referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! A queue that handles requests for PVF preparation.

use super::pool::{self, Worker};
use crate::{artifacts::ArtifactId, metrics::Metrics, Priority, LOG_TARGET};
use always_assert::{always, never};
use futures::{channel::mpsc, stream::StreamExt as _, Future, SinkExt};
use polkadot_node_core_pvf_common::{error::PrepareResult, pvf::PvfPrepData};
use std::{
	collections::{HashMap, VecDeque},
	path::PathBuf,
};

#[cfg(test)]
use std::time::Duration;

/// A request to pool.
#[derive(Debug)]
pub enum ToQueue {
	/// This schedules preparation of the given PVF.
	///
	/// Note that it is incorrect to enqueue the same PVF again without first receiving the
	/// [`FromQueue`] response.
	Enqueue { priority: Priority, pvf: PvfPrepData },
}

/// A response from queue.
#[derive(Debug)]
pub struct FromQueue {
	/// Identifier of an artifact.
	pub(crate) artifact_id: ArtifactId,
	/// Outcome of the PVF processing. [`Ok`] indicates that compiled artifact
	/// is successfully stored on disk. Otherwise, an
	/// [error](polkadot_node_core_pvf_common::error::PrepareError) is supplied.
	pub(crate) result: PrepareResult,
}

#[derive(Default)]
struct Limits {
	/// The maximum number of workers this pool can ever host. This is expected to be a small
	/// number, e.g. within a dozen.
	hard_capacity: usize,

	/// The number of workers we want aim to have. If there is a critical job and we are already
	/// at `soft_capacity`, we are allowed to grow up to `hard_capacity`. Thus this should be equal
	/// or smaller than `hard_capacity`.
	soft_capacity: usize,
}

impl Limits {
	/// Returns `true` if the queue is allowed to request one more worker.
	fn can_afford_one_more(&self, spawned_num: usize, critical: bool) -> bool {
		let cap = if critical { self.hard_capacity } else { self.soft_capacity };
		spawned_num < cap
	}

	/// Offer the worker back to the pool. The passed worker ID must be considered unusable unless
	/// it wasn't taken by the pool, in which case it will be returned as `Some`.
	fn should_cull(&mut self, spawned_num: usize) -> bool {
		spawned_num > self.soft_capacity
	}
}

slotmap::new_key_type! { pub struct Job; }

struct JobData {
	/// The priority of this job. Can be bumped.
	priority: Priority,
	pvf: PvfPrepData,
	worker: Option<Worker>,
}

#[derive(Default)]
struct WorkerData {
	job: Option<Job>,
}

impl WorkerData {
	fn is_idle(&self) -> bool {
		self.job.is_none()
	}
}

/// A queue structured like this is prone to starving, however, we don't care that much since we
/// expect there is going to be a limited number of critical jobs and we don't really care if
/// background starve.
#[derive(Default)]
struct Unscheduled {
	normal: VecDeque<Job>,
	critical: VecDeque<Job>,
}

impl Unscheduled {
	fn queue_mut(&mut self, prio: Priority) -> &mut VecDeque<Job> {
		match prio {
			Priority::Normal => &mut self.normal,
			Priority::Critical => &mut self.critical,
		}
	}

	fn add(&mut self, prio: Priority, job: Job) {
		self.queue_mut(prio).push_back(job);
	}

	fn readd(&mut self, prio: Priority, job: Job) {
		self.queue_mut(prio).push_front(job);
	}

	fn is_empty(&self) -> bool {
		self.normal.is_empty() && self.critical.is_empty()
	}

	fn next(&mut self) -> Option<Job> {
		let mut check = |prio: Priority| self.queue_mut(prio).pop_front();
		check(Priority::Critical).or_else(|| check(Priority::Normal))
	}
}

struct Queue {
	metrics: Metrics,

	to_queue_rx: mpsc::Receiver<ToQueue>,
	from_queue_tx: mpsc::UnboundedSender<FromQueue>,

	to_pool_tx: mpsc::Sender<pool::ToPool>,
	from_pool_rx: mpsc::UnboundedReceiver<pool::FromPool>,

	cache_path: PathBuf,
	limits: Limits,

	jobs: slotmap::SlotMap<Job, JobData>,

	/// A mapping from artifact id to a job.
	artifact_id_to_job: HashMap<ArtifactId, Job>,
	/// The registry of all workers.
	workers: slotmap::SparseSecondaryMap<Worker, WorkerData>,
	/// The number of workers requested to spawn but not yet spawned.
	spawn_inflight: usize,

	/// The jobs that are not yet scheduled. These are waiting until the next `poll` where they are
	/// processed all at once.
	unscheduled: Unscheduled,
}

/// A fatal error that warrants stopping the queue.
struct Fatal;

impl Queue {
	fn new(
		metrics: Metrics,
		soft_capacity: usize,
		hard_capacity: usize,
		cache_path: PathBuf,
		to_queue_rx: mpsc::Receiver<ToQueue>,
		from_queue_tx: mpsc::UnboundedSender<FromQueue>,
		to_pool_tx: mpsc::Sender<pool::ToPool>,
		from_pool_rx: mpsc::UnboundedReceiver<pool::FromPool>,
	) -> Self {
		Self {
			metrics,
			to_queue_rx,
			from_queue_tx,
			to_pool_tx,
			from_pool_rx,
			cache_path,
			spawn_inflight: 0,
			limits: Limits { hard_capacity, soft_capacity },
			jobs: slotmap::SlotMap::with_key(),
			unscheduled: Unscheduled::default(),
			artifact_id_to_job: HashMap::new(),
			workers: slotmap::SparseSecondaryMap::new(),
		}
	}

	async fn run(mut self) {
		macro_rules! break_if_fatal {
			($expr:expr) => {
				if let Err(Fatal) = $expr {
					break
				}
			};
		}

		loop {
			// biased to make it behave deterministically for tests.
			futures::select_biased! {
				to_queue = self.to_queue_rx.select_next_some() =>
					break_if_fatal!(handle_to_queue(&mut self, to_queue).await),
				from_pool = self.from_pool_rx.select_next_some() =>
					break_if_fatal!(handle_from_pool(&mut self, from_pool).await),
			}
		}
	}
}

async fn handle_to_queue(queue: &mut Queue, to_queue: ToQueue) -> Result<(), Fatal> {
	match to_queue {
		ToQueue::Enqueue { priority, pvf } => {
			handle_enqueue(queue, priority, pvf).await?;
		},
	}
	Ok(())
}

async fn handle_enqueue(
	queue: &mut Queue,
	priority: Priority,
	pvf: PvfPrepData,
) -> Result<(), Fatal> {
	gum::debug!(
		target: LOG_TARGET,
		validation_code_hash = ?pvf.code_hash(),
		?priority,
		preparation_timeout = ?pvf.prep_timeout(),
		"PVF is enqueued for preparation.",
	);
	queue.metrics.prepare_enqueued();

	let artifact_id = ArtifactId::from_pvf_prep_data(&pvf);
	if never!(
		queue.artifact_id_to_job.contains_key(&artifact_id),
		"second Enqueue sent for a known artifact"
	) {
		// This function is called in response to a `Enqueue` message;
		// Precondition for `Enqueue` is that it is sent only once for a PVF;
		// Thus this should always be `false`;
		// qed.
		gum::warn!(
			target: LOG_TARGET,
			"duplicate `enqueue` command received for {:?}",
			artifact_id,
		);
		return Ok(())
	}

	let job = queue.jobs.insert(JobData { priority, pvf, worker: None });
	queue.artifact_id_to_job.insert(artifact_id, job);

	if let Some(available) = find_idle_worker(queue) {
		// This may seem not fair (w.r.t priority) on the first glance, but it should be. This is
		// because as soon as a worker finishes with the job it's immediately given the next one.
		assign(queue, available, job).await?;
	} else {
		spawn_extra_worker(queue, priority.is_critical()).await?;
		queue.unscheduled.add(priority, job);
	}

	Ok(())
}

fn find_idle_worker(queue: &mut Queue) -> Option<Worker> {
	queue.workers.iter().filter(|(_, data)| data.is_idle()).map(|(k, _)| k).next()
}

async fn handle_from_pool(queue: &mut Queue, from_pool: pool::FromPool) -> Result<(), Fatal> {
	use pool::FromPool;
	match from_pool {
		FromPool::Spawned(worker) => handle_worker_spawned(queue, worker).await?,
		FromPool::Concluded { worker, rip, result } =>
			handle_worker_concluded(queue, worker, rip, result).await?,
		FromPool::Rip(worker) => handle_worker_rip(queue, worker).await?,
	}
	Ok(())
}

async fn handle_worker_spawned(queue: &mut Queue, worker: Worker) -> Result<(), Fatal> {
	queue.workers.insert(worker, WorkerData::default());
	queue.spawn_inflight -= 1;

	if let Some(job) = queue.unscheduled.next() {
		assign(queue, worker, job).await?;
	}

	Ok(())
}

async fn handle_worker_concluded(
	queue: &mut Queue,
	worker: Worker,
	rip: bool,
	result: PrepareResult,
) -> Result<(), Fatal> {
	queue.metrics.prepare_concluded();

	macro_rules! never_none {
		($expr:expr) => {
			match $expr {
				Some(v) => v,
				None => {
					// Precondition of calling this is that the `$expr` is never none;
					// Assume the conditions holds, then this never is not hit;
					// qed.
					never!("never_none, {}", stringify!($expr));
					return Ok(())
				},
			}
		};
	}

	// Find out on which artifact was the worker working.

	// workers are registered upon spawn and removed in one of the following cases:
	//   1. received rip signal
	//   2. received concluded signal with rip=true;
	// concluded signal only comes from a spawned worker and only once;
	// rip signal is not sent after conclusion with rip=true;
	// the worker should be registered;
	// this can't be None;
	// qed.
	let worker_data = never_none!(queue.workers.get_mut(worker));

	// worker_data.job is set only by `assign` and removed only here for a worker;
	// concluded signal only comes for a worker that was previously assigned and only once;
	// the worker should have the job;
	// this can't be None;
	// qed.
	let job = never_none!(worker_data.job.take());

	// job_data is inserted upon enqueue and removed only here;
	// as was established above, this worker was previously `assign`ed to the job;
	// that implies that the job was enqueued;
	// conclude signal only comes once;
	// we are just to remove the job for the first and the only time;
	// this can't be None;
	// qed.
	let job_data = never_none!(queue.jobs.remove(job));
	let artifact_id = ArtifactId::from_pvf_prep_data(&job_data.pvf);

	queue.artifact_id_to_job.remove(&artifact_id);

	gum::debug!(
		target: LOG_TARGET,
		validation_code_hash = ?artifact_id.code_hash,
		?worker,
		?rip,
		"prepare worker concluded",
	);

	reply(&mut queue.from_queue_tx, FromQueue { artifact_id, result })?;

	// Figure out what to do with the worker.
	if rip {
		let worker_data = queue.workers.remove(worker);
		// worker should exist, it's asserted above;
		// qed.
		always!(worker_data.is_some());

		if !queue.unscheduled.is_empty() {
			// That is unconditionally not critical just to not accidentally fill up
			// the pool up to the hard cap.
			spawn_extra_worker(queue, false).await?;
		}
	} else if queue.limits.should_cull(queue.workers.len() + queue.spawn_inflight) {
		// We no longer need services of this worker. Kill it.
		queue.workers.remove(worker);
		send_pool(&mut queue.to_pool_tx, pool::ToPool::Kill(worker)).await?;
	} else {
		// see if there are more work available and schedule it.
		if let Some(job) = queue.unscheduled.next() {
			assign(queue, worker, job).await?;
		}
	}

	Ok(())
}

async fn handle_worker_rip(queue: &mut Queue, worker: Worker) -> Result<(), Fatal> {
	gum::debug!(target: LOG_TARGET, ?worker, "prepare worker ripped");

	let worker_data = queue.workers.remove(worker);
	if let Some(WorkerData { job: Some(job), .. }) = worker_data {
		// This is an edge case where the worker ripped after we sent assignment but before it
		// was received by the pool.
		let priority = queue.jobs.get(job).map(|data| data.priority).unwrap_or_else(|| {
			// job is inserted upon enqueue and removed on concluded signal;
			// this is enclosed in the if statement that narrows the situation to before
			// conclusion;
			// that means that the job still exists and is known;
			// this path cannot be hit;
			// qed.
			never!("the job of the ripped worker must be known but it is not");
			Priority::Normal
		});
		queue.unscheduled.readd(priority, job);
	}

	// If there are still jobs left, spawn another worker to replace the ripped one (but only if it
	// was indeed removed). That is unconditionally not critical just to not accidentally fill up
	// the pool up to the hard cap.
	if worker_data.is_some() && !queue.unscheduled.is_empty() {
		spawn_extra_worker(queue, false).await?;
	}
	Ok(())
}

/// Spawns an extra worker if possible.
async fn spawn_extra_worker(queue: &mut Queue, critical: bool) -> Result<(), Fatal> {
	if queue
		.limits
		.can_afford_one_more(queue.workers.len() + queue.spawn_inflight, critical)
	{
		queue.spawn_inflight += 1;
		send_pool(&mut queue.to_pool_tx, pool::ToPool::Spawn).await?;
	}

	Ok(())
}

/// Attaches the work to the given worker telling the poll about the job.
async fn assign(queue: &mut Queue, worker: Worker, job: Job) -> Result<(), Fatal> {
	let job_data = &mut queue.jobs[job];
	job_data.worker = Some(worker);

	queue.workers[worker].job = Some(job);

	send_pool(
		&mut queue.to_pool_tx,
		pool::ToPool::StartWork {
			worker,
			pvf: job_data.pvf.clone(),
			cache_path: queue.cache_path.clone(),
		},
	)
	.await?;

	Ok(())
}

fn reply(from_queue_tx: &mut mpsc::UnboundedSender<FromQueue>, m: FromQueue) -> Result<(), Fatal> {
	from_queue_tx.unbounded_send(m).map_err(|_| {
		// The host has hung up and thus it's fatal and we should shutdown ourselves.
		Fatal
	})
}

async fn send_pool(
	to_pool_tx: &mut mpsc::Sender<pool::ToPool>,
	m: pool::ToPool,
) -> Result<(), Fatal> {
	to_pool_tx.send(m).await.map_err(|_| {
		// The pool has hung up and thus we are no longer are able to fulfill our duties. Shutdown.
		Fatal
	})
}

/// Spins up the queue and returns the future that should be polled to make the queue functional.
pub fn start(
	metrics: Metrics,
	soft_capacity: usize,
	hard_capacity: usize,
	cache_path: PathBuf,
	to_pool_tx: mpsc::Sender<pool::ToPool>,
	from_pool_rx: mpsc::UnboundedReceiver<pool::FromPool>,
) -> (mpsc::Sender<ToQueue>, mpsc::UnboundedReceiver<FromQueue>, impl Future<Output = ()>) {
	let (to_queue_tx, to_queue_rx) = mpsc::channel(150);
	let (from_queue_tx, from_queue_rx) = mpsc::unbounded();

	let run = Queue::new(
		metrics,
		soft_capacity,
		hard_capacity,
		cache_path,
		to_queue_rx,
		from_queue_tx,
		to_pool_tx,
		from_pool_rx,
	)
	.run();

	(to_queue_tx, from_queue_rx, run)
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::host::tests::TEST_PREPARATION_TIMEOUT;
	use assert_matches::assert_matches;
	use futures::{future::BoxFuture, FutureExt};
	use polkadot_node_core_pvf_common::{error::PrepareError, prepare::PrepareSuccess};
	use slotmap::SlotMap;
	use std::task::Poll;

	/// Creates a new PVF which artifact id can be uniquely identified by the given number.
	fn pvf(discriminator: u32) -> PvfPrepData {
		PvfPrepData::from_discriminator(discriminator)
	}

	async fn run_until<R>(
		task: &mut (impl Future<Output = ()> + Unpin),
		mut fut: (impl Future<Output = R> + Unpin),
	) -> R {
		let start = std::time::Instant::now();
		let fut = &mut fut;
		loop {
			if start.elapsed() > std::time::Duration::from_secs(1) {
				// We expect that this will take only a couple of iterations and thus to take way
				// less than a second.
				panic!("timeout");
			}

			if let Poll::Ready(r) = futures::poll!(&mut *fut) {
				break r
			}

			if futures::poll!(&mut *task).is_ready() {
				panic!()
			}
		}
	}

	struct Test {
		_tempdir: tempfile::TempDir,
		run: BoxFuture<'static, ()>,
		workers: SlotMap<Worker, ()>,
		from_pool_tx: mpsc::UnboundedSender<pool::FromPool>,
		to_pool_rx: mpsc::Receiver<pool::ToPool>,
		to_queue_tx: mpsc::Sender<ToQueue>,
		from_queue_rx: mpsc::UnboundedReceiver<FromQueue>,
	}

	impl Test {
		fn new(soft_capacity: usize, hard_capacity: usize) -> Self {
			let tempdir = tempfile::tempdir().unwrap();

			let (to_pool_tx, to_pool_rx) = mpsc::channel(10);
			let (from_pool_tx, from_pool_rx) = mpsc::unbounded();

			let workers: SlotMap<Worker, ()> = SlotMap::with_key();

			let (to_queue_tx, from_queue_rx, run) = start(
				Metrics::default(),
				soft_capacity,
				hard_capacity,
				tempdir.path().to_owned().into(),
				to_pool_tx,
				from_pool_rx,
			);

			Self {
				_tempdir: tempdir,
				run: run.boxed(),
				workers,
				from_pool_tx,
				to_pool_rx,
				to_queue_tx,
				from_queue_rx,
			}
		}

		fn send_queue(&mut self, to_queue: ToQueue) {
			self.to_queue_tx.send(to_queue).now_or_never().unwrap().unwrap();
		}

		async fn poll_and_recv_from_queue(&mut self) -> FromQueue {
			let from_queue_rx = &mut self.from_queue_rx;
			run_until(&mut self.run, async { from_queue_rx.next().await.unwrap() }.boxed()).await
		}

		fn send_from_pool(&mut self, from_pool: pool::FromPool) {
			self.from_pool_tx.send(from_pool).now_or_never().unwrap().unwrap();
		}

		async fn poll_and_recv_to_pool(&mut self) -> pool::ToPool {
			let to_pool_rx = &mut self.to_pool_rx;
			run_until(&mut self.run, async { to_pool_rx.next().await.unwrap() }.boxed()).await
		}

		async fn poll_ensure_to_pool_is_empty(&mut self) {
			use futures_timer::Delay;

			let to_pool_rx = &mut self.to_pool_rx;
			run_until(
				&mut self.run,
				async {
					futures::select! {
						_ = Delay::new(Duration::from_millis(500)).fuse() => (),
						_ = to_pool_rx.next().fuse() => {
							panic!("to pool supposed to be empty")
						}
					}
				}
				.boxed(),
			)
			.await
		}
	}

	#[tokio::test]
	async fn properly_concludes() {
		let mut test = Test::new(2, 2);

		test.send_queue(ToQueue::Enqueue { priority: Priority::Normal, pvf: pvf(1) });
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		let w = test.workers.insert(());
		test.send_from_pool(pool::FromPool::Spawned(w));
		test.send_from_pool(pool::FromPool::Concluded {
			worker: w,
			rip: false,
			result: Ok(PrepareSuccess::default()),
		});

		assert_eq!(
			test.poll_and_recv_from_queue().await.artifact_id,
			ArtifactId::from_pvf_prep_data(&pvf(1))
		);
	}

	#[tokio::test]
	async fn dont_spawn_over_soft_limit_unless_critical() {
		let mut test = Test::new(2, 3);

		let priority = Priority::Normal;
		test.send_queue(ToQueue::Enqueue { priority, pvf: PvfPrepData::from_discriminator(1) });
		test.send_queue(ToQueue::Enqueue { priority, pvf: PvfPrepData::from_discriminator(2) });
		// Start a non-precheck preparation for this one.
		test.send_queue(ToQueue::Enqueue {
			priority,
			pvf: PvfPrepData::from_discriminator_and_timeout(3, TEST_PREPARATION_TIMEOUT * 3),
		});

		// Receive only two spawns.
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		let w1 = test.workers.insert(());
		let w2 = test.workers.insert(());

		test.send_from_pool(pool::FromPool::Spawned(w1));
		test.send_from_pool(pool::FromPool::Spawned(w2));

		// Get two start works.
		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });
		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });

		test.send_from_pool(pool::FromPool::Concluded {
			worker: w1,
			rip: false,
			result: Ok(PrepareSuccess::default()),
		});

		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });

		// Enqueue a critical job.
		test.send_queue(ToQueue::Enqueue {
			priority: Priority::Critical,
			pvf: PvfPrepData::from_discriminator(4),
		});

		// 2 out of 2 are working, but there is a critical job incoming. That means that spawning
		// another worker is warranted.
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);
	}

	#[tokio::test]
	async fn cull_unwanted() {
		let mut test = Test::new(1, 2);

		test.send_queue(ToQueue::Enqueue {
			priority: Priority::Normal,
			pvf: PvfPrepData::from_discriminator(1),
		});
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);
		let w1 = test.workers.insert(());
		test.send_from_pool(pool::FromPool::Spawned(w1));
		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });

		// Enqueue a critical job, which warrants spawning over the soft limit.
		test.send_queue(ToQueue::Enqueue {
			priority: Priority::Critical,
			pvf: PvfPrepData::from_discriminator(2),
		});
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		// However, before the new worker had a chance to spawn, the first worker finishes with its
		// job. The old worker will be killed while the new worker will be let live, even though
		// it's not instantiated.
		//
		// That's a bit silly in this context, but in production there will be an entire pool up
		// to the `soft_capacity` of workers and it doesn't matter which one to cull. Either way,
		// we just check that edge case of an edge case works.
		test.send_from_pool(pool::FromPool::Concluded {
			worker: w1,
			rip: false,
			result: Ok(PrepareSuccess::default()),
		});
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Kill(w1));
	}

	#[tokio::test]
	async fn worker_mass_die_out_doesnt_stall_queue() {
		let mut test = Test::new(2, 2);

		let priority = Priority::Normal;
		test.send_queue(ToQueue::Enqueue { priority, pvf: PvfPrepData::from_discriminator(1) });
		test.send_queue(ToQueue::Enqueue { priority, pvf: PvfPrepData::from_discriminator(2) });
		// Start a non-precheck preparation for this one.
		test.send_queue(ToQueue::Enqueue {
			priority,
			pvf: PvfPrepData::from_discriminator_and_timeout(3, TEST_PREPARATION_TIMEOUT * 3),
		});

		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		let w1 = test.workers.insert(());
		let w2 = test.workers.insert(());

		test.send_from_pool(pool::FromPool::Spawned(w1));
		test.send_from_pool(pool::FromPool::Spawned(w2));

		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });
		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });

		// Conclude worker 1 and rip it.
		test.send_from_pool(pool::FromPool::Concluded {
			worker: w1,
			rip: true,
			result: Ok(PrepareSuccess::default()),
		});

		// Since there is still work, the queue requested one extra worker to spawn to handle the
		// remaining enqueued work items.
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);
		assert_eq!(
			test.poll_and_recv_from_queue().await.artifact_id,
			ArtifactId::from_pvf_prep_data(&pvf(1))
		);
	}

	#[tokio::test]
	async fn doesnt_resurrect_ripped_worker_if_no_work() {
		let mut test = Test::new(2, 2);

		test.send_queue(ToQueue::Enqueue {
			priority: Priority::Normal,
			pvf: PvfPrepData::from_discriminator(1),
		});

		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		let w1 = test.workers.insert(());
		test.send_from_pool(pool::FromPool::Spawned(w1));

		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });

		test.send_from_pool(pool::FromPool::Concluded {
			worker: w1,
			rip: true,
			result: Err(PrepareError::IoErr("test".into())),
		});
		test.poll_ensure_to_pool_is_empty().await;
	}

	#[tokio::test]
	async fn rip_for_start_work() {
		let mut test = Test::new(2, 2);

		test.send_queue(ToQueue::Enqueue {
			priority: Priority::Normal,
			pvf: PvfPrepData::from_discriminator(1),
		});

		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		let w1 = test.workers.insert(());
		test.send_from_pool(pool::FromPool::Spawned(w1));

		// Now, to the interesting part. After the queue normally issues the `start_work` command to
		// the pool, before receiving the command the queue may report that the worker ripped.
		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });
		test.send_from_pool(pool::FromPool::Rip(w1));

		// In this case, the pool should spawn a new worker and request it to work on the item.
		assert_eq!(test.poll_and_recv_to_pool().await, pool::ToPool::Spawn);

		let w2 = test.workers.insert(());
		test.send_from_pool(pool::FromPool::Spawned(w2));
		assert_matches!(test.poll_and_recv_to_pool().await, pool::ToPool::StartWork { .. });
	}
}