mut to_sweeper_tx,
		mut awaiting_prepare,
	}: Inner,
) {
	macro_rules! break_if_fatal {
		($expr:expr) => {
			match $expr {
				Err(Fatal) => {
					gum::error!(
						target: LOG_TARGET,
						"Fatal error occurred, terminating the host. Line: {}",
						line!(),
					);
					break
				},
				Ok(v) => v,
			}
		};
	}

	let cleanup_pulse = pulse_every(cleanup_pulse_interval).fuse();
	futures::pin_mut!(cleanup_pulse);

	let mut to_host_rx = to_host_rx.fuse();
	let mut from_prepare_queue_rx = from_prepare_queue_rx.fuse();
	let mut from_execute_queue_rx = from_execute_queue_rx.fuse();

	loop {
		// biased to make it behave deterministically for tests.
		futures::select_biased! {
			from_execute_queue_rx = from_execute_queue_rx.next() => {
				let from_queue = break_if_fatal!(from_execute_queue_rx.ok_or(Fatal));
				let execute::FromQueue::RemoveArtifact { artifact, reply_to } = from_queue;
				break_if_fatal!(handle_artifact_removal(
					&mut to_sweeper_tx,
					&mut artifacts,
					artifact,
					reply_to,
				).await);
			},
			() = cleanup_pulse.select_next_some() => {
				// `select_next_some` because we don't expect this to fail, but if it does, we
				// still don't fail. The trade-off is that the compiled cache will start growing
				// in size. That is, however, rather a slow process and hopefully the operator
				// will notice it.

				break_if_fatal!(handle_cleanup_pulse(
					&mut to_sweeper_tx,
					&mut artifacts,
					&cleanup_config,
				).await);
			},
			to_host = to_host_rx.next() => {
				let to_host = match to_host {
					None => {
						// The sending half of the channel has been closed, meaning the
						// `ValidationHost` struct was dropped. Shutting down gracefully.
						break;
					},
					Some(to_host) => to_host,
				};

				// If the artifact failed before, it could be re-scheduled for preparation here if
				// the preparation failure cooldown has elapsed.
				break_if_fatal!(handle_to_host(
					&mut artifacts,
					&mut to_prepare_queue_tx,
					&mut to_execute_queue_tx,
					&mut awaiting_prepare,
					to_host,
				)
				.await);
			},
			from_prepare_queue = from_prepare_queue_rx.next() => {
				let from_queue = break_if_fatal!(from_prepare_queue.ok_or(Fatal));

				// Note that the preparation outcome is always reported as concluded.
				//
				// That's because the error conditions are written into the artifact and will be
				// reported at the time of the execution. It potentially, but not necessarily, can
				// be scheduled for execution as a result of this function call, in case there are
				// pending executions.
				//
				// We could be eager in terms of reporting and plumb the result from the preparation
				// worker but we don't for the sake of simplicity.
				break_if_fatal!(handle_prepare_done(
					&mut artifacts,
					&mut to_execute_queue_tx,
					&mut awaiting_prepare,
					from_queue,
				).await);
			},
		}
	}
}

async fn handle_to_host(
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	to_host: ToHost,
) -> Result<(), Fatal> {
	match to_host {
		ToHost::PrecheckPvf { pvf, result_tx } => {
			handle_precheck_pvf(artifacts, prepare_queue, pvf, result_tx).await?;
		},
		ToHost::ExecutePvf(inputs) => {
			handle_execute_pvf(artifacts, prepare_queue, execute_queue, awaiting_prepare, inputs)
				.await?;
		},
		ToHost::HeadsUp { active_pvfs } =>
			handle_heads_up(artifacts, prepare_queue, active_pvfs).await?,
		ToHost::UpdateActiveLeaves { update, ancestors } =>
			handle_update_active_leaves(execute_queue, update, ancestors).await?,
	}

	Ok(())
}

/// Handles PVF prechecking requests.
///
/// This tries to prepare the PVF by compiling the WASM blob within a timeout set in
/// `PvfPrepData`.
///
/// We don't retry artifacts that previously failed preparation. We don't expect multiple
/// pre-checking requests.
async fn handle_precheck_pvf(
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	pvf: PvfPrepData,
	result_sender: PrecheckResultSender,
) -> Result<(), Fatal> {
	let artifact_id = ArtifactId::from_pvf_prep_data(&pvf);

	if let Some(state) = artifacts.artifact_state_mut(&artifact_id) {
		match state {
			ArtifactState::Prepared { last_time_needed, .. } => {
				*last_time_needed = SystemTime::now();
				let _ = result_sender.send(Ok(()));
			},
			ArtifactState::Preparing { waiting_for_response, num_failures: _ } =>
				waiting_for_response.push(result_sender),
			ArtifactState::FailedToProcess { error, .. } => {
				// Do not retry an artifact that previously failed preparation.
				let _ = result_sender.send(PrecheckResult::Err(error.clone()));
			},
		}
	} else {
		artifacts.insert_preparing(artifact_id, vec![result_sender]);
		send_prepare(prepare_queue, prepare::ToQueue::Enqueue { priority: Priority::Normal, pvf })
			.await?;
	}
	Ok(())
}

/// Handles PVF execution.
///
/// This will try to prepare the PVF, if a prepared artifact does not already exist. If there is
/// already a preparation job, we coalesce the two preparation jobs.
///
/// If the prepare job succeeded previously, we will enqueue an execute job right away.
///
/// If the prepare job failed previously, we may retry it under certain conditions.
///
/// When preparing for execution, we use a more lenient timeout
/// ([`DEFAULT_LENIENT_PREPARATION_TIMEOUT`](polkadot_primitives::executor_params::DEFAULT_LENIENT_PREPARATION_TIMEOUT))
/// than when prechecking.
async fn handle_execute_pvf(
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	inputs: ExecutePvfInputs,
) -> Result<(), Fatal> {
	let ExecutePvfInputs { pvf, exec_timeout, pvd, pov, priority, exec_kind, result_tx } = inputs;
	let artifact_id = ArtifactId::from_pvf_prep_data(&pvf);
	let executor_params = (*pvf.executor_params()).clone();

	if let Some(state) = artifacts.artifact_state_mut(&artifact_id) {
		match state {
			ArtifactState::Prepared { ref path, last_time_needed, .. } => {
				let file_metadata = std::fs::metadata(path);

				if file_metadata.is_ok() {
					*last_time_needed = SystemTime::now();

					// This artifact has already been prepared, send it to the execute queue.
					send_execute(
						execute_queue,
						execute::ToQueue::Enqueue {
							artifact: ArtifactPathId::new(artifact_id, path),
							pending_execution_request: PendingExecutionRequest {
								exec_timeout,
								pvd,
								pov,
								executor_params,
								exec_kind,
								result_tx,
							},
						},
					)
					.await?;
				} else {
					gum::warn!(
						target: LOG_TARGET,
						?pvf,
						?artifact_id,
						"handle_execute_pvf: Re-queuing PVF preparation for prepared artifact with missing file."
					);

					// The artifact has been prepared previously but the file is missing, prepare it
					// again.
					*state = ArtifactState::Preparing {
						waiting_for_response: Vec::new(),
						num_failures: 0,
					};
					enqueue_prepare_for_execute(
						prepare_queue,
						awaiting_prepare,
						pvf,
						priority,
						artifact_id,
						PendingExecutionRequest {
							exec_timeout,
							pvd,
							pov,
							executor_params,
							exec_kind,
							result_tx,
						},
					)
					.await?;
				}
			},
			ArtifactState::Preparing { .. } => {
				awaiting_prepare.add(
					artifact_id,
					PendingExecutionRequest {
						exec_timeout,
						pvd,
						pov,
						executor_params,
						result_tx,
						exec_kind,
					},
				);
			},
			ArtifactState::FailedToProcess { last_time_failed, num_failures, error } => {
				if can_retry_prepare_after_failure(*last_time_failed, *num_failures, error) {
					gum::warn!(
						target: LOG_TARGET,
						?pvf,
						?artifact_id,
						?last_time_failed,
						%num_failures,
						%error,
						"handle_execute_pvf: Re-trying failed PVF preparation."
					);

					// If we are allowed to retry the failed prepare job, change the state to
					// Preparing and re-queue this job.
					*state = ArtifactState::Preparing {
						waiting_for_response: Vec::new(),
						num_failures: *num_failures,
					};
					enqueue_prepare_for_execute(
						prepare_queue,
						awaiting_prepare,
						pvf,
						priority,
						artifact_id,
						PendingExecutionRequest {
							exec_timeout,
							pvd,
							pov,
							executor_params,
							exec_kind,
							result_tx,
						},
					)
					.await?;
				} else {
					let _ = result_tx.send(Err(ValidationError::from(error.clone())));
				}
			},
		}
	} else {
		// Artifact is unknown: register it and enqueue a job with the corresponding priority and
		// PVF.
		artifacts.insert_preparing(artifact_id.clone(), Vec::new());
		enqueue_prepare_for_execute(
			prepare_queue,
			awaiting_prepare,
			pvf,
			priority,
			artifact_id,
			PendingExecutionRequest {
				exec_timeout,
				pvd,
				pov,
				executor_params,
				result_tx,
				exec_kind,
			},
		)
		.await?;
	}

	Ok(())
}

async fn handle_heads_up(
	artifacts: &mut Artifacts,
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	active_pvfs: Vec<PvfPrepData>,
) -> Result<(), Fatal> {
	let now = SystemTime::now();

	for active_pvf in active_pvfs {
		let artifact_id = ArtifactId::from_pvf_prep_data(&active_pvf);
		if let Some(state) = artifacts.artifact_state_mut(&artifact_id) {
			match state {
				ArtifactState::Prepared { last_time_needed, .. } => {
					*last_time_needed = now;
				},
				ArtifactState::Preparing { .. } => {
					// The artifact is already being prepared, so we don't need to do anything.
				},
				ArtifactState::FailedToProcess { last_time_failed, num_failures, error } => {
					if can_retry_prepare_after_failure(*last_time_failed, *num_failures, error) {
						gum::warn!(
							target: LOG_TARGET,
							?active_pvf,
							?artifact_id,
							?last_time_failed,
							%num_failures,
							%error,
							"handle_heads_up: Re-trying failed PVF preparation."
						);

						// If we are allowed to retry the failed prepare job, change the state to
						// Preparing and re-queue this job.
						*state = ArtifactState::Preparing {
							waiting_for_response: vec![],
							num_failures: *num_failures,
						};
						send_prepare(
							prepare_queue,
							prepare::ToQueue::Enqueue {
								priority: Priority::Normal,
								pvf: active_pvf,
							},
						)
						.await?;
					}
				},
			}
		} else {
			// It's not in the artifacts, so we need to enqueue a job to prepare it.
			artifacts.insert_preparing(artifact_id.clone(), Vec::new());

			send_prepare(
				prepare_queue,
				prepare::ToQueue::Enqueue { priority: Priority::Normal, pvf: active_pvf },
			)
			.await?;
		}
	}

	Ok(())
}

async fn handle_prepare_done(
	artifacts: &mut Artifacts,
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	from_queue: prepare::FromQueue,
) -> Result<(), Fatal> {
	let prepare::FromQueue { artifact_id, result } = from_queue;

	// Make some sanity checks and extract the current state.
	let state = match artifacts.artifact_state_mut(&artifact_id) {
		None => {
			// before sending request to prepare, the artifact is inserted with `preparing` state;
			// the requests are deduplicated for the same artifact id;
			// there is only one possible state change: prepare is done;
			// thus the artifact cannot be unknown, only preparing;
			// qed.
			never!("an unknown artifact was prepared: {:?}", artifact_id);
			return Ok(())
		},
		Some(ArtifactState::Prepared { .. }) => {
			// before sending request to prepare, the artifact is inserted with `preparing` state;
			// the requests are deduplicated for the same artifact id;
			// there is only one possible state change: prepare is done;
			// thus the artifact cannot be prepared, only preparing;
			// qed.
			never!("the artifact is already prepared: {:?}", artifact_id);
			return Ok(())
		},
		Some(ArtifactState::FailedToProcess { .. }) => {
			// The reasoning is similar to the above, the artifact cannot be
			// processed at this point.
			never!("the artifact is already processed unsuccessfully: {:?}", artifact_id);
			return Ok(())
		},
		Some(state @ ArtifactState::Preparing { .. }) => state,
	};

	let num_failures = if let ArtifactState::Preparing { waiting_for_response, num_failures } =
		state
	{
		for result_sender in waiting_for_response.drain(..) {
			let result = result.clone().map(|_| ());
			let _ = result_sender.send(result);
		}
		num_failures
	} else {
		never!("The reasoning is similar to the above, the artifact can only be preparing at this point; qed");
		return Ok(())
	};

	// It's finally time to dispatch all the execution requests that were waiting for this artifact
	// to be prepared.
	let pending_requests = awaiting_prepare.take(&artifact_id);
	for PendingExecutionRequest { exec_timeout, pvd, pov, executor_params, result_tx, exec_kind } in
		pending_requests
	{
		if result_tx.is_canceled() {
			// Preparation could've taken quite a bit of time and the requester may be not
			// interested in execution anymore, in which case we just skip the request.
			continue
		}

		let path = match &result {
			Ok(success) => success.path.clone(),
			Err(error) => {
				let _ = result_tx.send(Err(ValidationError::from(error.clone())));
				continue
			},
		};

		send_execute(
			execute_queue,
			execute::ToQueue::Enqueue {
				artifact: ArtifactPathId::new(artifact_id.clone(), &path),
				pending_execution_request: PendingExecutionRequest {
					exec_timeout,
					pvd,
					pov,
					executor_params,
					exec_kind,
					result_tx,
				},
			},
		)
		.await?;
	}

	*state = match result {
		Ok(PrepareSuccess { path, size, .. }) =>
			ArtifactState::Prepared { path, last_time_needed: SystemTime::now(), size },
		Err(error) => {
			let last_time_failed = SystemTime::now();
			let num_failures = *num_failures + 1;

			gum::error!(
				target: LOG_TARGET,
				?artifact_id,
				time_failed = ?last_time_failed,
				%num_failures,
				"artifact preparation failed: {}",
				error
			);
			ArtifactState::FailedToProcess { last_time_failed, num_failures, error }
		},
	};

	Ok(())
}

async fn handle_update_active_leaves(
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	update: ActiveLeavesUpdate,
	ancestors: Vec<Hash>,
) -> Result<(), Fatal> {
	send_execute(execute_queue, execute::ToQueue::UpdateActiveLeaves { update, ancestors }).await
}

async fn send_prepare(
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	to_queue: prepare::ToQueue,
) -> Result<(), Fatal> {
	prepare_queue.send(to_queue).await.map_err(|_| Fatal)
}

async fn send_execute(
	execute_queue: &mut mpsc::Sender<execute::ToQueue>,
	to_queue: execute::ToQueue,
) -> Result<(), Fatal> {
	execute_queue.send(to_queue).await.map_err(|_| Fatal)
}

/// Sends a job to the preparation queue, and adds an execution request that will wait to run after
/// this prepare job has finished.
async fn enqueue_prepare_for_execute(
	prepare_queue: &mut mpsc::Sender<prepare::ToQueue>,
	awaiting_prepare: &mut AwaitingPrepare,
	pvf: PvfPrepData,
	priority: Priority,
	artifact_id: ArtifactId,
	pending_execution_request: PendingExecutionRequest,
) -> Result<(), Fatal> {
	send_prepare(prepare_queue, prepare::ToQueue::Enqueue { priority, pvf }).await?;

	// Add an execution request that will wait to run after this prepare job has finished.
	awaiting_prepare.add(artifact_id, pending_execution_request);

	Ok(())
}

async fn handle_cleanup_pulse(
	sweeper_tx: &mut mpsc::Sender<PathBuf>,
	artifacts: &mut Artifacts,
	cleanup_config: &ArtifactsCleanupConfig,
) -> Result<(), Fatal> {
	let to_remove = artifacts.prune(cleanup_config);
	gum::debug!(
		target: LOG_TARGET,
		"PVF pruning: {} artifacts reached their end of life",
		to_remove.len(),
	);
	for (artifact_id, path) in to_remove {
		gum::debug!(
			target: LOG_TARGET,
			validation_code_hash = ?artifact_id.code_hash,
			"pruning artifact",
		);
		sweeper_tx.send(path).await.map_err(|_| Fatal)?;
	}

	Ok(())
}

async fn handle_artifact_removal(
	sweeper_tx: &mut mpsc::Sender<PathBuf>,
	artifacts: &mut Artifacts,
	artifact_id: ArtifactId,
	reply_to: oneshot::Sender<()>,
) -> Result<(), Fatal> {
	let (artifact_id, path) = if let Some(artifact) = artifacts.remove(artifact_id) {
		artifact
	} else {
		// if we haven't found the artifact by its id,
		// it has been probably removed
		// anyway with the randomness of the artifact name
		// it is safe to ignore
		return Ok(());
	};
	reply_to
		.send(())
		.expect("the execute queue waits for the artifact remove confirmation; qed");
	// Thanks to the randomness of the artifact name (see
	// `artifacts::generate_artifact_path`) there is no issue with any name conflict on
	// future repreparation.
	// So we can confirm the artifact removal already
	gum::debug!(
		target: LOG_TARGET,
		validation_code_hash = ?artifact_id.code_hash,
		"PVF pruning: pruning artifact by request from the execute queue",
	);
	sweeper_tx.send(path).await.map_err(|_| Fatal)?;
	Ok(())
}

/// A simple task which sole purpose is to delete files thrown at it.
async fn sweeper_task(mut sweeper_rx: mpsc::Receiver<PathBuf>) {
	loop {
		match sweeper_rx.next().await {
			None => break,
			Some(condemned) => {
				let result = tokio::fs::remove_file(&condemned).await;
				gum::trace!(
					target: LOG_TARGET,
					?result,
					"Swept the artifact file {}",
					condemned.display(),
				);
			},
		}
	}
}

/// Check if the conditions to retry a prepare job have been met.
fn can_retry_prepare_after_failure(
	last_time_failed: SystemTime,
	num_failures: u32,
	error: &PrepareError,
) -> bool {
	if error.is_deterministic() {
		// This error is considered deterministic, so it will probably be reproducible. Don't retry.
		return false
	}

	// Retry if the retry cooldown has elapsed and if we have already retried less than
	// `NUM_PREPARE_RETRIES` times. IO errors may resolve themselves.
	SystemTime::now() >= last_time_failed + PREPARE_FAILURE_COOLDOWN &&
		num_failures <= NUM_PREPARE_RETRIES
}

/// A stream that yields a pulse continuously at a given interval.
fn pulse_every(interval: std::time::Duration) -> impl futures::Stream<Item = ()> {
	futures::stream::unfold(interval, {
		|interval| async move {
			futures_timer::Delay::new(interval).await;
			Some(((), interval))
		}
	})
	.map(|_| ())
}

#[cfg(test)]
pub(crate) mod tests {
	use super::*;
	use crate::{artifacts::generate_artifact_path, testing::artifact_id, PossiblyInvalidError};
	use assert_matches::assert_matches;
	use futures::future::BoxFuture;
	use polkadot_node_primitives::BlockData;
	use sp_core::H256;

	const TEST_EXECUTION_TIMEOUT: Duration = Duration::from_secs(3);
	pub(crate) const TEST_PREPARATION_TIMEOUT: Duration = Duration::from_secs(30);

	#[tokio::test]
	async fn pulse_test() {
		let pulse = pulse_every(Duration::from_millis(100));
		futures::pin_mut!(pulse);

		for _ in 0..5 {
			let start = std::time::Instant::now();
			let _ = pulse.next().await.unwrap();

			let el = start.elapsed().as_millis();
			assert!(el > 50 && el < 150, "pulse duration: {}", el);
		}
	}

	struct Builder {
		cleanup_pulse_interval: Duration,
		cleanup_config: ArtifactsCleanupConfig,
		artifacts: Artifacts,
	}

	impl Builder {
		fn default() -> Self {
			Self {
				// these are selected high to not interfere in tests in which pruning is irrelevant.
				cleanup_pulse_interval: Duration::from_secs(3600),
				cleanup_config: ArtifactsCleanupConfig::default(),
				artifacts: Artifacts::empty(),
			}
		}

		fn build(self) -> Test {
			Test::new(self)
		}
	}

	struct Test {
		to_host_tx: Option<mpsc::Sender<ToHost>>,

		to_prepare_queue_rx: mpsc::Receiver<prepare::ToQueue>,
		from_prepare_queue_tx: mpsc::UnboundedSender<prepare::FromQueue>,
		to_execute_queue_rx: mpsc::Receiver<execute::ToQueue>,
		#[allow(unused)]
		from_execute_queue_tx: mpsc::UnboundedSender<execute::FromQueue>,
		to_sweeper_rx: mpsc::Receiver<PathBuf>,

		run: BoxFuture<'static, ()>,
	}

	impl Test {
		fn new(Builder { cleanup_pulse_interval, artifacts, cleanup_config }: Builder) -> Self {
			let (to_host_tx, to_host_rx) = mpsc::channel(10);
			let (to_prepare_queue_tx, to_prepare_queue_rx) = mpsc::channel(10);
			let (from_prepare_queue_tx, from_prepare_queue_rx) = mpsc::unbounded();
			let (to_execute_queue_tx, to_execute_queue_rx) = mpsc::channel(10);
			let (from_execute_queue_tx, from_execute_queue_rx) = mpsc::unbounded();
			let (to_sweeper_tx, to_sweeper_rx) = mpsc::channel(10);

			let run = run(Inner {
				cleanup_pulse_interval,
				cleanup_config,
				artifacts,
				to_host_rx,
				to_prepare_queue_tx,
				from_prepare_queue_rx,
				to_execute_queue_tx,
				from_execute_queue_rx,
				to_sweeper_tx,
				awaiting_prepare: AwaitingPrepare::default(),
			})
			.boxed();

			Self {
				to_host_tx: Some(to_host_tx),
				to_prepare_queue_rx,
				from_prepare_queue_tx,
				to_execute_queue_rx,
				from_execute_queue_tx,
				to_sweeper_rx,
				run,
			}
		}

		fn host_handle(&mut self) -> ValidationHost {
			let to_host_tx = self.to_host_tx.take().unwrap();
			let security_status = Default::default();
			ValidationHost { to_host_tx, security_status }
		}

		async fn poll_and_recv_result<T>(&mut self, result_rx: oneshot::Receiver<T>) -> T
		where
			T: Send,
		{
			run_until(&mut self.run, async { result_rx.await.unwrap() }.boxed()).await
		}

		async fn poll_and_recv_to_prepare_queue(&mut self) -> prepare::ToQueue {
			let to_prepare_queue_rx = &mut self.to_prepare_queue_rx;
			run_until(&mut self.run, async { to_prepare_queue_rx.next().await.unwrap() }.boxed())
				.await
		}

		async fn poll_and_recv_to_execute_queue(&mut self) -> execute::ToQueue {
			let to_execute_queue_rx = &mut self.to_execute_queue_rx;
			run_until(&mut self.run, async { to_execute_queue_rx.next().await.unwrap() }.boxed())
				.await
		}

		async fn poll_ensure_to_prepare_queue_is_empty(&mut self) {
			use futures_timer::Delay;

			let to_prepare_queue_rx = &mut self.to_prepare_queue_rx;
			run_until(
				&mut self.run,
				async {
					futures::select! {
						_ = Delay::new(Duration::from_millis(500)).fuse() => (),
						_ = to_prepare_queue_rx.next().fuse() => {
							panic!("the prepare queue is supposed to be empty")
						}
					}
				}
				.boxed(),
			)
			.await
		}

		async fn poll_ensure_to_execute_queue_is_empty(&mut self) {
			use futures_timer::Delay;

			let to_execute_queue_rx = &mut self.to_execute_queue_rx;
			run_until(
				&mut self.run,
				async {
					futures::select! {
						_ = Delay::new(Duration::from_millis(500)).fuse() => (),
						_ = to_execute_queue_rx.next().fuse() => {
							panic!("the execute queue is supposed to be empty")
						}
					}
				}
				.boxed(),
			)
			.await
		}

		async fn poll_ensure_to_sweeper_is_empty(&mut self) {
			use futures_timer::Delay;

			let to_sweeper_rx = &mut self.to_sweeper_rx;
			run_until(
				&mut self.run,
				async {
					futures::select! {
						_ = Delay::new(Duration::from_millis(500)).fuse() => (),
						msg = to_sweeper_rx.next().fuse() => {
							panic!("the sweeper is supposed to be empty, but received: {:?}", msg)
						}
					}
				}
				.boxed(),
			)
			.await
		}
	}

	async fn run_until<R>(
		task: &mut (impl Future<Output = ()> + Unpin),
		mut fut: (impl Future<Output = R> + Unpin),
	) -> R {
		use std::task::Poll;

		let start = std::time::Instant::now();
		let fut = &mut fut;
		loop {
			if start.elapsed() > std::time::Duration::from_secs(2) {
				// We expect that this will take only a couple of iterations and thus to take way
				// less than a second.
				panic!("timeout");
			}

			if let Poll::Ready(r) = futures::poll!(&mut *fut) {
				break r
			}

			if futures::poll!(&mut *task).is_ready() {
				panic!()
			}
		}
	}

	#[tokio::test]
	async fn shutdown_on_handle_drop() {
		let test = Builder::default().build();

		let join_handle = tokio::task::spawn(test.run);

		// Dropping the handle will lead to conclusion of the read part and thus will make the event
		// loop to stop, which in turn will resolve the join handle.
		drop(test.to_host_tx);
		join_handle.await.unwrap();
	}

	#[tokio::test]
	async fn pruning() {
		let mock_now = SystemTime::now() - Duration::from_millis(1000);
		let tempdir = tempfile::tempdir().unwrap();
		let cache_path = tempdir.path();

		let mut builder = Builder::default();
		builder.cleanup_pulse_interval = Duration::from_millis(100);
		builder.cleanup_config = ArtifactsCleanupConfig::new(1024, Duration::from_secs(0));
		let path1 = generate_artifact_path(cache_path);
		let path2 = generate_artifact_path(cache_path);
		builder.artifacts.insert_prepared(artifact_id(1), path1.clone(), mock_now, 1024);
		builder.artifacts.insert_prepared(artifact_id(2), path2.clone(), mock_now, 1024);
		let mut test = builder.build();
		let mut host = test.host_handle();

		host.heads_up(vec![PvfPrepData::from_discriminator(1)]).await.unwrap();

		let to_sweeper_rx = &mut test.to_sweeper_rx;
		run_until(
			&mut test.run,
			async {
				assert_eq!(to_sweeper_rx.next().await.unwrap(), path2);
			}
			.boxed(),
		)
		.await;

		// Extend TTL for the first artifact and make sure we don't receive another file removal
		// request.
		host.heads_up(vec![PvfPrepData::from_discriminator(1)]).await.unwrap();
		test.poll_ensure_to_sweeper_is_empty().await;
	}

	#[tokio::test]
	async fn execute_pvf_requests() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();
		let pvd = Arc::new(PersistedValidationData {
			parent_head: Default::default(),
			relay_parent_number: 1u32,
			relay_parent_storage_root: H256::default(),
			max_pov_size: 4096 * 1024,
		});
		let pov1 = Arc::new(PoV { block_data: BlockData(b"pov1".to_vec()) });
		let pov2 = Arc::new(PoV { block_data: BlockData(b"pov2".to_vec()) });

		let (result_tx, result_rx_pvf_1_1) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov1.clone(),
			Priority::Normal,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		let (result_tx, result_rx_pvf_1_2) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov1,
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		let (result_tx, result_rx_pvf_2) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(2),
			TEST_EXECUTION_TIMEOUT,
			pvd,
			pov2,
			Priority::Normal,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);

		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Ok(PrepareSuccess::default()),
			})
			.await
			.unwrap();
		let result_tx_pvf_1_1 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { pending_execution_request: PendingExecutionRequest { result_tx, .. }, .. } => result_tx
		);
		let result_tx_pvf_1_2 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { pending_execution_request: PendingExecutionRequest { result_tx, .. }, .. } => result_tx
		);

		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(2),
				result: Ok(PrepareSuccess::default()),
			})
			.await
			.unwrap();
		let result_tx_pvf_2 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { pending_execution_request: PendingExecutionRequest { result_tx, .. }, .. } => result_tx
		);

		result_tx_pvf_1_1
			.send(Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath)))
			.unwrap();
		assert_matches!(
			result_rx_pvf_1_1.now_or_never().unwrap().unwrap(),
			Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath))
		);

		result_tx_pvf_1_2
			.send(Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath)))
			.unwrap();
		assert_matches!(
			result_rx_pvf_1_2.now_or_never().unwrap().unwrap(),
			Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath))
		);

		result_tx_pvf_2
			.send(Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath)))
			.unwrap();
		assert_matches!(
			result_rx_pvf_2.now_or_never().unwrap().unwrap(),
			Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath))
		);
	}

	#[tokio::test]
	async fn precheck_pvf() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();

		// First, test a simple precheck request.
		let (result_tx, result_rx) = oneshot::channel();
		host.precheck_pvf(PvfPrepData::from_discriminator_precheck(1), result_tx)
			.await
			.unwrap();

		// The queue received the prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		// Send `Ok` right away and poll the host.
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Ok(PrepareSuccess::default()),
			})
			.await
			.unwrap();
		// No pending execute requests.
		test.poll_ensure_to_execute_queue_is_empty().await;
		// Received the precheck result.
		assert_matches!(result_rx.now_or_never().unwrap().unwrap(), Ok(_));

		// Send multiple requests for the same PVF.
		let mut precheck_receivers = Vec::new();
		for _ in 0..3 {
			let (result_tx, result_rx) = oneshot::channel();
			host.precheck_pvf(PvfPrepData::from_discriminator_precheck(2), result_tx)
				.await
				.unwrap();
			precheck_receivers.push(result_rx);
		}
		// Received prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(2),
				result: Err(PrepareError::TimedOut),
			})
			.await
			.unwrap();
		test.poll_ensure_to_execute_queue_is_empty().await;
		for result_rx in precheck_receivers {
			assert_matches!(
				result_rx.now_or_never().unwrap().unwrap(),
				Err(PrepareError::TimedOut)
			);
		}
	}

	#[tokio::test]
	async fn test_prepare_done() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();
		let pvd = Arc::new(PersistedValidationData {
			parent_head: Default::default(),
			relay_parent_number: 1u32,
			relay_parent_storage_root: H256::default(),
			max_pov_size: 4096 * 1024,
		});
		let pov = Arc::new(PoV { block_data: BlockData(b"pov".to_vec()) });

		// Test mixed cases of receiving execute and precheck requests
		// for the same PVF.

		// Send PVF for the execution and request the prechecking for it.
		let (result_tx, result_rx_execute) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);

		let (result_tx, result_rx) = oneshot::channel();
		host.precheck_pvf(PvfPrepData::from_discriminator_precheck(1), result_tx)
			.await
			.unwrap();

		// Suppose the preparation failed, the execution queue is empty and both
		// "clients" receive their results.
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Err(PrepareError::TimedOut),
			})
			.await
			.unwrap();
		test.poll_ensure_to_execute_queue_is_empty().await;
		assert_matches!(result_rx.now_or_never().unwrap().unwrap(), Err(PrepareError::TimedOut));
		assert_matches!(
			result_rx_execute.now_or_never().unwrap().unwrap(),
			Err(ValidationError::Internal(_))
		);

		// Reversed case: first send multiple precheck requests, then ask for an execution.
		let mut precheck_receivers = Vec::new();
		for _ in 0..3 {
			let (result_tx, result_rx) = oneshot::channel();
			host.precheck_pvf(PvfPrepData::from_discriminator_precheck(2), result_tx)
				.await
				.unwrap();
			precheck_receivers.push(result_rx);
		}

		let (result_tx, _result_rx_execute) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(2),
			TEST_EXECUTION_TIMEOUT,
			pvd,
			pov,
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();
		// Received prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(2),
				result: Ok(PrepareSuccess::default()),
			})
			.await
			.unwrap();
		// The execute queue receives new request, preckecking is finished and we can
		// fetch results.
		assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { .. }
		);
		for result_rx in precheck_receivers {
			assert_matches!(result_rx.now_or_never().unwrap().unwrap(), Ok(_));
		}
	}

	// Test that multiple prechecking requests do not trigger preparation retries if the first one
	// failed.
	#[tokio::test]
	async fn test_precheck_prepare_no_retry() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();

		// Submit a precheck request that fails.
		let (result_tx, result_rx) = oneshot::channel();
		host.precheck_pvf(PvfPrepData::from_discriminator_precheck(1), result_tx)
			.await
			.unwrap();

		// The queue received the prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		// Send a PrepareError.
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Err(PrepareError::TimedOut),
			})
			.await
			.unwrap();

		// The result should contain the error.
		let result = test.poll_and_recv_result(result_rx).await;
		assert_matches!(result, Err(PrepareError::TimedOut));

		// Submit another precheck request.
		let (result_tx_2, result_rx_2) = oneshot::channel();
		host.precheck_pvf(PvfPrepData::from_discriminator_precheck(1), result_tx_2)
			.await
			.unwrap();

		// Assert the prepare queue is empty.
		test.poll_ensure_to_prepare_queue_is_empty().await;

		// The result should contain the original error.
		let result = test.poll_and_recv_result(result_rx_2).await;
		assert_matches!(result, Err(PrepareError::TimedOut));

		// Pause for enough time to reset the cooldown for this failed prepare request.
		futures_timer::Delay::new(PREPARE_FAILURE_COOLDOWN).await;

		// Submit another precheck request.
		let (result_tx_3, result_rx_3) = oneshot::channel();
		host.precheck_pvf(PvfPrepData::from_discriminator_precheck(1), result_tx_3)
			.await
			.unwrap();

		// Assert the prepare queue is empty - we do not retry for precheck requests.
		test.poll_ensure_to_prepare_queue_is_empty().await;

		// The result should still contain the original error.
		let result = test.poll_and_recv_result(result_rx_3).await;
		assert_matches!(result, Err(PrepareError::TimedOut));
	}

	// Test that multiple execution requests trigger preparation retries if the first one failed due
	// to a potentially non-reproducible error.
	#[tokio::test]
	async fn test_execute_prepare_retry() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();
		let pvd = Arc::new(PersistedValidationData {
			parent_head: Default::default(),
			relay_parent_number: 1u32,
			relay_parent_storage_root: H256::default(),
			max_pov_size: 4096 * 1024,
		});
		let pov = Arc::new(PoV { block_data: BlockData(b"pov".to_vec()) });

		// Submit a execute request that fails.
		let (result_tx, result_rx) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		// The queue received the prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		// Send a PrepareError.
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Err(PrepareError::TimedOut),
			})
			.await
			.unwrap();

		// The result should contain the error.
		let result = test.poll_and_recv_result(result_rx).await;
		assert_matches!(result, Err(ValidationError::Internal(_)));

		// Submit another execute request. We shouldn't try to prepare again, yet.
		let (result_tx_2, result_rx_2) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx_2,
		)
		.await
		.unwrap();

		// Assert the prepare queue is empty.
		test.poll_ensure_to_prepare_queue_is_empty().await;

		// The result should contain the original error.
		let result = test.poll_and_recv_result(result_rx_2).await;
		assert_matches!(result, Err(ValidationError::Internal(_)));

		// Pause for enough time to reset the cooldown for this failed prepare request.
		futures_timer::Delay::new(PREPARE_FAILURE_COOLDOWN).await;

		// Submit another execute request.
		let (result_tx_3, result_rx_3) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx_3,
		)
		.await
		.unwrap();

		// Assert the prepare queue contains the request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);

		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Ok(PrepareSuccess::default()),
			})
			.await
			.unwrap();

		// Preparation should have been retried and succeeded this time.
		let result_tx_3 = assert_matches!(
			test.poll_and_recv_to_execute_queue().await,
			execute::ToQueue::Enqueue { pending_execution_request: PendingExecutionRequest { result_tx, .. }, .. } => result_tx
		);

		// Send an error for the execution here, just so we can check the result receiver is still
		// alive.
		result_tx_3
			.send(Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath)))
			.unwrap();
		assert_matches!(
			result_rx_3.now_or_never().unwrap().unwrap(),
			Err(ValidationError::PossiblyInvalid(PossiblyInvalidError::AmbiguousWorkerDeath))
		);
	}

	// Test that multiple execution requests don't trigger preparation retries if the first one
	// failed due to a reproducible error (e.g. Prevalidation).
	#[tokio::test]
	async fn test_execute_prepare_no_retry() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();
		let pvd = Arc::new(PersistedValidationData {
			parent_head: Default::default(),
			relay_parent_number: 1u32,
			relay_parent_storage_root: H256::default(),
			max_pov_size: 4096 * 1024,
		});
		let pov = Arc::new(PoV { block_data: BlockData(b"pov".to_vec()) });

		// Submit an execute request that fails.
		let (result_tx, result_rx) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		// The queue received the prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		// Send a PrepareError.
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Err(PrepareError::Prevalidation("reproducible error".into())),
			})
			.await
			.unwrap();

		// The result should contain the error.
		let result = test.poll_and_recv_result(result_rx).await;
		assert_matches!(result, Err(ValidationError::Preparation(_)));

		// Submit another execute request.
		let (result_tx_2, result_rx_2) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx_2,
		)
		.await
		.unwrap();

		// Assert the prepare queue is empty.
		test.poll_ensure_to_prepare_queue_is_empty().await;

		// The result should contain the original error.
		let result = test.poll_and_recv_result(result_rx_2).await;
		assert_matches!(result, Err(ValidationError::Preparation(_)));

		// Pause for enough time to reset the cooldown for this failed prepare request.
		futures_timer::Delay::new(PREPARE_FAILURE_COOLDOWN).await;

		// Submit another execute request.
		let (result_tx_3, result_rx_3) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd.clone(),
			pov.clone(),
			Priority::Critical,
			PvfExecKind::Backing(H256::default()),
			result_tx_3,
		)
		.await
		.unwrap();

		// Assert the prepare queue is empty - we do not retry for prevalidation errors.
		test.poll_ensure_to_prepare_queue_is_empty().await;

		// The result should still contain the original error.
		let result = test.poll_and_recv_result(result_rx_3).await;
		assert_matches!(result, Err(ValidationError::Preparation(_)));
	}

	// Test that multiple heads-up requests trigger preparation retries if the first one failed.
	#[tokio::test]
	async fn test_heads_up_prepare_retry() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();

		// Submit a heads-up request that fails.
		host.heads_up(vec![PvfPrepData::from_discriminator(1)]).await.unwrap();

		// The queue received the prepare request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
		// Send a PrepareError.
		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Err(PrepareError::TimedOut),
			})
			.await
			.unwrap();

		// Submit another heads-up request.
		host.heads_up(vec![PvfPrepData::from_discriminator(1)]).await.unwrap();

		// Assert the prepare queue is empty.
		test.poll_ensure_to_prepare_queue_is_empty().await;

		// Pause for enough time to reset the cooldown for this failed prepare request.
		futures_timer::Delay::new(PREPARE_FAILURE_COOLDOWN).await;

		// Submit another heads-up request.
		host.heads_up(vec![PvfPrepData::from_discriminator(1)]).await.unwrap();

		// Assert the prepare queue contains the request.
		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);
	}

	#[tokio::test]
	async fn cancellation() {
		let mut test = Builder::default().build();
		let mut host = test.host_handle();
		let pvd = Arc::new(PersistedValidationData {
			parent_head: Default::default(),
			relay_parent_number: 1u32,
			relay_parent_storage_root: H256::default(),
			max_pov_size: 4096 * 1024,
		});
		let pov = Arc::new(PoV { block_data: BlockData(b"pov".to_vec()) });

		let (result_tx, result_rx) = oneshot::channel();
		host.execute_pvf(
			PvfPrepData::from_discriminator(1),
			TEST_EXECUTION_TIMEOUT,
			pvd,
			pov,
			Priority::Normal,
			PvfExecKind::Backing(H256::default()),
			result_tx,
		)
		.await
		.unwrap();

		assert_matches!(
			test.poll_and_recv_to_prepare_queue().await,
			prepare::ToQueue::Enqueue { .. }
		);

		test.from_prepare_queue_tx
			.send(prepare::FromQueue {
				artifact_id: artifact_id(1),
				result: Ok(PrepareSuccess::default()),
			})
			.await
			.unwrap();

		drop(result_rx);

		test.poll_ensure_to_execute_queue_is_empty().await;
	}
}