referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Contains the logic for preparing PVFs. Used by the polkadot-prepare-worker binary.

mod memory_stats;

// NOTE: Initializing logging in e.g. tests will not have an effect in the workers, as they are
//       separate spawned processes. Run with e.g. `RUST_LOG=parachain::pvf-prepare-worker=trace`.
const LOG_TARGET: &str = "parachain::pvf-prepare-worker";

#[cfg(target_os = "linux")]
use crate::memory_stats::max_rss_stat::{extract_max_rss_stat, get_max_rss_thread};
#[cfg(any(target_os = "linux", feature = "jemalloc-allocator"))]
use crate::memory_stats::memory_tracker::{get_memory_tracker_loop_stats, memory_tracker_loop};
use nix::{
	errno::Errno,
	sys::{
		resource::{Usage, UsageWho},
		wait::WaitStatus,
	},
	unistd::{ForkResult, Pid},
};
use polkadot_node_core_pvf_common::{
	executor_interface::{prepare, prevalidate},
	worker::{pipe2_cloexec, PipeFd, WorkerInfo},
};
use polkadot_node_primitives::VALIDATION_CODE_BOMB_LIMIT;

use codec::{Decode, Encode};
use polkadot_node_core_pvf_common::{
	error::{PrepareError, PrepareWorkerResult},
	executor_interface::create_runtime_from_artifact_bytes,
	framed_recv_blocking, framed_send_blocking,
	prepare::{MemoryStats, PrepareJobKind, PrepareStats, PrepareWorkerSuccess},
	pvf::PvfPrepData,
	worker::{
		cpu_time_monitor_loop, get_total_cpu_usage, recv_child_response, run_worker, send_result,
		stringify_errno, stringify_panic_payload,
		thread::{self, spawn_worker_thread, WaitOutcome},
		WorkerKind,
	},
	worker_dir, ProcessTime,
};
use polkadot_primitives::ExecutorParams;
use std::{
	fs,
	io::{self, Read},
	os::{
		fd::{AsRawFd, FromRawFd, RawFd},
		unix::net::UnixStream,
	},
	path::{Path, PathBuf},
	process,
	sync::{mpsc::channel, Arc},
	time::Duration,
};
use tracking_allocator::TrackingAllocator;

#[cfg(any(target_os = "linux", feature = "jemalloc-allocator"))]
#[global_allocator]
static ALLOC: TrackingAllocator<tikv_jemallocator::Jemalloc> =
	TrackingAllocator(tikv_jemallocator::Jemalloc);

#[cfg(not(any(target_os = "linux", feature = "jemalloc-allocator")))]
#[global_allocator]
static ALLOC: TrackingAllocator<std::alloc::System> = TrackingAllocator(std::alloc::System);

/// The number of threads for the child process:
/// 1 - Main thread
/// 2 - Cpu monitor thread
/// 3 - Memory tracker thread
/// 4 - Prepare thread
///
/// NOTE: The correctness of this value is enforced by a test. If the number of threads inside
/// the child process changes in the future, this value must be changed as well.
pub const PREPARE_WORKER_THREAD_NUMBER: u32 = 4;

/// Contains the bytes for a successfully compiled artifact.
#[derive(Encode, Decode)]
pub struct CompiledArtifact(Vec<u8>);

impl CompiledArtifact {
	/// Creates a `CompiledArtifact`.
	pub fn new(code: Vec<u8>) -> Self {
		Self(code)
	}
}

impl AsRef<[u8]> for CompiledArtifact {
	fn as_ref(&self) -> &[u8] {
		self.0.as_slice()
	}
}

#[derive(Encode, Decode)]
pub struct PrepareOutcome {
	pub compiled_artifact: CompiledArtifact,
	pub observed_wasm_code_len: u32,
}

/// Get a worker request.
fn recv_request(stream: &mut UnixStream) -> io::Result<PvfPrepData> {
	let pvf = framed_recv_blocking(stream)?;
	let pvf = PvfPrepData::decode(&mut &pvf[..]).map_err(|e| {
		io::Error::new(
			io::ErrorKind::Other,
			format!("prepare pvf recv_request: failed to decode PvfPrepData: {}", e),
		)
	})?;
	Ok(pvf)
}

fn start_memory_tracking(fd: RawFd, limit: Option<isize>) {
	unsafe {
		// SAFETY: Inside the failure handler, the allocator is locked and no allocations or
		// deallocations are possible. For Linux, that always holds for the code below, so it's
		// safe. For MacOS, that technically holds at the time of writing, but there are no future
		// guarantees.
		// The arguments of unsafe `libc` calls are valid, the payload validity is covered with
		// a test.
		ALLOC.start_tracking(
			limit,
			Some(Box::new(move || {
				#[cfg(target_os = "linux")]
				{
					// Syscalls never allocate or deallocate, so this is safe.
					libc::syscall(libc::SYS_write, fd, OOM_PAYLOAD.as_ptr(), OOM_PAYLOAD.len());
					libc::syscall(libc::SYS_close, fd);
					// Make sure we exit from all threads. Copied from glibc.
					libc::syscall(libc::SYS_exit_group, 1);
					loop {
						libc::syscall(libc::SYS_exit, 1);
					}
				}
				#[cfg(not(target_os = "linux"))]
				{
					// Syscalls are not available on MacOS, so we have to use `libc` wrappers.
					// Technically, there may be allocations inside, although they shouldn't be
					// there. In that case, we'll see deadlocks on MacOS after the OOM condition
					// triggered. As we consider running a validator on MacOS unsafe, and this
					// code is only run by a validator, it's a lesser evil.
					libc::write(fd, OOM_PAYLOAD.as_ptr().cast(), OOM_PAYLOAD.len());
					libc::close(fd);
					libc::_exit(1);
				}
			})),
		);
	}
}

fn end_memory_tracking() -> isize {
	ALLOC.end_tracking()
}

/// The entrypoint that the spawned prepare worker should start with.
///
/// # Parameters
///
/// - `socket_path`: specifies the path to the socket used to communicate with the host.
///
/// - `worker_dir_path`: specifies the path to the worker-specific temporary directory.
///
/// - `node_version`: if `Some`, is checked against the `worker_version`. A mismatch results in
///   immediate worker termination. `None` is used for tests and in other situations when version
///   check is not necessary.
///
/// - `worker_version`: see above
///
/// # Flow
///
/// This runs the following in a loop:
///
/// 1. Get the code and parameters for preparation from the host.
///
/// 2. Start a new child process
///
/// 3. Start the memory tracker and the actual preparation in two separate threads.
///
/// 4. Wait on the two threads created in step 3.
///
/// 5. Stop the memory tracker and get the stats.
///
/// 6. Pipe the result back to the parent process and exit from child process.
///
/// 7. If compilation succeeded, write the compiled artifact into a temporary file.
///
/// 8. Send the result of preparation back to the host, including the checksum of the artifact. If
///    any error occurred in the above steps, we send that in the `PrepareWorkerResult`.
pub fn worker_entrypoint(
	socket_path: PathBuf,
	worker_dir_path: PathBuf,
	node_version: Option<&str>,
	worker_version: Option<&str>,
) {
	run_worker(
		WorkerKind::Prepare,
		socket_path,
		worker_dir_path,
		node_version,
		worker_version,
		|mut stream, worker_info, security_status| {
			let temp_artifact_dest = worker_dir::prepare_tmp_artifact(&worker_info.worker_dir_path);

			loop {
				let pvf = recv_request(&mut stream)?;
				gum::debug!(
					target: LOG_TARGET,
					?worker_info,
					?security_status,
					"worker: preparing artifact",
				);

				let preparation_timeout = pvf.prep_timeout();
				let prepare_job_kind = pvf.prep_kind();
				let executor_params = pvf.executor_params();

				let (pipe_read_fd, pipe_write_fd) = pipe2_cloexec()?;

				let usage_before = match nix::sys::resource::getrusage(UsageWho::RUSAGE_CHILDREN) {
					Ok(usage) => usage,
					Err(errno) => {
						let result: PrepareWorkerResult =
							Err(error_from_errno("getrusage before", errno));
						send_result(&mut stream, result, worker_info)?;
						continue
					},
				};

				let stream_fd = stream.as_raw_fd();

				cfg_if::cfg_if! {
					if #[cfg(target_os = "linux")] {
						let result = if security_status.can_do_secure_clone {
							handle_clone(
								&pvf,
								pipe_write_fd,
								pipe_read_fd,
								stream_fd,
								preparation_timeout,
								prepare_job_kind,
								&executor_params,
								worker_info,
								security_status.can_unshare_user_namespace_and_change_root,
								&temp_artifact_dest,
								usage_before,
							)
						} else {
							// Fall back to using fork.
							handle_fork(
								&pvf,
								pipe_write_fd,
								pipe_read_fd,
								stream_fd,
								preparation_timeout,
								prepare_job_kind,
								&executor_params,
								worker_info,
								&temp_artifact_dest,
								usage_before,
							)
						};
					} else {
						let result = handle_fork(
							&pvf,
							pipe_write_fd,
							pipe_read_fd,
							stream_fd,
							preparation_timeout,
							prepare_job_kind,
							&executor_params,
							worker_info,
							&temp_artifact_dest,
							usage_before,
						);
					}
				}

				gum::trace!(
					target: LOG_TARGET,
					?worker_info,
					"worker: sending result to host: {:?}",
					result
				);
				send_result(&mut stream, result, worker_info)?;
			}
		},
	);
}

fn prepare_artifact(pvf: PvfPrepData) -> Result<PrepareOutcome, PrepareError> {
	let maybe_compressed_code = pvf.maybe_compressed_code();
	let raw_validation_code =
		sp_maybe_compressed_blob::decompress(&maybe_compressed_code, VALIDATION_CODE_BOMB_LIMIT)
			.map_err(|e| PrepareError::CouldNotDecompressCodeBlob(e.to_string()))?;
	let observed_wasm_code_len = raw_validation_code.len() as u32;

	let blob = match prevalidate(&raw_validation_code) {
		Err(err) => return Err(PrepareError::Prevalidation(format!("{:?}", err))),
		Ok(b) => b,
	};

	match prepare(blob, &pvf.executor_params()) {
		Ok(compiled_artifact) => Ok(PrepareOutcome {
			compiled_artifact: CompiledArtifact::new(compiled_artifact),
			observed_wasm_code_len,
		}),
		Err(err) => Err(PrepareError::Preparation(format!("{:?}", err))),
	}
}

/// Try constructing the runtime to catch any instantiation errors during pre-checking.
fn runtime_construction_check(
	artifact_bytes: &[u8],
	executor_params: &ExecutorParams,
) -> Result<(), PrepareError> {
	// SAFETY: We just compiled this artifact.
	let result = unsafe { create_runtime_from_artifact_bytes(artifact_bytes, executor_params) };
	result
		.map(|_runtime| ())
		.map_err(|err| PrepareError::RuntimeConstruction(format!("{:?}", err)))
}

#[derive(Encode, Decode)]
struct JobResponse {
	artifact: CompiledArtifact,
	memory_stats: MemoryStats,
	observed_wasm_code_len: u32,
}

#[cfg(target_os = "linux")]
fn handle_clone(
	pvf: &PvfPrepData,
	pipe_write_fd: i32,
	pipe_read_fd: i32,
	stream_fd: i32,
	preparation_timeout: Duration,
	prepare_job_kind: PrepareJobKind,
	executor_params: &Arc<ExecutorParams>,
	worker_info: &WorkerInfo,
	have_unshare_newuser: bool,
	temp_artifact_dest: &Path,
	usage_before: Usage,
) -> Result<PrepareWorkerSuccess, PrepareError> {
	use polkadot_node_core_pvf_common::worker::security;

	// SAFETY: new process is spawned within a single threaded process. This invariant
	// is enforced by tests. Stack size being specified to ensure child doesn't overflow
	match unsafe {
		security::clone::clone_on_worker(
			worker_info,
			have_unshare_newuser,
			Box::new(|| {
				handle_child_process(
					pvf.clone(),
					pipe_write_fd,
					pipe_read_fd,
					stream_fd,
					preparation_timeout,
					prepare_job_kind,
					Arc::clone(&executor_params),
				)
			}),
		)
	} {
		Ok(child) => handle_parent_process(
			pipe_read_fd,
			pipe_write_fd,
			worker_info,
			child,
			temp_artifact_dest,
			usage_before,
			preparation_timeout,
		),
		Err(security::clone::Error::Clone(errno)) => Err(error_from_errno("clone", errno)),
	}
}

fn handle_fork(
	pvf: &PvfPrepData,
	pipe_write_fd: i32,
	pipe_read_fd: i32,
	stream_fd: i32,
	preparation_timeout: Duration,
	prepare_job_kind: PrepareJobKind,
	executor_params: &Arc<ExecutorParams>,
	worker_info: &WorkerInfo,
	temp_artifact_dest: &Path,
	usage_before: Usage,
) -> Result<PrepareWorkerSuccess, PrepareError> {
	// SAFETY: new process is spawned within a single threaded process. This invariant
	// is enforced by tests.
	match unsafe { nix::unistd::fork() } {
		Ok(ForkResult::Child) => handle_child_process(
			pvf.clone(),
			pipe_write_fd,
			pipe_read_fd,
			stream_fd,
			preparation_timeout,
			prepare_job_kind,
			Arc::clone(executor_params),
		),
		Ok(ForkResult::Parent { child }) => handle_parent_process(
			pipe_read_fd,
			pipe_write_fd,
			worker_info,
			child,
			temp_artifact_dest,
			usage_before,
			preparation_timeout,
		),
		Err(errno) => Err(error_from_errno("fork", errno)),
	}
}

/// This is used to handle child process during pvf prepare worker.
/// It prepares the artifact and tracks memory stats during preparation
/// and pipes back the response to the parent process.
///
/// # Returns
///
/// - If any error occur, pipe response back with `PrepareError`.
///
/// - If success, pipe back `JobResponse`.
fn handle_child_process(
	pvf: PvfPrepData,
	pipe_write_fd: i32,
	pipe_read_fd: i32,
	stream_fd: i32,
	preparation_timeout: Duration,
	prepare_job_kind: PrepareJobKind,
	executor_params: Arc<ExecutorParams>,
) -> ! {
	// SAFETY: pipe_writer is an open and owned file descriptor at this point.
	let mut pipe_write = unsafe { PipeFd::from_raw_fd(pipe_write_fd) };

	// Drop the read end so we don't have too many FDs open.
	if let Err(errno) = nix::unistd::close(pipe_read_fd) {
		send_child_response(
			&mut pipe_write,
			JobResult::Err(error_from_errno("closing pipe", errno)),
		);
	}

	// Dropping the stream closes the underlying socket. We want to make sure
	// that the sandboxed child can't get any kind of information from the
	// outside world. The only IPC it should be able to do is sending its
	// response over the pipe.
	if let Err(errno) = nix::unistd::close(stream_fd) {
		send_child_response(
			&mut pipe_write,
			JobResult::Err(error_from_errno("error closing stream", errno)),
		);
	}

	let worker_job_pid = process::id();
	gum::debug!(
		target: LOG_TARGET,
		%worker_job_pid,
		?prepare_job_kind,
		?preparation_timeout,
		"worker job: preparing artifact",
	);

	// Conditional variable to notify us when a thread is done.
	let condvar = thread::get_condvar();

	// Run the memory tracker in a regular, non-worker thread.
	#[cfg(any(target_os = "linux", feature = "jemalloc-allocator"))]
	let condvar_memory = Arc::clone(&condvar);
	#[cfg(any(target_os = "linux", feature = "jemalloc-allocator"))]
	let memory_tracker_thread = std::thread::spawn(|| memory_tracker_loop(condvar_memory));

	start_memory_tracking(
		pipe_write.as_raw_fd(),
		executor_params.prechecking_max_memory().map(|v| {
			v.try_into().unwrap_or_else(|_| {
				gum::warn!(
					LOG_TARGET,
					%worker_job_pid,
					"Illegal pre-checking max memory value {} discarded",
					v,
				);
				0
			})
		}),
	);

	let cpu_time_start = ProcessTime::now();

	// Spawn a new thread that runs the CPU time monitor.
	let (cpu_time_monitor_tx, cpu_time_monitor_rx) = channel::<()>();
	let cpu_time_monitor_thread = thread::spawn_worker_thread(
		"cpu time monitor thread",
		move || cpu_time_monitor_loop(cpu_time_start, preparation_timeout, cpu_time_monitor_rx),
		Arc::clone(&condvar),
		WaitOutcome::TimedOut,
	)
	.unwrap_or_else(|err| {
		send_child_response(&mut pipe_write, Err(PrepareError::IoErr(err.to_string())))
	});

	let prepare_thread = spawn_worker_thread(
		"prepare worker",
		move || {
			#[allow(unused_mut)]
			let mut result = prepare_artifact(pvf).map(|o| (o,));

			// Get the `ru_maxrss` stat. If supported, call getrusage for the thread.
			#[cfg(target_os = "linux")]
			let mut result = result.map(|outcome| (outcome.0, get_max_rss_thread()));

			// If we are pre-checking, check for runtime construction errors.
			//
			// As pre-checking is more strict than just preparation in terms of memory
			// and time, it is okay to do extra checks here. This takes negligible time
			// anyway.
			if let PrepareJobKind::Prechecking = prepare_job_kind {
				result = result.and_then(|output| {
					runtime_construction_check(
						output.0.compiled_artifact.as_ref(),
						&executor_params,
					)?;
					Ok(output)
				});
			}
			result
		},
		Arc::clone(&condvar),
		WaitOutcome::Finished,
	)
	.unwrap_or_else(|err| {
		send_child_response(&mut pipe_write, Err(PrepareError::IoErr(err.to_string())))
	});

	let outcome = thread::wait_for_threads(condvar);

	let peak_alloc = {
		let peak = end_memory_tracking();
		gum::debug!(
			target: LOG_TARGET,
			%worker_job_pid,
			"prepare job peak allocation is {} bytes",
			peak,
		);
		peak
	};

	let result = match outcome {
		WaitOutcome::Finished => {
			let _ = cpu_time_monitor_tx.send(());

			match prepare_thread.join().unwrap_or_else(|err| {
				send_child_response(
					&mut pipe_write,
					Err(PrepareError::JobError(stringify_panic_payload(err))),
				)
			}) {
				Err(err) => Err(err),
				Ok(ok) => {
					cfg_if::cfg_if! {
						if #[cfg(target_os = "linux")] {
							let (PrepareOutcome { compiled_artifact, observed_wasm_code_len }, max_rss) = ok;
						} else {
							let (PrepareOutcome { compiled_artifact, observed_wasm_code_len },) = ok;
						}
					}

					// Stop the memory stats worker and get its observed memory stats.
					#[cfg(any(target_os = "linux", feature = "jemalloc-allocator"))]
					let memory_tracker_stats = get_memory_tracker_loop_stats(memory_tracker_thread, process::id());

					let memory_stats = MemoryStats {
						#[cfg(any(target_os = "linux", feature = "jemalloc-allocator"))]
						memory_tracker_stats,
						#[cfg(target_os = "linux")]
						max_rss: extract_max_rss_stat(max_rss, process::id()),
						// Negative peak allocation values are legit; they are narrow
						// corner cases and shouldn't affect overall statistics
						// significantly
						peak_tracked_alloc: if peak_alloc > 0 { peak_alloc as u64 } else { 0u64 },
					};

					Ok(JobResponse {
						artifact: compiled_artifact,
						observed_wasm_code_len,
						memory_stats,
					})
				},
			}
		},

		// If the CPU thread is not selected, we signal it to end, the join handle is
		// dropped and the thread will finish in the background.
		WaitOutcome::TimedOut => match cpu_time_monitor_thread.join() {
			Ok(Some(_cpu_time_elapsed)) => Err(PrepareError::TimedOut),
			Ok(None) => Err(PrepareError::IoErr("error communicating over closed channel".into())),
			Err(err) => Err(PrepareError::IoErr(stringify_panic_payload(err))),
		},
		WaitOutcome::Pending =>
			unreachable!("we run wait_while until the outcome is no longer pending; qed"),
	};

	send_child_response(&mut pipe_write, result);
}

/// Waits for child process to finish and handle child response from pipe.
///
/// # Returns
///
/// - If the child send response without an error, this function returns `Ok(PrepareStats)`
///   containing memory and CPU usage statistics.
///
/// - If the child send response with an error, it returns a `PrepareError` with that error.
///
/// - If the child process timeout, it returns `PrepareError::TimedOut`.
fn handle_parent_process(
	pipe_read_fd: i32,
	pipe_write_fd: i32,
	worker_info: &WorkerInfo,
	job_pid: Pid,
	temp_artifact_dest: &Path,
	usage_before: Usage,
	timeout: Duration,
) -> Result<PrepareWorkerSuccess, PrepareError> {
	// the read end will wait until all write ends have been closed,
	// this drop is necessary to avoid deadlock
	if let Err(errno) = nix::unistd::close(pipe_write_fd) {
		return Err(error_from_errno("closing pipe write fd", errno));
	};

	// SAFETY: this is an open and owned file descriptor at this point.
	let mut pipe_read = unsafe { PipeFd::from_raw_fd(pipe_read_fd) };

	// Read from the child. Don't decode unless the process exited normally, which we check later.
	let mut received_data = Vec::new();
	pipe_read
		.read_to_end(&mut received_data)
		.map_err(|err| PrepareError::IoErr(err.to_string()))?;

	let status = nix::sys::wait::waitpid(job_pid, None);
	gum::trace!(
		target: LOG_TARGET,
		?worker_info,
		%job_pid,
		"prepare worker received wait status from job: {:?}",
		status,
	);

	let usage_after = nix::sys::resource::getrusage(UsageWho::RUSAGE_CHILDREN)
		.map_err(|errno| error_from_errno("getrusage after", errno))?;

	// Using `getrusage` is needed to check whether child has timedout since we cannot rely on
	// child to report its own time.
	// As `getrusage` returns resource usage from all terminated child processes,
	// it is necessary to subtract the usage before the current child process to isolate its cpu
	// time
	let cpu_tv = get_total_cpu_usage(usage_after) - get_total_cpu_usage(usage_before);
	if cpu_tv >= timeout {
		gum::warn!(
			target: LOG_TARGET,
			?worker_info,
			%job_pid,
			"prepare job took {}ms cpu time, exceeded prepare timeout {}ms",
			cpu_tv.as_millis(),
			timeout.as_millis(),
		);
		return Err(PrepareError::TimedOut)
	}

	match status {
		Ok(WaitStatus::Exited(_pid, exit_status)) => {
			let mut reader = io::BufReader::new(received_data.as_slice());
			let result = recv_child_response(&mut reader, "prepare")
				.map_err(|err| PrepareError::JobError(err.to_string()))?;

			match result {
				Err(err) => Err(err),
				Ok(JobResponse { artifact, memory_stats, observed_wasm_code_len }) => {
					// The exit status should have been zero if no error occurred.
					if exit_status != 0 {
						return Err(PrepareError::JobError(format!(
							"unexpected exit status: {}",
							exit_status
						)))
					}

					// Write the serialized artifact into a temp file.
					//
					// PVF host only keeps artifacts statuses in its memory,
					// successfully compiled code gets stored on the disk (and
					// consequently deserialized by execute-workers). The prepare worker
					// is only required to send `Ok` to the pool to indicate the
					// success.
					gum::debug!(
						target: LOG_TARGET,
						?worker_info,
						%job_pid,
						"worker: writing artifact to {}",
						temp_artifact_dest.display(),
					);
					// Write to the temp file created by the host.
					if let Err(err) = fs::write(temp_artifact_dest, &artifact) {
						return Err(PrepareError::IoErr(err.to_string()))
					};

					let checksum = blake3::hash(&artifact.as_ref()).to_hex().to_string();
					Ok(PrepareWorkerSuccess {
						checksum,
						stats: PrepareStats {
							memory_stats,
							cpu_time_elapsed: cpu_tv,
							observed_wasm_code_len,
						},
					})
				},
			}
		},
		// The job was killed by the given signal.
		//
		// The job gets SIGSYS on seccomp violations, but this signal may have been sent for some
		// other reason, so we still need to check for seccomp violations elsewhere.
		Ok(WaitStatus::Signaled(_pid, signal, _core_dump)) => Err(PrepareError::JobDied {
			err: format!("received signal: {signal:?}"),
			job_pid: job_pid.as_raw(),
		}),
		Err(errno) => Err(error_from_errno("waitpid", errno)),

		// An attacker can make the child process return any exit status it wants. So we can treat
		// all unexpected cases the same way.
		Ok(unexpected_wait_status) => Err(PrepareError::JobDied {
			err: format!("unexpected status from wait: {unexpected_wait_status:?}"),
			job_pid: job_pid.as_raw(),
		}),
	}
}

/// Write a job response to the pipe and exit process after.
///
/// # Arguments
///
/// - `pipe_write`: A `PipeFd` structure, the writing end of a pipe.
///
/// - `response`: Child process response
fn send_child_response(pipe_write: &mut PipeFd, response: JobResult) -> ! {
	framed_send_blocking(pipe_write, response.encode().as_slice())
		.unwrap_or_else(|_| process::exit(libc::EXIT_FAILURE));

	if response.is_ok() {
		process::exit(libc::EXIT_SUCCESS)
	} else {
		process::exit(libc::EXIT_FAILURE)
	}
}

fn error_from_errno(context: &'static str, errno: Errno) -> PrepareError {
	PrepareError::Kernel(stringify_errno(context, errno))
}

type JobResult = Result<JobResponse, PrepareError>;

/// Pre-encoded length-prefixed `JobResult::Err(PrepareError::OutOfMemory)`
const OOM_PAYLOAD: &[u8] = b"\x02\x00\x00\x00\x00\x00\x00\x00\x01\x08";

#[test]
fn pre_encoded_payloads() {
	// NOTE: This must match the type of `response` in `send_child_response`.
	let oom_unencoded: JobResult = JobResult::Err(PrepareError::OutOfMemory);
	let oom_encoded = oom_unencoded.encode();
	// The payload is prefixed with	its length in `framed_send`.
	let mut oom_payload = oom_encoded.len().to_le_bytes().to_vec();
	oom_payload.extend(oom_encoded);
	assert_eq!(oom_payload, OOM_PAYLOAD);
}