1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! The paras pallet acts as the main registry of paras.
//!
//! # Tracking State of Paras
//!
//! The most important responsibility of this module is to track which parachains
//! are active and what their current state is. The current state of a para consists of the current
//! head data and the current validation code (AKA Parachain Validation Function (PVF)).
//!
//! A para is not considered live until it is registered and activated in this pallet.
//!
//! The set of parachains cannot change except at session boundaries. This is primarily to ensure
//! that the number and meaning of bits required for the availability bitfields does not change
//! except at session boundaries.
//!
//! # Validation Code Upgrades
//!
//! When a para signals the validation code upgrade it will be processed by this module. This can
//! be in turn split into more fine grained items:
//!
//! - Part of the acceptance criteria checks if the para can indeed signal an upgrade,
//!
//! - When the candidate is enacted, this module schedules code upgrade, storing the prospective
//! validation code.
//!
//! - Actually assign the prospective validation code to be the current one after all conditions are
//! fulfilled.
//!
//! The conditions that must be met before the para can use the new validation code are:
//!
//! 1. The validation code should have been "soaked" in the storage for a given number of blocks.
//! That is, the validation code should have been stored in on-chain storage for some time, so
//! that in case of a revert with a non-extreme height difference, that validation code can still
//! be found on-chain.
//!
//! 2. The validation code was vetted by the validators and declared as non-malicious in a processes
//! known as PVF pre-checking.
//!
//! # Validation Code Management
//!
//! Potentially, one validation code can be used by several different paras. For example, during
//! initial stages of deployment several paras can use the same "shell" validation code, or
//! there can be shards of the same para that use the same validation code.
//!
//! In case a validation code ceases to have any users it must be pruned from the on-chain storage.
//!
//! # Para Lifecycle Management
//!
//! A para can be in one of the two stable states: it is either a lease holding parachain or an
//! on-demand parachain.
//!
//! However, in order to get into one of those two states, it must first be onboarded. Onboarding
//! can be only enacted at session boundaries. Onboarding must take at least one full session.
//! Moreover, a brand new validation code should go through the PVF pre-checking process.
//!
//! Once the para is in one of the two stable states, it can switch to the other stable state or to
//! initiate offboarding process. The result of offboarding is removal of all data related to that
//! para.
//!
//! # PVF Pre-checking
//!
//! As was mentioned above, a brand new validation code should go through a process of approval. As
//! part of this process, validators from the active set will take the validation code and check if
//! it is malicious. Once they did that and have their judgement, either accept or reject, they
//! issue a statement in a form of an unsigned extrinsic. This extrinsic is processed by this
//! pallet. Once supermajority is gained for accept, then the process that initiated the check is
//! resumed (as mentioned before this can be either upgrading of validation code or onboarding). If
//! getting a supermajority becomes impossible (>1/3 of validators have already voted against), then
//! we reject.
//!
//! Below is a state diagram that depicts states of a single PVF pre-checking vote.
//!
//! ```text
//! โโโโโโโโโโโโ
//! supermajority โ โ
//! โโโโโโโโโforโโโโโโโโโโโโถโ accepted โ
//! voteโโโโโ โ โ โ
//! โ โ โ โโโโโโโโโโโโ
//! โ โ โ
//! โ โโโโโโโโโ
//! โ โ โ
//! โโโถโ init โโโโโ >1/3 against โโโโโโโโโโโโ
//! โ โ โ โ โ
//! โโโโโโโโโ โโโโโโโโโโโโถโ rejected โ
//! โฒ โ โ โ
//! โ โ session โโโโโโโโโโโโ
//! โ โโโchange
//! โ โ
//! โ โผ
//! โโโโโโโ
//! startโโโโโโโถโresetโ
//! โโโโโโโ
//! ```
use crate::{
configuration,
inclusion::{QueueFootprinter, UmpQueueId},
initializer::SessionChangeNotification,
shared,
};
use alloc::{collections::btree_set::BTreeSet, vec::Vec};
use bitvec::{order::Lsb0 as BitOrderLsb0, vec::BitVec};
use codec::{Decode, Encode};
use core::{cmp, mem};
use frame_support::{pallet_prelude::*, traits::EstimateNextSessionRotation, DefaultNoBound};
use frame_system::pallet_prelude::*;
use polkadot_primitives::{
ConsensusLog, HeadData, Id as ParaId, PvfCheckStatement, SessionIndex, UpgradeGoAhead,
UpgradeRestriction, ValidationCode, ValidationCodeHash, ValidatorSignature, MIN_CODE_SIZE,
};
use scale_info::{Type, TypeInfo};
use sp_core::RuntimeDebug;
use sp_runtime::{
traits::{AppVerify, One, Saturating},
DispatchResult, SaturatedConversion,
};
use serde::{Deserialize, Serialize};
pub use crate::Origin as ParachainOrigin;
#[cfg(feature = "runtime-benchmarks")]
pub mod benchmarking;
#[cfg(test)]
pub(crate) mod tests;
pub use pallet::*;
const LOG_TARGET: &str = "runtime::paras";
// the two key times necessary to track for every code replacement.
#[derive(Default, Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug, Clone, PartialEq))]
pub struct ReplacementTimes<N> {
/// The relay-chain block number that the code upgrade was expected to be activated.
/// This is when the code change occurs from the para's perspective - after the
/// first parablock included with a relay-parent with number >= this value.
expected_at: N,
/// The relay-chain block number at which the parablock activating the code upgrade was
/// actually included. This means considered included and available, so this is the time at
/// which that parablock enters the acceptance period in this fork of the relay-chain.
activated_at: N,
}
/// Metadata used to track previous parachain validation code that we keep in
/// the state.
#[derive(Default, Encode, Decode, TypeInfo)]
#[cfg_attr(test, derive(Debug, Clone, PartialEq))]
pub struct ParaPastCodeMeta<N> {
/// Block numbers where the code was expected to be replaced and where the code
/// was actually replaced, respectively. The first is used to do accurate look-ups
/// of historic code in historic contexts, whereas the second is used to do
/// pruning on an accurate timeframe. These can be used as indices
/// into the `PastCodeHash` map along with the `ParaId` to fetch the code itself.
upgrade_times: Vec<ReplacementTimes<N>>,
/// Tracks the highest pruned code-replacement, if any. This is the `activated_at` value,
/// not the `expected_at` value.
last_pruned: Option<N>,
}
/// The possible states of a para, to take into account delayed lifecycle changes.
///
/// If the para is in a "transition state", it is expected that the parachain is
/// queued in the `ActionsQueue` to transition it into a stable state. Its lifecycle
/// state will be used to determine the state transition to apply to the para.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
pub enum ParaLifecycle {
/// Para is new and is onboarding as an on-demand or lease holding Parachain.
Onboarding,
/// Para is a Parathread (on-demand parachain).
Parathread,
/// Para is a lease holding Parachain.
Parachain,
/// Para is a Parathread (on-demand parachain) which is upgrading to a lease holding Parachain.
UpgradingParathread,
/// Para is a lease holding Parachain which is downgrading to an on-demand parachain.
DowngradingParachain,
/// Parathread (on-demand parachain) is queued to be offboarded.
OffboardingParathread,
/// Parachain is queued to be offboarded.
OffboardingParachain,
}
impl ParaLifecycle {
/// Returns true if parachain is currently onboarding. To learn if the
/// parachain is onboarding as a lease holding or on-demand parachain, look at the
/// `UpcomingGenesis` storage item.
pub fn is_onboarding(&self) -> bool {
matches!(self, ParaLifecycle::Onboarding)
}
/// Returns true if para is in a stable state, i.e. it is currently
/// a lease holding or on-demand parachain, and not in any transition state.
pub fn is_stable(&self) -> bool {
matches!(self, ParaLifecycle::Parathread | ParaLifecycle::Parachain)
}
/// Returns true if para is currently treated as a parachain.
/// This also includes transitioning states, so you may want to combine
/// this check with `is_stable` if you specifically want `Paralifecycle::Parachain`.
pub fn is_parachain(&self) -> bool {
matches!(
self,
ParaLifecycle::Parachain |
ParaLifecycle::DowngradingParachain |
ParaLifecycle::OffboardingParachain
)
}
/// Returns true if para is currently treated as a parathread (on-demand parachain).
/// This also includes transitioning states, so you may want to combine
/// this check with `is_stable` if you specifically want `Paralifecycle::Parathread`.
pub fn is_parathread(&self) -> bool {
matches!(
self,
ParaLifecycle::Parathread |
ParaLifecycle::UpgradingParathread |
ParaLifecycle::OffboardingParathread
)
}
/// Returns true if para is currently offboarding.
pub fn is_offboarding(&self) -> bool {
matches!(self, ParaLifecycle::OffboardingParathread | ParaLifecycle::OffboardingParachain)
}
/// Returns true if para is in any transitionary state.
pub fn is_transitioning(&self) -> bool {
!Self::is_stable(self)
}
}
impl<N: Ord + Copy + PartialEq> ParaPastCodeMeta<N> {
// note a replacement has occurred at a given block number.
pub(crate) fn note_replacement(&mut self, expected_at: N, activated_at: N) {
self.upgrade_times.push(ReplacementTimes { expected_at, activated_at })
}
/// Returns `true` if the upgrade logs list is empty.
fn is_empty(&self) -> bool {
self.upgrade_times.is_empty()
}
// The block at which the most recently tracked code change occurred, from the perspective
// of the para.
#[cfg(test)]
fn most_recent_change(&self) -> Option<N> {
self.upgrade_times.last().map(|x| x.expected_at)
}
// prunes all code upgrade logs occurring at or before `max`.
// note that code replaced at `x` is the code used to validate all blocks before
// `x`. Thus, `max` should be outside of the slashing window when this is invoked.
//
// Since we don't want to prune anything inside the acceptance period, and the parablock only
// enters the acceptance period after being included, we prune based on the activation height of
// the code change, not the expected height of the code change.
//
// returns an iterator of block numbers at which code was replaced, where the replaced
// code should be now pruned, in ascending order.
fn prune_up_to(&'_ mut self, max: N) -> impl Iterator<Item = N> + '_ {
let to_prune = self.upgrade_times.iter().take_while(|t| t.activated_at <= max).count();
let drained = if to_prune == 0 {
// no-op prune.
self.upgrade_times.drain(self.upgrade_times.len()..)
} else {
// if we are actually pruning something, update the `last_pruned` member.
self.last_pruned = Some(self.upgrade_times[to_prune - 1].activated_at);
self.upgrade_times.drain(..to_prune)
};
drained.map(|times| times.expected_at)
}
}
/// Arguments for initializing a para.
#[derive(PartialEq, Eq, Clone, Encode, Decode, RuntimeDebug, TypeInfo, Serialize, Deserialize)]
pub struct ParaGenesisArgs {
/// The initial head data to use.
pub genesis_head: HeadData,
/// The initial validation code to use.
pub validation_code: ValidationCode,
/// Lease holding or on-demand parachain.
#[serde(rename = "parachain")]
pub para_kind: ParaKind,
}
/// Distinguishes between lease holding Parachain and Parathread (on-demand parachain)
#[derive(PartialEq, Eq, Clone, RuntimeDebug)]
pub enum ParaKind {
Parathread,
Parachain,
}
impl Serialize for ParaKind {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
match self {
ParaKind::Parachain => serializer.serialize_bool(true),
ParaKind::Parathread => serializer.serialize_bool(false),
}
}
}
impl<'de> Deserialize<'de> for ParaKind {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
match serde::de::Deserialize::deserialize(deserializer) {
Ok(true) => Ok(ParaKind::Parachain),
Ok(false) => Ok(ParaKind::Parathread),
_ => Err(serde::de::Error::custom("invalid ParaKind serde representation")),
}
}
}
// Manual encoding, decoding, and TypeInfo as the parakind field in ParaGenesisArgs used to be a
// bool
impl Encode for ParaKind {
fn size_hint(&self) -> usize {
true.size_hint()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
match self {
ParaKind::Parachain => true.using_encoded(f),
ParaKind::Parathread => false.using_encoded(f),
}
}
}
impl Decode for ParaKind {
fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
match bool::decode(input) {
Ok(true) => Ok(ParaKind::Parachain),
Ok(false) => Ok(ParaKind::Parathread),
_ => Err("Invalid ParaKind representation".into()),
}
}
}
impl TypeInfo for ParaKind {
type Identity = bool;
fn type_info() -> Type {
bool::type_info()
}
}
/// This enum describes a reason why a particular PVF pre-checking vote was initiated. When the
/// PVF vote in question is concluded, this enum indicates what changes should be performed.
#[derive(Debug, Encode, Decode, TypeInfo)]
pub(crate) enum PvfCheckCause<BlockNumber> {
/// PVF vote was initiated by the initial onboarding process of the given para.
Onboarding(ParaId),
/// PVF vote was initiated by signalling of an upgrade by the given para.
Upgrade {
/// The ID of the parachain that initiated or is waiting for the conclusion of
/// pre-checking.
id: ParaId,
/// The relay-chain block number of **inclusion** of candidate that that initiated the
/// upgrade.
///
/// It's important to count upgrade enactment delay from the inclusion of this candidate
/// instead of its relay parent -- in order to keep PVF available in case of chain
/// reversions.
///
/// See https://github.com/paritytech/polkadot/issues/4601 for detailed explanation.
included_at: BlockNumber,
/// Whether or not the upgrade should be enacted directly.
///
/// If set to `Yes` it means that no `GoAheadSignal` will be set and the parachain code
/// will also be overwritten directly.
upgrade_strategy: UpgradeStrategy,
},
}
/// The strategy on how to handle a validation code upgrade.
///
/// When scheduling a parachain code upgrade the upgrade first is checked by all validators. The
/// validators ensure that the new validation code can be compiled and instantiated. After the
/// majority of the validators have reported their checking result the upgrade is either scheduled
/// or aborted. This strategy then comes into play around the relay chain block this upgrade was
/// scheduled in.
#[derive(Debug, Copy, Clone, PartialEq, TypeInfo, Decode, Encode)]
pub enum UpgradeStrategy {
/// Set the `GoAhead` signal to inform the parachain that it is time to upgrade.
///
/// The upgrade will then be applied after the first parachain block was enacted that must have
/// observed the `GoAhead` signal.
SetGoAheadSignal,
/// Apply the upgrade directly at the expected relay chain block.
///
/// This doesn't wait for the parachain to make any kind of progress.
ApplyAtExpectedBlock,
}
impl<BlockNumber> PvfCheckCause<BlockNumber> {
/// Returns the ID of the para that initiated or subscribed to the pre-checking vote.
fn para_id(&self) -> ParaId {
match *self {
PvfCheckCause::Onboarding(id) => id,
PvfCheckCause::Upgrade { id, .. } => id,
}
}
}
/// Specifies what was the outcome of a PVF pre-checking vote.
#[derive(Copy, Clone, Encode, Decode, RuntimeDebug, TypeInfo)]
enum PvfCheckOutcome {
Accepted,
Rejected,
}
/// This struct describes the current state of an in-progress PVF pre-checking vote.
#[derive(Encode, Decode, TypeInfo)]
pub(crate) struct PvfCheckActiveVoteState<BlockNumber> {
// The two following vectors have their length equal to the number of validators in the active
// set. They start with all zeroes. A 1 is set at an index when the validator at the that index
// makes a vote. Once a 1 is set for either of the vectors, that validator cannot vote anymore.
// Since the active validator set changes each session, the bit vectors are reinitialized as
// well: zeroed and resized so that each validator gets its own bit.
votes_accept: BitVec<u8, BitOrderLsb0>,
votes_reject: BitVec<u8, BitOrderLsb0>,
/// The number of session changes this PVF vote has observed. Therefore, this number is
/// increased at each session boundary. When created, it is initialized with 0.
age: SessionIndex,
/// The block number at which this PVF vote was created.
created_at: BlockNumber,
/// A list of causes for this PVF pre-checking. Has at least one.
causes: Vec<PvfCheckCause<BlockNumber>>,
}
impl<BlockNumber> PvfCheckActiveVoteState<BlockNumber> {
/// Returns a new instance of vote state, started at the specified block `now`, with the
/// number of validators in the current session `n_validators` and the originating `cause`.
fn new(now: BlockNumber, n_validators: usize, cause: PvfCheckCause<BlockNumber>) -> Self {
let mut causes = Vec::with_capacity(1);
causes.push(cause);
Self {
created_at: now,
votes_accept: bitvec::bitvec![u8, BitOrderLsb0; 0; n_validators],
votes_reject: bitvec::bitvec![u8, BitOrderLsb0; 0; n_validators],
age: 0,
causes,
}
}
/// Resets all votes and resizes the votes vectors corresponding to the number of validators
/// in the new session.
fn reinitialize_ballots(&mut self, n_validators: usize) {
let clear_and_resize = |v: &mut BitVec<_, _>| {
v.clear();
v.resize(n_validators, false);
};
clear_and_resize(&mut self.votes_accept);
clear_and_resize(&mut self.votes_reject);
}
/// Returns `Some(true)` if the validator at the given index has already cast their vote within
/// the ongoing session. Returns `None` in case the index is out of bounds.
fn has_vote(&self, validator_index: usize) -> Option<bool> {
let accept_vote = self.votes_accept.get(validator_index)?;
let reject_vote = self.votes_reject.get(validator_index)?;
Some(*accept_vote || *reject_vote)
}
/// Returns `None` if the quorum is not reached, or the direction of the decision.
fn quorum(&self, n_validators: usize) -> Option<PvfCheckOutcome> {
let accept_threshold = polkadot_primitives::supermajority_threshold(n_validators);
// At this threshold, a supermajority is no longer possible, so we reject.
let reject_threshold = n_validators - accept_threshold;
if self.votes_accept.count_ones() >= accept_threshold {
Some(PvfCheckOutcome::Accepted)
} else if self.votes_reject.count_ones() > reject_threshold {
Some(PvfCheckOutcome::Rejected)
} else {
None
}
}
#[cfg(test)]
pub(crate) fn causes(&self) -> &[PvfCheckCause<BlockNumber>] {
self.causes.as_slice()
}
}
/// Runtime hook for when a parachain head is updated.
pub trait OnNewHead {
/// Called when a parachain head is updated.
/// Returns the weight consumed by this function.
fn on_new_head(id: ParaId, head: &HeadData) -> Weight;
}
#[impl_trait_for_tuples::impl_for_tuples(30)]
impl OnNewHead for Tuple {
fn on_new_head(id: ParaId, head: &HeadData) -> Weight {
let mut weight: Weight = Default::default();
for_tuples!( #( weight.saturating_accrue(Tuple::on_new_head(id, head)); )* );
weight
}
}
/// Assign coretime to some parachain.
///
/// This assigns coretime to a parachain without using the coretime chain. Thus, this should only be
/// used for testing purposes.
pub trait AssignCoretime {
/// ONLY USE FOR TESTING OR GENESIS.
fn assign_coretime(id: ParaId) -> DispatchResult;
}
impl AssignCoretime for () {
fn assign_coretime(_: ParaId) -> DispatchResult {
Ok(())
}
}
pub trait WeightInfo {
fn force_set_current_code(c: u32) -> Weight;
fn force_set_current_head(s: u32) -> Weight;
fn force_set_most_recent_context() -> Weight;
fn force_schedule_code_upgrade(c: u32) -> Weight;
fn force_note_new_head(s: u32) -> Weight;
fn force_queue_action() -> Weight;
fn add_trusted_validation_code(c: u32) -> Weight;
fn poke_unused_validation_code() -> Weight;
fn include_pvf_check_statement_finalize_upgrade_accept() -> Weight;
fn include_pvf_check_statement_finalize_upgrade_reject() -> Weight;
fn include_pvf_check_statement_finalize_onboarding_accept() -> Weight;
fn include_pvf_check_statement_finalize_onboarding_reject() -> Weight;
fn include_pvf_check_statement() -> Weight;
}
pub struct TestWeightInfo;
impl WeightInfo for TestWeightInfo {
fn force_set_current_code(_c: u32) -> Weight {
Weight::MAX
}
fn force_set_current_head(_s: u32) -> Weight {
Weight::MAX
}
fn force_set_most_recent_context() -> Weight {
Weight::MAX
}
fn force_schedule_code_upgrade(_c: u32) -> Weight {
Weight::MAX
}
fn force_note_new_head(_s: u32) -> Weight {
Weight::MAX
}
fn force_queue_action() -> Weight {
Weight::MAX
}
fn add_trusted_validation_code(_c: u32) -> Weight {
// Called during integration tests for para initialization.
Weight::zero()
}
fn poke_unused_validation_code() -> Weight {
Weight::MAX
}
fn include_pvf_check_statement_finalize_upgrade_accept() -> Weight {
Weight::MAX
}
fn include_pvf_check_statement_finalize_upgrade_reject() -> Weight {
Weight::MAX
}
fn include_pvf_check_statement_finalize_onboarding_accept() -> Weight {
Weight::MAX
}
fn include_pvf_check_statement_finalize_onboarding_reject() -> Weight {
Weight::MAX
}
fn include_pvf_check_statement() -> Weight {
// This special value is to distinguish from the finalizing variants above in tests.
Weight::MAX - Weight::from_parts(1, 1)
}
}
#[frame_support::pallet]
pub mod pallet {
use super::*;
use sp_runtime::transaction_validity::{
InvalidTransaction, TransactionPriority, TransactionSource, TransactionValidity,
ValidTransaction,
};
#[pallet::pallet]
#[pallet::without_storage_info]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config:
frame_system::Config
+ configuration::Config
+ shared::Config
+ frame_system::offchain::CreateInherent<Call<Self>>
{
type RuntimeEvent: From<Event> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
#[pallet::constant]
type UnsignedPriority: Get<TransactionPriority>;
type NextSessionRotation: EstimateNextSessionRotation<BlockNumberFor<Self>>;
/// Retrieve how many UMP messages are enqueued for this para-chain.
///
/// This is used to judge whether or not a para-chain can offboard. Per default this should
/// be set to the `ParaInclusion` pallet.
type QueueFootprinter: QueueFootprinter<Origin = UmpQueueId>;
/// Runtime hook for when a parachain head is updated.
type OnNewHead: OnNewHead;
/// Weight information for extrinsics in this pallet.
type WeightInfo: WeightInfo;
/// Runtime hook for assigning coretime for a given parachain.
///
/// This is only used at genesis or by root.
///
/// TODO: Remove once coretime is the standard across all chains.
type AssignCoretime: AssignCoretime;
}
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event {
/// Current code has been updated for a Para. `para_id`
CurrentCodeUpdated(ParaId),
/// Current head has been updated for a Para. `para_id`
CurrentHeadUpdated(ParaId),
/// A code upgrade has been scheduled for a Para. `para_id`
CodeUpgradeScheduled(ParaId),
/// A new head has been noted for a Para. `para_id`
NewHeadNoted(ParaId),
/// A para has been queued to execute pending actions. `para_id`
ActionQueued(ParaId, SessionIndex),
/// The given para either initiated or subscribed to a PVF check for the given validation
/// code. `code_hash` `para_id`
PvfCheckStarted(ValidationCodeHash, ParaId),
/// The given validation code was accepted by the PVF pre-checking vote.
/// `code_hash` `para_id`
PvfCheckAccepted(ValidationCodeHash, ParaId),
/// The given validation code was rejected by the PVF pre-checking vote.
/// `code_hash` `para_id`
PvfCheckRejected(ValidationCodeHash, ParaId),
}
#[pallet::error]
pub enum Error<T> {
/// Para is not registered in our system.
NotRegistered,
/// Para cannot be onboarded because it is already tracked by our system.
CannotOnboard,
/// Para cannot be offboarded at this time.
CannotOffboard,
/// Para cannot be upgraded to a lease holding parachain.
CannotUpgrade,
/// Para cannot be downgraded to an on-demand parachain.
CannotDowngrade,
/// The statement for PVF pre-checking is stale.
PvfCheckStatementStale,
/// The statement for PVF pre-checking is for a future session.
PvfCheckStatementFuture,
/// Claimed validator index is out of bounds.
PvfCheckValidatorIndexOutOfBounds,
/// The signature for the PVF pre-checking is invalid.
PvfCheckInvalidSignature,
/// The given validator already has cast a vote.
PvfCheckDoubleVote,
/// The given PVF does not exist at the moment of process a vote.
PvfCheckSubjectInvalid,
/// Parachain cannot currently schedule a code upgrade.
CannotUpgradeCode,
/// Invalid validation code size.
InvalidCode,
}
/// All currently active PVF pre-checking votes.
///
/// Invariant:
/// - There are no PVF pre-checking votes that exists in list but not in the set and vice versa.
#[pallet::storage]
pub(super) type PvfActiveVoteMap<T: Config> = StorageMap<
_,
Twox64Concat,
ValidationCodeHash,
PvfCheckActiveVoteState<BlockNumberFor<T>>,
OptionQuery,
>;
/// The list of all currently active PVF votes. Auxiliary to `PvfActiveVoteMap`.
#[pallet::storage]
pub(super) type PvfActiveVoteList<T: Config> =
StorageValue<_, Vec<ValidationCodeHash>, ValueQuery>;
/// All lease holding parachains. Ordered ascending by `ParaId`. On demand parachains are not
/// included.
///
/// Consider using the [`ParachainsCache`] type of modifying.
#[pallet::storage]
pub type Parachains<T: Config> = StorageValue<_, Vec<ParaId>, ValueQuery>;
/// The current lifecycle of a all known Para IDs.
#[pallet::storage]
pub(super) type ParaLifecycles<T: Config> = StorageMap<_, Twox64Concat, ParaId, ParaLifecycle>;
/// The head-data of every registered para.
#[pallet::storage]
pub type Heads<T: Config> = StorageMap<_, Twox64Concat, ParaId, HeadData>;
/// The context (relay-chain block number) of the most recent parachain head.
#[pallet::storage]
pub type MostRecentContext<T: Config> = StorageMap<_, Twox64Concat, ParaId, BlockNumberFor<T>>;
/// The validation code hash of every live para.
///
/// Corresponding code can be retrieved with [`CodeByHash`].
#[pallet::storage]
pub type CurrentCodeHash<T: Config> = StorageMap<_, Twox64Concat, ParaId, ValidationCodeHash>;
/// Actual past code hash, indicated by the para id as well as the block number at which it
/// became outdated.
///
/// Corresponding code can be retrieved with [`CodeByHash`].
#[pallet::storage]
pub(super) type PastCodeHash<T: Config> =
StorageMap<_, Twox64Concat, (ParaId, BlockNumberFor<T>), ValidationCodeHash>;
/// Past code of parachains. The parachains themselves may not be registered anymore,
/// but we also keep their code on-chain for the same amount of time as outdated code
/// to keep it available for approval checkers.
#[pallet::storage]
pub type PastCodeMeta<T: Config> =
StorageMap<_, Twox64Concat, ParaId, ParaPastCodeMeta<BlockNumberFor<T>>, ValueQuery>;
/// Which paras have past code that needs pruning and the relay-chain block at which the code
/// was replaced. Note that this is the actual height of the included block, not the expected
/// height at which the code upgrade would be applied, although they may be equal.
/// This is to ensure the entire acceptance period is covered, not an offset acceptance period
/// starting from the time at which the parachain perceives a code upgrade as having occurred.
/// Multiple entries for a single para are permitted. Ordered ascending by block number.
#[pallet::storage]
pub(super) type PastCodePruning<T: Config> =
StorageValue<_, Vec<(ParaId, BlockNumberFor<T>)>, ValueQuery>;
/// The block number at which the planned code change is expected for a parachain.
///
/// The change will be applied after the first parablock for this ID included which executes
/// in the context of a relay chain block with a number >= `expected_at`.
#[pallet::storage]
pub type FutureCodeUpgrades<T: Config> = StorageMap<_, Twox64Concat, ParaId, BlockNumberFor<T>>;
/// The list of upcoming future code upgrades.
///
/// Each item is a pair of the parachain and the expected block at which the upgrade should be
/// applied. The upgrade will be applied at the given relay chain block. In contrast to
/// [`FutureCodeUpgrades`] this code upgrade will be applied regardless the parachain making any
/// progress or not.
///
/// Ordered ascending by block number.
#[pallet::storage]
pub(super) type FutureCodeUpgradesAt<T: Config> =
StorageValue<_, Vec<(ParaId, BlockNumberFor<T>)>, ValueQuery>;
/// The actual future code hash of a para.
///
/// Corresponding code can be retrieved with [`CodeByHash`].
#[pallet::storage]
pub type FutureCodeHash<T: Config> = StorageMap<_, Twox64Concat, ParaId, ValidationCodeHash>;
/// This is used by the relay-chain to communicate to a parachain a go-ahead with in the upgrade
/// procedure.
///
/// This value is absent when there are no upgrades scheduled or during the time the relay chain
/// performs the checks. It is set at the first relay-chain block when the corresponding
/// parachain can switch its upgrade function. As soon as the parachain's block is included, the
/// value gets reset to `None`.
///
/// NOTE that this field is used by parachains via merkle storage proofs, therefore changing
/// the format will require migration of parachains.
#[pallet::storage]
pub(super) type UpgradeGoAheadSignal<T: Config> =
StorageMap<_, Twox64Concat, ParaId, UpgradeGoAhead>;
/// This is used by the relay-chain to communicate that there are restrictions for performing
/// an upgrade for this parachain.
///
/// This may be a because the parachain waits for the upgrade cooldown to expire. Another
/// potential use case is when we want to perform some maintenance (such as storage migration)
/// we could restrict upgrades to make the process simpler.
///
/// NOTE that this field is used by parachains via merkle storage proofs, therefore changing
/// the format will require migration of parachains.
#[pallet::storage]
pub type UpgradeRestrictionSignal<T: Config> =
StorageMap<_, Twox64Concat, ParaId, UpgradeRestriction>;
/// The list of parachains that are awaiting for their upgrade restriction to cooldown.
///
/// Ordered ascending by block number.
#[pallet::storage]
pub(super) type UpgradeCooldowns<T: Config> =
StorageValue<_, Vec<(ParaId, BlockNumberFor<T>)>, ValueQuery>;
/// The list of upcoming code upgrades.
///
/// Each item is a pair of which para performs a code upgrade and at which relay-chain block it
/// is expected at.
///
/// Ordered ascending by block number.
#[pallet::storage]
pub(super) type UpcomingUpgrades<T: Config> =
StorageValue<_, Vec<(ParaId, BlockNumberFor<T>)>, ValueQuery>;
/// The actions to perform during the start of a specific session index.
#[pallet::storage]
pub type ActionsQueue<T: Config> =
StorageMap<_, Twox64Concat, SessionIndex, Vec<ParaId>, ValueQuery>;
/// Upcoming paras instantiation arguments.
///
/// NOTE that after PVF pre-checking is enabled the para genesis arg will have it's code set
/// to empty. Instead, the code will be saved into the storage right away via `CodeByHash`.
#[pallet::storage]
pub(super) type UpcomingParasGenesis<T: Config> =
StorageMap<_, Twox64Concat, ParaId, ParaGenesisArgs>;
/// The number of reference on the validation code in [`CodeByHash`] storage.
#[pallet::storage]
pub(super) type CodeByHashRefs<T: Config> =
StorageMap<_, Identity, ValidationCodeHash, u32, ValueQuery>;
/// Validation code stored by its hash.
///
/// This storage is consistent with [`FutureCodeHash`], [`CurrentCodeHash`] and
/// [`PastCodeHash`].
#[pallet::storage]
pub type CodeByHash<T: Config> = StorageMap<_, Identity, ValidationCodeHash, ValidationCode>;
#[pallet::genesis_config]
#[derive(DefaultNoBound)]
pub struct GenesisConfig<T: Config> {
#[serde(skip)]
pub _config: core::marker::PhantomData<T>,
pub paras: Vec<(ParaId, ParaGenesisArgs)>,
}
#[pallet::genesis_build]
impl<T: Config> BuildGenesisConfig for GenesisConfig<T> {
fn build(&self) {
let mut parachains = ParachainsCache::new();
for (id, genesis_args) in &self.paras {
if genesis_args.validation_code.0.is_empty() {
panic!("empty validation code is not allowed in genesis");
}
Pallet::<T>::initialize_para_now(&mut parachains, *id, genesis_args);
T::AssignCoretime::assign_coretime(*id)
.expect("Assigning coretime works at genesis; qed");
}
// parachains are flushed on drop
}
}
#[pallet::call]
impl<T: Config> Pallet<T> {
/// Set the storage for the parachain validation code immediately.
#[pallet::call_index(0)]
#[pallet::weight(<T as Config>::WeightInfo::force_set_current_code(new_code.0.len() as u32))]
pub fn force_set_current_code(
origin: OriginFor<T>,
para: ParaId,
new_code: ValidationCode,
) -> DispatchResult {
ensure_root(origin)?;
let new_code_hash = new_code.hash();
Self::increase_code_ref(&new_code_hash, &new_code);
Self::set_current_code(para, new_code_hash, frame_system::Pallet::<T>::block_number());
Self::deposit_event(Event::CurrentCodeUpdated(para));
Ok(())
}
/// Set the storage for the current parachain head data immediately.
#[pallet::call_index(1)]
#[pallet::weight(<T as Config>::WeightInfo::force_set_current_head(new_head.0.len() as u32))]
pub fn force_set_current_head(
origin: OriginFor<T>,
para: ParaId,
new_head: HeadData,
) -> DispatchResult {
ensure_root(origin)?;
Self::set_current_head(para, new_head);
Ok(())
}
/// Schedule an upgrade as if it was scheduled in the given relay parent block.
#[pallet::call_index(2)]
#[pallet::weight(<T as Config>::WeightInfo::force_schedule_code_upgrade(new_code.0.len() as u32))]
pub fn force_schedule_code_upgrade(
origin: OriginFor<T>,
para: ParaId,
new_code: ValidationCode,
relay_parent_number: BlockNumberFor<T>,
) -> DispatchResult {
ensure_root(origin)?;
let config = configuration::ActiveConfig::<T>::get();
Self::schedule_code_upgrade(
para,
new_code,
relay_parent_number,
&config,
UpgradeStrategy::ApplyAtExpectedBlock,
);
Self::deposit_event(Event::CodeUpgradeScheduled(para));
Ok(())
}
/// Note a new block head for para within the context of the current block.
#[pallet::call_index(3)]
#[pallet::weight(<T as Config>::WeightInfo::force_note_new_head(new_head.0.len() as u32))]
pub fn force_note_new_head(
origin: OriginFor<T>,
para: ParaId,
new_head: HeadData,
) -> DispatchResult {
ensure_root(origin)?;
let now = frame_system::Pallet::<T>::block_number();
Self::note_new_head(para, new_head, now);
Self::deposit_event(Event::NewHeadNoted(para));
Ok(())
}
/// Put a parachain directly into the next session's action queue.
/// We can't queue it any sooner than this without going into the
/// initializer...
#[pallet::call_index(4)]
#[pallet::weight(<T as Config>::WeightInfo::force_queue_action())]
pub fn force_queue_action(origin: OriginFor<T>, para: ParaId) -> DispatchResult {
ensure_root(origin)?;
let next_session = shared::CurrentSessionIndex::<T>::get().saturating_add(One::one());
ActionsQueue::<T>::mutate(next_session, |v| {
if let Err(i) = v.binary_search(¶) {
v.insert(i, para);
}
});
Self::deposit_event(Event::ActionQueued(para, next_session));
Ok(())
}
/// Adds the validation code to the storage.
///
/// The code will not be added if it is already present. Additionally, if PVF pre-checking
/// is running for that code, it will be instantly accepted.
///
/// Otherwise, the code will be added into the storage. Note that the code will be added
/// into storage with reference count 0. This is to account the fact that there are no users
/// for this code yet. The caller will have to make sure that this code eventually gets
/// used by some parachain or removed from the storage to avoid storage leaks. For the
/// latter prefer to use the `poke_unused_validation_code` dispatchable to raw storage
/// manipulation.
///
/// This function is mainly meant to be used for upgrading parachains that do not follow
/// the go-ahead signal while the PVF pre-checking feature is enabled.
#[pallet::call_index(5)]
#[pallet::weight(<T as Config>::WeightInfo::add_trusted_validation_code(validation_code.0.len() as u32))]
pub fn add_trusted_validation_code(
origin: OriginFor<T>,
validation_code: ValidationCode,
) -> DispatchResult {
ensure_root(origin)?;
let code_hash = validation_code.hash();
if let Some(vote) = PvfActiveVoteMap::<T>::get(&code_hash) {
// Remove the existing vote.
PvfActiveVoteMap::<T>::remove(&code_hash);
PvfActiveVoteList::<T>::mutate(|l| {
if let Ok(i) = l.binary_search(&code_hash) {
l.remove(i);
}
});
let cfg = configuration::ActiveConfig::<T>::get();
Self::enact_pvf_accepted(
frame_system::Pallet::<T>::block_number(),
&code_hash,
&vote.causes,
vote.age,
&cfg,
);
return Ok(())
}
if CodeByHash::<T>::contains_key(&code_hash) {
// There is no vote, but the code exists. Nothing to do here.
return Ok(())
}
// At this point the code is unknown and there is no PVF pre-checking vote for it, so we
// can just add the code into the storage.
//
// NOTE That we do not use `increase_code_ref` here, because the code is not yet used
// by any parachain.
CodeByHash::<T>::insert(code_hash, &validation_code);
Ok(())
}
/// Remove the validation code from the storage iff the reference count is 0.
///
/// This is better than removing the storage directly, because it will not remove the code
/// that was suddenly got used by some parachain while this dispatchable was pending
/// dispatching.
#[pallet::call_index(6)]
#[pallet::weight(<T as Config>::WeightInfo::poke_unused_validation_code())]
pub fn poke_unused_validation_code(
origin: OriginFor<T>,
validation_code_hash: ValidationCodeHash,
) -> DispatchResult {
ensure_root(origin)?;
if CodeByHashRefs::<T>::get(&validation_code_hash) == 0 {
CodeByHash::<T>::remove(&validation_code_hash);
}
Ok(())
}
/// Includes a statement for a PVF pre-checking vote. Potentially, finalizes the vote and
/// enacts the results if that was the last vote before achieving the supermajority.
#[pallet::call_index(7)]
#[pallet::weight(
<T as Config>::WeightInfo::include_pvf_check_statement_finalize_upgrade_accept()
.max(<T as Config>::WeightInfo::include_pvf_check_statement_finalize_upgrade_reject())
.max(<T as Config>::WeightInfo::include_pvf_check_statement_finalize_onboarding_accept()
.max(<T as Config>::WeightInfo::include_pvf_check_statement_finalize_onboarding_reject())
)
)]
pub fn include_pvf_check_statement(
origin: OriginFor<T>,
stmt: PvfCheckStatement,
signature: ValidatorSignature,
) -> DispatchResultWithPostInfo {
ensure_none(origin)?;
let validators = shared::ActiveValidatorKeys::<T>::get();
let current_session = shared::CurrentSessionIndex::<T>::get();
if stmt.session_index < current_session {
return Err(Error::<T>::PvfCheckStatementStale.into())
} else if stmt.session_index > current_session {
return Err(Error::<T>::PvfCheckStatementFuture.into())
}
let validator_index = stmt.validator_index.0 as usize;
let validator_public = validators
.get(validator_index)
.ok_or(Error::<T>::PvfCheckValidatorIndexOutOfBounds)?;
let signing_payload = stmt.signing_payload();
ensure!(
signature.verify(&signing_payload[..], &validator_public),
Error::<T>::PvfCheckInvalidSignature,
);
let mut active_vote = PvfActiveVoteMap::<T>::get(&stmt.subject)
.ok_or(Error::<T>::PvfCheckSubjectInvalid)?;
// Ensure that the validator submitting this statement hasn't voted already.
ensure!(
!active_vote
.has_vote(validator_index)
.ok_or(Error::<T>::PvfCheckValidatorIndexOutOfBounds)?,
Error::<T>::PvfCheckDoubleVote,
);
// Finally, cast the vote and persist.
if stmt.accept {
active_vote.votes_accept.set(validator_index, true);
} else {
active_vote.votes_reject.set(validator_index, true);
}
if let Some(outcome) = active_vote.quorum(validators.len()) {
// The quorum has been achieved.
//
// Remove the PVF vote from the active map and finalize the PVF checking according
// to the outcome.
PvfActiveVoteMap::<T>::remove(&stmt.subject);
PvfActiveVoteList::<T>::mutate(|l| {
if let Ok(i) = l.binary_search(&stmt.subject) {
l.remove(i);
}
});
match outcome {
PvfCheckOutcome::Accepted => {
let cfg = configuration::ActiveConfig::<T>::get();
Self::enact_pvf_accepted(
frame_system::Pallet::<T>::block_number(),
&stmt.subject,
&active_vote.causes,
active_vote.age,
&cfg,
);
},
PvfCheckOutcome::Rejected => {
Self::enact_pvf_rejected(&stmt.subject, active_vote.causes);
},
}
// No weight refund since this statement was the last one and lead to finalization.
Ok(().into())
} else {
// No quorum has been achieved.
//
// - So just store the updated state back into the storage.
// - Only charge weight for simple vote inclusion.
PvfActiveVoteMap::<T>::insert(&stmt.subject, active_vote);
Ok(Some(<T as Config>::WeightInfo::include_pvf_check_statement()).into())
}
}
/// Set the storage for the current parachain head data immediately.
#[pallet::call_index(8)]
#[pallet::weight(<T as Config>::WeightInfo::force_set_most_recent_context())]
pub fn force_set_most_recent_context(
origin: OriginFor<T>,
para: ParaId,
context: BlockNumberFor<T>,
) -> DispatchResult {
ensure_root(origin)?;
MostRecentContext::<T>::insert(¶, context);
Ok(())
}
}
#[pallet::validate_unsigned]
impl<T: Config> ValidateUnsigned for Pallet<T> {
type Call = Call<T>;
fn validate_unsigned(_source: TransactionSource, call: &Self::Call) -> TransactionValidity {
let (stmt, signature) = match call {
Call::include_pvf_check_statement { stmt, signature } => (stmt, signature),
_ => return InvalidTransaction::Call.into(),
};
let current_session = shared::CurrentSessionIndex::<T>::get();
if stmt.session_index < current_session {
return InvalidTransaction::Stale.into()
} else if stmt.session_index > current_session {
return InvalidTransaction::Future.into()
}
let validator_index = stmt.validator_index.0 as usize;
let validators = shared::ActiveValidatorKeys::<T>::get();
let validator_public = match validators.get(validator_index) {
Some(pk) => pk,
None => return InvalidTransaction::Custom(INVALID_TX_BAD_VALIDATOR_IDX).into(),
};
let signing_payload = stmt.signing_payload();
if !signature.verify(&signing_payload[..], &validator_public) {
return InvalidTransaction::BadProof.into()
}
let active_vote = match PvfActiveVoteMap::<T>::get(&stmt.subject) {
Some(v) => v,
None => return InvalidTransaction::Custom(INVALID_TX_BAD_SUBJECT).into(),
};
match active_vote.has_vote(validator_index) {
Some(false) => (),
Some(true) => return InvalidTransaction::Custom(INVALID_TX_DOUBLE_VOTE).into(),
None => return InvalidTransaction::Custom(INVALID_TX_BAD_VALIDATOR_IDX).into(),
}
ValidTransaction::with_tag_prefix("PvfPreCheckingVote")
.priority(T::UnsignedPriority::get())
.longevity(
TryInto::<u64>::try_into(
T::NextSessionRotation::average_session_length() / 2u32.into(),
)
.unwrap_or(64_u64),
)
.and_provides((stmt.session_index, stmt.validator_index, stmt.subject))
.propagate(true)
.build()
}
fn pre_dispatch(_call: &Self::Call) -> Result<(), TransactionValidityError> {
// Return `Ok` here meaning that as soon as the transaction got into the block, it will
// always dispatched. This is OK, since the `include_pvf_check_statement` dispatchable
// will perform the same checks anyway, so there is no point doing it here.
//
// On the other hand, if we did not provide the implementation, then the default
// implementation would be used. The default implementation just delegates the
// pre-dispatch validation to `validate_unsigned`.
Ok(())
}
}
}
// custom transaction error codes
const INVALID_TX_BAD_VALIDATOR_IDX: u8 = 1;
const INVALID_TX_BAD_SUBJECT: u8 = 2;
const INVALID_TX_DOUBLE_VOTE: u8 = 3;
/// This is intermediate "fix" for this issue:
/// <https://github.com/paritytech/polkadot-sdk/issues/4737>
///
/// It does not actually fix it, but makes the worst case better. Without that limit someone
/// could completely DoS the relay chain by registering a ridiculously high amount of paras.
/// With this limit the same attack could lead to some parachains ceasing to being able to
/// communicate via offchain XCMP. Snowbridge will still work as it only cares about `BridgeHub`.
pub const MAX_PARA_HEADS: usize = 1024;
impl<T: Config> Pallet<T> {
/// This is a call to schedule code upgrades for parachains which is safe to be called
/// outside of this module. That means this function does all checks necessary to ensure
/// that some external code is allowed to trigger a code upgrade. We do not do auth checks,
/// that should be handled by whomever calls this function.
pub(crate) fn schedule_code_upgrade_external(
id: ParaId,
new_code: ValidationCode,
upgrade_strategy: UpgradeStrategy,
) -> DispatchResult {
// Check that we can schedule an upgrade at all.
ensure!(Self::can_upgrade_validation_code(id), Error::<T>::CannotUpgradeCode);
let config = configuration::ActiveConfig::<T>::get();
// Validation code sanity checks:
ensure!(new_code.0.len() >= MIN_CODE_SIZE as usize, Error::<T>::InvalidCode);
ensure!(new_code.0.len() <= config.max_code_size as usize, Error::<T>::InvalidCode);
let current_block = frame_system::Pallet::<T>::block_number();
// Schedule the upgrade with a delay just like if a parachain triggered the upgrade.
let upgrade_block = current_block.saturating_add(config.validation_upgrade_delay);
Self::schedule_code_upgrade(id, new_code, upgrade_block, &config, upgrade_strategy);
Self::deposit_event(Event::CodeUpgradeScheduled(id));
Ok(())
}
/// Set the current head of a parachain.
pub(crate) fn set_current_head(para: ParaId, new_head: HeadData) {
Heads::<T>::insert(¶, new_head);
Self::deposit_event(Event::CurrentHeadUpdated(para));
}
/// Called by the initializer to initialize the paras pallet.
pub(crate) fn initializer_initialize(now: BlockNumberFor<T>) -> Weight {
Self::prune_old_code(now) +
Self::process_scheduled_upgrade_changes(now) +
Self::process_future_code_upgrades_at(now)
}
/// Called by the initializer to finalize the paras pallet.
pub(crate) fn initializer_finalize(now: BlockNumberFor<T>) {
Self::process_scheduled_upgrade_cooldowns(now);
}
/// Called by the initializer to note that a new session has started.
///
/// Returns the list of outgoing paras from the actions queue.
pub(crate) fn initializer_on_new_session(
notification: &SessionChangeNotification<BlockNumberFor<T>>,
) -> Vec<ParaId> {
let outgoing_paras = Self::apply_actions_queue(notification.session_index);
Self::groom_ongoing_pvf_votes(¬ification.new_config, notification.validators.len());
outgoing_paras
}
/// The validation code of live para.
pub(crate) fn current_code(para_id: &ParaId) -> Option<ValidationCode> {
CurrentCodeHash::<T>::get(para_id).and_then(|code_hash| {
let code = CodeByHash::<T>::get(&code_hash);
if code.is_none() {
log::error!(
"Pallet paras storage is inconsistent, code not found for hash {}",
code_hash,
);
debug_assert!(false, "inconsistent paras storages");
}
code
})
}
/// Get a list of the first [`MAX_PARA_HEADS`] para heads sorted by para_id.
/// This method is likely to be removed in the future.
pub fn sorted_para_heads() -> Vec<(u32, Vec<u8>)> {
let mut heads: Vec<(u32, Vec<u8>)> =
Heads::<T>::iter().map(|(id, head)| (id.into(), head.0)).collect();
heads.sort_by_key(|(id, _)| *id);
heads.truncate(MAX_PARA_HEADS);
heads
}
// Apply all para actions queued for the given session index.
//
// The actions to take are based on the lifecycle of of the paras.
//
// The final state of any para after the actions queue should be as a
// lease holding parachain, on-demand parachain, or not registered. (stable states)
//
// Returns the list of outgoing paras from the actions queue.
fn apply_actions_queue(session: SessionIndex) -> Vec<ParaId> {
let actions = ActionsQueue::<T>::take(session);
let mut parachains = ParachainsCache::new();
let now = frame_system::Pallet::<T>::block_number();
let mut outgoing = Vec::new();
for para in actions {
let lifecycle = ParaLifecycles::<T>::get(¶);
match lifecycle {
None | Some(ParaLifecycle::Parathread) | Some(ParaLifecycle::Parachain) => { /* Nothing to do... */
},
Some(ParaLifecycle::Onboarding) => {
if let Some(genesis_data) = UpcomingParasGenesis::<T>::take(¶) {
Self::initialize_para_now(&mut parachains, para, &genesis_data);
}
},
// Upgrade an on-demand parachain to a lease holding parachain
Some(ParaLifecycle::UpgradingParathread) => {
parachains.add(para);
ParaLifecycles::<T>::insert(¶, ParaLifecycle::Parachain);
},
// Downgrade a lease holding parachain to an on-demand parachain
Some(ParaLifecycle::DowngradingParachain) => {
parachains.remove(para);
ParaLifecycles::<T>::insert(¶, ParaLifecycle::Parathread);
},
// Offboard a lease holding or on-demand parachain from the system
Some(ParaLifecycle::OffboardingParachain) |
Some(ParaLifecycle::OffboardingParathread) => {
parachains.remove(para);
Heads::<T>::remove(¶);
MostRecentContext::<T>::remove(¶);
FutureCodeUpgrades::<T>::remove(¶);
UpgradeGoAheadSignal::<T>::remove(¶);
UpgradeRestrictionSignal::<T>::remove(¶);
ParaLifecycles::<T>::remove(¶);
let removed_future_code_hash = FutureCodeHash::<T>::take(¶);
if let Some(removed_future_code_hash) = removed_future_code_hash {
Self::decrease_code_ref(&removed_future_code_hash);
}
let removed_code_hash = CurrentCodeHash::<T>::take(¶);
if let Some(removed_code_hash) = removed_code_hash {
Self::note_past_code(para, now, now, removed_code_hash);
}
outgoing.push(para);
},
}
}
if !outgoing.is_empty() {
// Filter offboarded parachains from the upcoming upgrades and upgrade cooldowns list.
//
// We do it after the offboarding to get away with only a single read/write per list.
//
// NOTE both of those iterates over the list and the outgoing. We do not expect either
// of these to be large. Thus should be fine.
UpcomingUpgrades::<T>::mutate(|upcoming_upgrades| {
upcoming_upgrades.retain(|(para, _)| !outgoing.contains(para));
});
UpgradeCooldowns::<T>::mutate(|upgrade_cooldowns| {
upgrade_cooldowns.retain(|(para, _)| !outgoing.contains(para));
});
FutureCodeUpgradesAt::<T>::mutate(|future_upgrades| {
future_upgrades.retain(|(para, _)| !outgoing.contains(para));
});
}
// Persist parachains into the storage explicitly.
drop(parachains);
outgoing
}
// note replacement of the code of para with given `id`, which occurred in the
// context of the given relay-chain block number. provide the replaced code.
//
// `at` for para-triggered replacement is the block number of the relay-chain
// block in whose context the parablock was executed
// (i.e. number of `relay_parent` in the receipt)
fn note_past_code(
id: ParaId,
at: BlockNumberFor<T>,
now: BlockNumberFor<T>,
old_code_hash: ValidationCodeHash,
) -> Weight {
PastCodeMeta::<T>::mutate(&id, |past_meta| {
past_meta.note_replacement(at, now);
});
PastCodeHash::<T>::insert(&(id, at), old_code_hash);
// Schedule pruning for this past-code to be removed as soon as it
// exits the slashing window.
PastCodePruning::<T>::mutate(|pruning| {
let insert_idx =
pruning.binary_search_by_key(&now, |&(_, b)| b).unwrap_or_else(|idx| idx);
pruning.insert(insert_idx, (id, now));
});
T::DbWeight::get().reads_writes(2, 3)
}
// looks at old code metadata, compares them to the current acceptance window, and prunes those
// that are too old.
fn prune_old_code(now: BlockNumberFor<T>) -> Weight {
let config = configuration::ActiveConfig::<T>::get();
let code_retention_period = config.code_retention_period;
if now <= code_retention_period {
let weight = T::DbWeight::get().reads_writes(1, 0);
return weight
}
// The height of any changes we no longer should keep around.
let pruning_height = now - (code_retention_period + One::one());
let pruning_tasks_done =
PastCodePruning::<T>::mutate(|pruning_tasks: &mut Vec<(_, BlockNumberFor<T>)>| {
let (pruning_tasks_done, pruning_tasks_to_do) = {
// find all past code that has just exited the pruning window.
let up_to_idx =
pruning_tasks.iter().take_while(|&(_, at)| at <= &pruning_height).count();
(up_to_idx, pruning_tasks.drain(..up_to_idx))
};
for (para_id, _) in pruning_tasks_to_do {
let full_deactivate = PastCodeMeta::<T>::mutate(¶_id, |meta| {
for pruned_repl_at in meta.prune_up_to(pruning_height) {
let removed_code_hash =
PastCodeHash::<T>::take(&(para_id, pruned_repl_at));
if let Some(removed_code_hash) = removed_code_hash {
Self::decrease_code_ref(&removed_code_hash);
} else {
log::warn!(
target: LOG_TARGET,
"Missing code for removed hash {:?}",
removed_code_hash,
);
}
}
meta.is_empty() && Heads::<T>::get(¶_id).is_none()
});
// This parachain has been removed and now the vestigial code
// has been removed from the state. clean up meta as well.
if full_deactivate {
PastCodeMeta::<T>::remove(¶_id);
}
}
pruning_tasks_done as u64
});
// 1 read for the meta for each pruning task, 1 read for the config
// 2 writes: updating the meta and pruning the code
T::DbWeight::get().reads_writes(1 + pruning_tasks_done, 2 * pruning_tasks_done)
}
/// Process the future code upgrades that should be applied directly.
///
/// Upgrades that should not be applied directly are being processed in
/// [`Self::process_scheduled_upgrade_changes`].
fn process_future_code_upgrades_at(now: BlockNumberFor<T>) -> Weight {
// account weight for `FutureCodeUpgradeAt::mutate`.
let mut weight = T::DbWeight::get().reads_writes(1, 1);
FutureCodeUpgradesAt::<T>::mutate(
|upcoming_upgrades: &mut Vec<(ParaId, BlockNumberFor<T>)>| {
let num = upcoming_upgrades.iter().take_while(|&(_, at)| at <= &now).count();
for (id, expected_at) in upcoming_upgrades.drain(..num) {
weight += T::DbWeight::get().reads_writes(1, 1);
// Both should always be `Some` in this case, since a code upgrade is scheduled.
let new_code_hash = if let Some(new_code_hash) = FutureCodeHash::<T>::take(&id)
{
new_code_hash
} else {
log::error!(target: LOG_TARGET, "Missing future code hash for {:?}", &id);
continue
};
weight += Self::set_current_code(id, new_code_hash, expected_at);
}
num
},
);
weight
}
/// Process the timers related to upgrades. Specifically, the upgrade go ahead signals toggle
/// and the upgrade cooldown restrictions. However, this function does not actually unset
/// the upgrade restriction, that will happen in the `initializer_finalize` function. However,
/// this function does count the number of cooldown timers expired so that we can reserve weight
/// for the `initializer_finalize` function.
fn process_scheduled_upgrade_changes(now: BlockNumberFor<T>) -> Weight {
// account weight for `UpcomingUpgrades::mutate`.
let mut weight = T::DbWeight::get().reads_writes(1, 1);
let upgrades_signaled = UpcomingUpgrades::<T>::mutate(
|upcoming_upgrades: &mut Vec<(ParaId, BlockNumberFor<T>)>| {
let num = upcoming_upgrades.iter().take_while(|&(_, at)| at <= &now).count();
for (para, _) in upcoming_upgrades.drain(..num) {
UpgradeGoAheadSignal::<T>::insert(¶, UpgradeGoAhead::GoAhead);
}
num
},
);
weight += T::DbWeight::get().writes(upgrades_signaled as u64);
// account weight for `UpgradeCooldowns::get`.
weight += T::DbWeight::get().reads(1);
let cooldowns_expired =
UpgradeCooldowns::<T>::get().iter().take_while(|&(_, at)| at <= &now).count();
// reserve weight for `initializer_finalize`:
// - 1 read and 1 write for `UpgradeCooldowns::mutate`.
// - 1 write per expired cooldown.
weight += T::DbWeight::get().reads_writes(1, 1);
weight += T::DbWeight::get().reads(cooldowns_expired as u64);
weight
}
/// Actually perform unsetting the expired upgrade restrictions.
///
/// See `process_scheduled_upgrade_changes` for more details.
fn process_scheduled_upgrade_cooldowns(now: BlockNumberFor<T>) {
UpgradeCooldowns::<T>::mutate(
|upgrade_cooldowns: &mut Vec<(ParaId, BlockNumberFor<T>)>| {
// Remove all expired signals and also prune the cooldowns.
upgrade_cooldowns.retain(|(para, at)| {
if at <= &now {
UpgradeRestrictionSignal::<T>::remove(¶);
false
} else {
true
}
});
},
);
}
/// Goes over all PVF votes in progress, reinitializes ballots, increments ages and prunes the
/// active votes that reached their time-to-live.
fn groom_ongoing_pvf_votes(
cfg: &configuration::HostConfiguration<BlockNumberFor<T>>,
new_n_validators: usize,
) -> Weight {
let mut weight = T::DbWeight::get().reads(1);
let potentially_active_votes = PvfActiveVoteList::<T>::get();
// Initially empty list which contains all the PVF active votes that made it through this
// session change.
//
// **Ordered** as well as `PvfActiveVoteList`.
let mut actually_active_votes = Vec::with_capacity(potentially_active_votes.len());
for vote_subject in potentially_active_votes {
let mut vote_state = match PvfActiveVoteMap::<T>::take(&vote_subject) {
Some(v) => v,
None => {
// This branch should never be reached. This is due to the fact that the set of
// `PvfActiveVoteMap`'s keys is always equal to the set of items found in
// `PvfActiveVoteList`.
log::warn!(
target: LOG_TARGET,
"The PvfActiveVoteMap is out of sync with PvfActiveVoteList!",
);
debug_assert!(false);
continue
},
};
vote_state.age += 1;
if vote_state.age < cfg.pvf_voting_ttl {
weight += T::DbWeight::get().writes(1);
vote_state.reinitialize_ballots(new_n_validators);
PvfActiveVoteMap::<T>::insert(&vote_subject, vote_state);
// push maintaining the original order.
actually_active_votes.push(vote_subject);
} else {
// TTL is reached. Reject.
weight += Self::enact_pvf_rejected(&vote_subject, vote_state.causes);
}
}
weight += T::DbWeight::get().writes(1);
PvfActiveVoteList::<T>::put(actually_active_votes);
weight
}
fn enact_pvf_accepted(
now: BlockNumberFor<T>,
code_hash: &ValidationCodeHash,
causes: &[PvfCheckCause<BlockNumberFor<T>>],
sessions_observed: SessionIndex,
cfg: &configuration::HostConfiguration<BlockNumberFor<T>>,
) -> Weight {
let mut weight = Weight::zero();
for cause in causes {
weight += T::DbWeight::get().reads_writes(3, 2);
Self::deposit_event(Event::PvfCheckAccepted(*code_hash, cause.para_id()));
match cause {
PvfCheckCause::Onboarding(id) => {
weight += Self::proceed_with_onboarding(*id, sessions_observed);
},
PvfCheckCause::Upgrade { id, included_at, upgrade_strategy } => {
weight += Self::proceed_with_upgrade(
*id,
code_hash,
now,
*included_at,
cfg,
*upgrade_strategy,
);
},
}
}
weight
}
fn proceed_with_onboarding(id: ParaId, sessions_observed: SessionIndex) -> Weight {
let weight = T::DbWeight::get().reads_writes(2, 1);
// we should onboard only after `SESSION_DELAY` sessions but we should take
// into account the number of sessions the PVF pre-checking occupied.
//
// we cannot onboard at the current session, so it must be at least one
// session ahead.
let onboard_at: SessionIndex = shared::CurrentSessionIndex::<T>::get() +
cmp::max(shared::SESSION_DELAY.saturating_sub(sessions_observed), 1);
ActionsQueue::<T>::mutate(onboard_at, |v| {
if let Err(i) = v.binary_search(&id) {
v.insert(i, id);
}
});
weight
}
fn proceed_with_upgrade(
id: ParaId,
code_hash: &ValidationCodeHash,
now: BlockNumberFor<T>,
relay_parent_number: BlockNumberFor<T>,
cfg: &configuration::HostConfiguration<BlockNumberFor<T>>,
upgrade_strategy: UpgradeStrategy,
) -> Weight {
let mut weight = Weight::zero();
// Compute the relay-chain block number starting at which the code upgrade is ready to
// be applied.
//
// The first parablock that has a relay-parent higher or at the same height of
// `expected_at` will trigger the code upgrade. The parablock that comes after that will
// be validated against the new validation code.
//
// Here we are trying to choose the block number that will have
// `validation_upgrade_delay` blocks from the relay-parent of inclusion of the the block
// that scheduled code upgrade but no less than `minimum_validation_upgrade_delay`. We
// want this delay out of caution so that when the last vote for pre-checking comes the
// parachain will have some time until the upgrade finally takes place.
let expected_at = cmp::max(
relay_parent_number + cfg.validation_upgrade_delay,
now + cfg.minimum_validation_upgrade_delay,
);
match upgrade_strategy {
UpgradeStrategy::ApplyAtExpectedBlock => {
FutureCodeUpgradesAt::<T>::mutate(|future_upgrades| {
let insert_idx = future_upgrades
.binary_search_by_key(&expected_at, |&(_, b)| b)
.unwrap_or_else(|idx| idx);
future_upgrades.insert(insert_idx, (id, expected_at));
});
weight += T::DbWeight::get().reads_writes(0, 2);
},
UpgradeStrategy::SetGoAheadSignal => {
FutureCodeUpgrades::<T>::insert(&id, expected_at);
UpcomingUpgrades::<T>::mutate(|upcoming_upgrades| {
let insert_idx = upcoming_upgrades
.binary_search_by_key(&expected_at, |&(_, b)| b)
.unwrap_or_else(|idx| idx);
upcoming_upgrades.insert(insert_idx, (id, expected_at));
});
weight += T::DbWeight::get().reads_writes(1, 3);
},
}
let expected_at = expected_at.saturated_into();
let log = ConsensusLog::ParaScheduleUpgradeCode(id, *code_hash, expected_at);
frame_system::Pallet::<T>::deposit_log(log.into());
weight
}
fn enact_pvf_rejected(
code_hash: &ValidationCodeHash,
causes: Vec<PvfCheckCause<BlockNumberFor<T>>>,
) -> Weight {
let mut weight = Weight::zero();
for cause in causes {
// Whenever PVF pre-checking is started or a new cause is added to it, the RC is bumped.
// Now we need to unbump it.
weight += Self::decrease_code_ref(code_hash);
weight += T::DbWeight::get().reads_writes(3, 2);
Self::deposit_event(Event::PvfCheckRejected(*code_hash, cause.para_id()));
match cause {
PvfCheckCause::Onboarding(id) => {
// Here we need to undo everything that was done during
// `schedule_para_initialize`. Essentially, the logic is similar to offboarding,
// with exception that before actual onboarding the parachain did not have a
// chance to reach to upgrades. Therefore we can skip all the upgrade related
// storage items here.
weight += T::DbWeight::get().writes(3);
UpcomingParasGenesis::<T>::remove(&id);
CurrentCodeHash::<T>::remove(&id);
ParaLifecycles::<T>::remove(&id);
},
PvfCheckCause::Upgrade { id, .. } => {
weight += T::DbWeight::get().writes(2);
UpgradeGoAheadSignal::<T>::insert(&id, UpgradeGoAhead::Abort);
FutureCodeHash::<T>::remove(&id);
},
}
}
weight
}
/// Verify that `schedule_para_initialize` can be called successfully.
///
/// Returns false if para is already registered in the system.
pub fn can_schedule_para_initialize(id: &ParaId) -> bool {
ParaLifecycles::<T>::get(id).is_none()
}
/// Schedule a para to be initialized. If the validation code is not already stored in the
/// code storage, then a PVF pre-checking process will be initiated.
///
/// Only after the PVF pre-checking succeeds can the para be onboarded. Note, that calling this
/// does not guarantee that the parachain will eventually be onboarded. This can happen in case
/// the PVF does not pass PVF pre-checking.
///
/// The Para ID should be not activated in this pallet. The validation code supplied in
/// `genesis_data` should not be empty. If those conditions are not met, then the para cannot
/// be onboarded.
pub(crate) fn schedule_para_initialize(
id: ParaId,
mut genesis_data: ParaGenesisArgs,
) -> DispatchResult {
// Make sure parachain isn't already in our system and that the onboarding parameters are
// valid.
ensure!(Self::can_schedule_para_initialize(&id), Error::<T>::CannotOnboard);
ensure!(!genesis_data.validation_code.0.is_empty(), Error::<T>::CannotOnboard);
ParaLifecycles::<T>::insert(&id, ParaLifecycle::Onboarding);
// HACK: here we are doing something nasty.
//
// In order to fix the [soaking issue] we insert the code eagerly here. When the onboarding
// is finally enacted, we do not need to insert the code anymore. Therefore, there is no
// reason for the validation code to be copied into the `ParaGenesisArgs`. We also do not
// want to risk it by copying the validation code needlessly to not risk adding more
// memory pressure.
//
// That said, we also want to preserve `ParaGenesisArgs` as it is, for now. There are two
// reasons:
//
// - Doing it within the context of the PR that introduces this change is undesirable, since
// it is already a big change, and that change would require a migration. Moreover, if we
// run the new version of the runtime, there will be less things to worry about during the
// eventual proper migration.
//
// - This data type already is used for generating genesis, and changing it will probably
// introduce some unnecessary burden.
//
// So instead of going through it right now, we will do something sneaky. Specifically:
//
// - Insert the `CurrentCodeHash` now, instead during the onboarding. That would allow to
// get rid of hashing of the validation code when onboarding.
//
// - Replace `validation_code` with a sentinel value: an empty vector. This should be fine
// as long we do not allow registering parachains with empty code. At the moment of
// writing this should already be the case.
//
// - Empty value is treated as the current code is already inserted during the onboarding.
//
// This is only an intermediate solution and should be fixed in foreseeable future.
//
// [soaking issue]: https://github.com/paritytech/polkadot/issues/3918
let validation_code =
mem::replace(&mut genesis_data.validation_code, ValidationCode(Vec::new()));
UpcomingParasGenesis::<T>::insert(&id, genesis_data);
let validation_code_hash = validation_code.hash();
CurrentCodeHash::<T>::insert(&id, validation_code_hash);
let cfg = configuration::ActiveConfig::<T>::get();
Self::kick_off_pvf_check(
PvfCheckCause::Onboarding(id),
validation_code_hash,
validation_code,
&cfg,
);
Ok(())
}
/// Schedule a para to be cleaned up at the start of the next session.
///
/// Will return error if either is true:
///
/// - para is not a stable parachain (i.e. [`ParaLifecycle::is_stable`] is `false`)
/// - para has a pending upgrade.
/// - para has unprocessed messages in its UMP queue.
///
/// No-op if para is not registered at all.
pub(crate) fn schedule_para_cleanup(id: ParaId) -> DispatchResult {
// Disallow offboarding in case there is a PVF pre-checking in progress.
//
// This is not a fundamental limitation but rather simplification: it allows us to get
// away without introducing additional logic for pruning and, more importantly, enacting
// ongoing PVF pre-checking votes. It also removes some nasty edge cases.
//
// However, an upcoming upgrade on its own imposes no restrictions. An upgrade is enacted
// with a new para head, so if a para never progresses we still should be able to offboard
// it.
//
// This implicitly assumes that the given para exists, i.e. it's lifecycle != None.
if let Some(future_code_hash) = FutureCodeHash::<T>::get(&id) {
let active_prechecking = PvfActiveVoteList::<T>::get();
if active_prechecking.contains(&future_code_hash) {
return Err(Error::<T>::CannotOffboard.into())
}
}
let lifecycle = ParaLifecycles::<T>::get(&id);
match lifecycle {
// If para is not registered, nothing to do!
None => return Ok(()),
Some(ParaLifecycle::Parathread) => {
ParaLifecycles::<T>::insert(&id, ParaLifecycle::OffboardingParathread);
},
Some(ParaLifecycle::Parachain) => {
ParaLifecycles::<T>::insert(&id, ParaLifecycle::OffboardingParachain);
},
_ => return Err(Error::<T>::CannotOffboard.into()),
}
let scheduled_session = Self::scheduled_session();
ActionsQueue::<T>::mutate(scheduled_session, |v| {
if let Err(i) = v.binary_search(&id) {
v.insert(i, id);
}
});
if <T as Config>::QueueFootprinter::message_count(UmpQueueId::Para(id)) != 0 {
return Err(Error::<T>::CannotOffboard.into())
}
Ok(())
}
/// Schedule a parathread (on-demand parachain) to be upgraded to a lease holding parachain.
///
/// Will return error if `ParaLifecycle` is not `Parathread`.
pub(crate) fn schedule_parathread_upgrade(id: ParaId) -> DispatchResult {
let scheduled_session = Self::scheduled_session();
let lifecycle = ParaLifecycles::<T>::get(&id).ok_or(Error::<T>::NotRegistered)?;
ensure!(lifecycle == ParaLifecycle::Parathread, Error::<T>::CannotUpgrade);
ParaLifecycles::<T>::insert(&id, ParaLifecycle::UpgradingParathread);
ActionsQueue::<T>::mutate(scheduled_session, |v| {
if let Err(i) = v.binary_search(&id) {
v.insert(i, id);
}
});
Ok(())
}
/// Schedule a lease holding parachain to be downgraded to an on-demand parachain.
///
/// Noop if `ParaLifecycle` is not `Parachain`.
pub(crate) fn schedule_parachain_downgrade(id: ParaId) -> DispatchResult {
let scheduled_session = Self::scheduled_session();
let lifecycle = ParaLifecycles::<T>::get(&id).ok_or(Error::<T>::NotRegistered)?;
ensure!(lifecycle == ParaLifecycle::Parachain, Error::<T>::CannotDowngrade);
ParaLifecycles::<T>::insert(&id, ParaLifecycle::DowngradingParachain);
ActionsQueue::<T>::mutate(scheduled_session, |v| {
if let Err(i) = v.binary_search(&id) {
v.insert(i, id);
}
});
Ok(())
}
/// Schedule a future code upgrade of the given parachain.
///
/// If the new code is not known, then the PVF pre-checking will be started for that validation
/// code. In case the validation code does not pass the PVF pre-checking process, the
/// upgrade will be aborted.
///
/// Only after the code is approved by the process, the upgrade can be scheduled. Specifically,
/// the relay-chain block number will be determined at which the upgrade will take place. We
/// call that block `expected_at`.
///
/// Once the candidate with the relay-parent >= `expected_at` is enacted, the new validation
/// code will be applied. Therefore, the new code will be used to validate the next candidate.
///
/// The new code should not be equal to the current one, otherwise the upgrade will be aborted.
/// If there is already a scheduled code upgrade for the para, this is a no-op.
///
/// Inclusion block number specifies relay parent which enacted candidate initiating the
/// upgrade.
pub(crate) fn schedule_code_upgrade(
id: ParaId,
new_code: ValidationCode,
inclusion_block_number: BlockNumberFor<T>,
cfg: &configuration::HostConfiguration<BlockNumberFor<T>>,
upgrade_strategy: UpgradeStrategy,
) {
// Should be prevented by checks in `schedule_code_upgrade_external`
let new_code_len = new_code.0.len();
if new_code_len < MIN_CODE_SIZE as usize || new_code_len > cfg.max_code_size as usize {
log::warn!(target: LOG_TARGET, "attempted to schedule an upgrade with invalid new validation code",);
return
}
// Enacting this should be prevented by the `can_upgrade_validation_code`
if FutureCodeHash::<T>::contains_key(&id) {
// This branch should never be reached. Signalling an upgrade is disallowed for a para
// that already has one upgrade scheduled.
//
// Any candidate that attempts to do that should be rejected by
// `can_upgrade_validation_code`.
//
// NOTE: we cannot set `UpgradeGoAheadSignal` signal here since this will be reset by
// the following call `note_new_head`
log::warn!(target: LOG_TARGET, "ended up scheduling an upgrade while one is pending",);
return
}
let code_hash = new_code.hash();
// para signals an update to the same code? This does not make a lot of sense, so abort the
// process right away.
//
// We do not want to allow this since it will mess with the code reference counting.
if CurrentCodeHash::<T>::get(&id) == Some(code_hash) {
// NOTE: we cannot set `UpgradeGoAheadSignal` signal here since this will be reset by
// the following call `note_new_head`
log::warn!(
target: LOG_TARGET,
"para tried to upgrade to the same code. Abort the upgrade",
);
return
}
// This is the start of the upgrade process. Prevent any further attempts at upgrading.
FutureCodeHash::<T>::insert(&id, &code_hash);
UpgradeRestrictionSignal::<T>::insert(&id, UpgradeRestriction::Present);
let next_possible_upgrade_at = inclusion_block_number + cfg.validation_upgrade_cooldown;
UpgradeCooldowns::<T>::mutate(|upgrade_cooldowns| {
let insert_idx = upgrade_cooldowns
.binary_search_by_key(&next_possible_upgrade_at, |&(_, b)| b)
.unwrap_or_else(|idx| idx);
upgrade_cooldowns.insert(insert_idx, (id, next_possible_upgrade_at));
});
Self::kick_off_pvf_check(
PvfCheckCause::Upgrade { id, included_at: inclusion_block_number, upgrade_strategy },
code_hash,
new_code,
cfg,
);
}
/// Makes sure that the given code hash has passed pre-checking.
///
/// If the given code hash has already passed pre-checking, then the approval happens
/// immediately.
///
/// If the code is unknown, but the pre-checking for that PVF is already running then we perform
/// "coalescing". We save the cause for this PVF pre-check request and just add it to the
/// existing active PVF vote.
///
/// And finally, if the code is unknown and pre-checking is not running, we start the
/// pre-checking process anew.
///
/// Unconditionally increases the reference count for the passed `code`.
fn kick_off_pvf_check(
cause: PvfCheckCause<BlockNumberFor<T>>,
code_hash: ValidationCodeHash,
code: ValidationCode,
cfg: &configuration::HostConfiguration<BlockNumberFor<T>>,
) -> Weight {
let mut weight = Weight::zero();
weight += T::DbWeight::get().reads_writes(3, 2);
Self::deposit_event(Event::PvfCheckStarted(code_hash, cause.para_id()));
weight += T::DbWeight::get().reads(1);
match PvfActiveVoteMap::<T>::get(&code_hash) {
None => {
// We deliberately are using `CodeByHash` here instead of the `CodeByHashRefs`. This
// is because the code may have been added by `add_trusted_validation_code`.
let known_code = CodeByHash::<T>::contains_key(&code_hash);
weight += T::DbWeight::get().reads(1);
if known_code {
// The code is known and there is no active PVF vote for it meaning it is
// already checked -- fast track the PVF checking into the accepted state.
weight += T::DbWeight::get().reads(1);
let now = frame_system::Pallet::<T>::block_number();
weight += Self::enact_pvf_accepted(now, &code_hash, &[cause], 0, cfg);
} else {
// PVF is not being pre-checked and it is not known. Start a new pre-checking
// process.
weight += T::DbWeight::get().reads_writes(3, 2);
let now = frame_system::Pallet::<T>::block_number();
let n_validators = shared::ActiveValidatorKeys::<T>::get().len();
PvfActiveVoteMap::<T>::insert(
&code_hash,
PvfCheckActiveVoteState::new(now, n_validators, cause),
);
PvfActiveVoteList::<T>::mutate(|l| {
if let Err(idx) = l.binary_search(&code_hash) {
l.insert(idx, code_hash);
}
});
}
},
Some(mut vote_state) => {
// Coalescing: the PVF is already being pre-checked so we just need to piggy back
// on it.
weight += T::DbWeight::get().writes(1);
vote_state.causes.push(cause);
PvfActiveVoteMap::<T>::insert(&code_hash, vote_state);
},
}
// We increase the code RC here in any case. Intuitively the parachain that requested this
// action is now a user of that PVF.
//
// If the result of the pre-checking is reject, then we would decrease the RC for each
// cause, including the current.
//
// If the result of the pre-checking is accept, then we do nothing to the RC because the PVF
// will continue be used by the same users.
//
// If the PVF was fast-tracked (i.e. there is already non zero RC) and there is no
// pre-checking, we also do not change the RC then.
weight += Self::increase_code_ref(&code_hash, &code);
weight
}
/// Note that a para has progressed to a new head, where the new head was executed in the
/// context of a relay-chain block with given number. This will apply pending code upgrades
/// based on the relay-parent block number provided.
pub(crate) fn note_new_head(
id: ParaId,
new_head: HeadData,
execution_context: BlockNumberFor<T>,
) {
Heads::<T>::insert(&id, &new_head);
MostRecentContext::<T>::insert(&id, execution_context);
if let Some(expected_at) = FutureCodeUpgrades::<T>::get(&id) {
if expected_at <= execution_context {
FutureCodeUpgrades::<T>::remove(&id);
UpgradeGoAheadSignal::<T>::remove(&id);
// Both should always be `Some` in this case, since a code upgrade is scheduled.
let new_code_hash = if let Some(new_code_hash) = FutureCodeHash::<T>::take(&id) {
new_code_hash
} else {
log::error!(target: LOG_TARGET, "Missing future code hash for {:?}", &id);
return
};
Self::set_current_code(id, new_code_hash, expected_at);
}
} else {
// This means there is no upgrade scheduled.
//
// In case the upgrade was aborted by the relay-chain we should reset
// the `Abort` signal.
UpgradeGoAheadSignal::<T>::remove(&id);
};
T::OnNewHead::on_new_head(id, &new_head);
}
/// Set the current code for the given parachain.
// `at` for para-triggered replacement is the block number of the relay-chain
// block in whose context the parablock was executed
// (i.e. number of `relay_parent` in the receipt)
pub(crate) fn set_current_code(
id: ParaId,
new_code_hash: ValidationCodeHash,
at: BlockNumberFor<T>,
) -> Weight {
let maybe_prior_code_hash = CurrentCodeHash::<T>::get(&id);
CurrentCodeHash::<T>::insert(&id, &new_code_hash);
let log = ConsensusLog::ParaUpgradeCode(id, new_code_hash);
<frame_system::Pallet<T>>::deposit_log(log.into());
// `now` is only used for registering pruning as part of `fn note_past_code`
let now = <frame_system::Pallet<T>>::block_number();
let weight = if let Some(prior_code_hash) = maybe_prior_code_hash {
Self::note_past_code(id, at, now, prior_code_hash)
} else {
log::error!(target: LOG_TARGET, "Missing prior code hash for para {:?}", &id);
Weight::zero()
};
weight + T::DbWeight::get().writes(1)
}
/// Returns the list of PVFs (aka validation code) that require casting a vote by a validator in
/// the active validator set.
pub(crate) fn pvfs_require_precheck() -> Vec<ValidationCodeHash> {
PvfActiveVoteList::<T>::get()
}
/// Submits a given PVF check statement with corresponding signature as an unsigned transaction
/// into the memory pool. Ultimately, that disseminates the transaction across the network.
///
/// This function expects an offchain context and cannot be callable from the on-chain logic.
///
/// The signature assumed to pertain to `stmt`.
pub(crate) fn submit_pvf_check_statement(
stmt: PvfCheckStatement,
signature: ValidatorSignature,
) {
use frame_system::offchain::SubmitTransaction;
let xt = T::create_inherent(Call::include_pvf_check_statement { stmt, signature }.into());
if let Err(e) = SubmitTransaction::<T, Call<T>>::submit_transaction(xt) {
log::error!(target: LOG_TARGET, "Error submitting pvf check statement: {:?}", e,);
}
}
/// Returns the current lifecycle state of the para.
pub fn lifecycle(id: ParaId) -> Option<ParaLifecycle> {
ParaLifecycles::<T>::get(&id)
}
/// Returns whether the given ID refers to a valid para.
///
/// Paras that are onboarding or offboarding are not included.
pub fn is_valid_para(id: ParaId) -> bool {
if let Some(state) = ParaLifecycles::<T>::get(&id) {
!state.is_onboarding() && !state.is_offboarding()
} else {
false
}
}
/// Returns whether the given ID refers to a para that is offboarding.
///
/// An invalid or non-offboarding para ID will return `false`.
pub fn is_offboarding(id: ParaId) -> bool {
ParaLifecycles::<T>::get(&id).map_or(false, |state| state.is_offboarding())
}
/// Whether a para ID corresponds to any live lease holding parachain.
///
/// Includes lease holding parachains which will downgrade to a on-demand parachains in the
/// future.
pub fn is_parachain(id: ParaId) -> bool {
if let Some(state) = ParaLifecycles::<T>::get(&id) {
state.is_parachain()
} else {
false
}
}
/// Whether a para ID corresponds to any live parathread (on-demand parachain).
///
/// Includes on-demand parachains which will upgrade to lease holding parachains in the future.
pub fn is_parathread(id: ParaId) -> bool {
if let Some(state) = ParaLifecycles::<T>::get(&id) {
state.is_parathread()
} else {
false
}
}
/// If a candidate from the specified parachain were submitted at the current block, this
/// function returns if that candidate passes the acceptance criteria.
pub(crate) fn can_upgrade_validation_code(id: ParaId) -> bool {
FutureCodeHash::<T>::get(&id).is_none() && UpgradeRestrictionSignal::<T>::get(&id).is_none()
}
/// Return the session index that should be used for any future scheduled changes.
fn scheduled_session() -> SessionIndex {
shared::Pallet::<T>::scheduled_session()
}
/// Store the validation code if not already stored, and increase the number of reference.
///
/// Returns the weight consumed.
fn increase_code_ref(code_hash: &ValidationCodeHash, code: &ValidationCode) -> Weight {
let mut weight = T::DbWeight::get().reads_writes(1, 1);
CodeByHashRefs::<T>::mutate(code_hash, |refs| {
if *refs == 0 {
weight += T::DbWeight::get().writes(1);
CodeByHash::<T>::insert(code_hash, code);
}
*refs += 1;
});
weight
}
/// Decrease the number of reference of the validation code and remove it from storage if zero
/// is reached.
///
/// Returns the weight consumed.
fn decrease_code_ref(code_hash: &ValidationCodeHash) -> Weight {
let mut weight = T::DbWeight::get().reads(1);
let refs = CodeByHashRefs::<T>::get(code_hash);
if refs == 0 {
log::error!(target: LOG_TARGET, "Code refs is already zero for {:?}", code_hash);
return weight
}
if refs <= 1 {
weight += T::DbWeight::get().writes(2);
CodeByHash::<T>::remove(code_hash);
CodeByHashRefs::<T>::remove(code_hash);
} else {
weight += T::DbWeight::get().writes(1);
CodeByHashRefs::<T>::insert(code_hash, refs - 1);
}
weight
}
/// Test function for triggering a new session in this pallet.
#[cfg(any(feature = "std", feature = "runtime-benchmarks", test))]
pub fn test_on_new_session() {
Self::initializer_on_new_session(&SessionChangeNotification {
session_index: shared::CurrentSessionIndex::<T>::get(),
..Default::default()
});
}
#[cfg(any(feature = "runtime-benchmarks", test))]
pub fn heads_insert(para_id: &ParaId, head_data: HeadData) {
Heads::<T>::insert(para_id, head_data);
}
/// A low-level function to eagerly initialize a given para.
pub(crate) fn initialize_para_now(
parachains: &mut ParachainsCache<T>,
id: ParaId,
genesis_data: &ParaGenesisArgs,
) {
match genesis_data.para_kind {
ParaKind::Parachain => {
parachains.add(id);
ParaLifecycles::<T>::insert(&id, ParaLifecycle::Parachain);
},
ParaKind::Parathread => ParaLifecycles::<T>::insert(&id, ParaLifecycle::Parathread),
}
// HACK: see the notice in `schedule_para_initialize`.
//
// Apparently, this is left over from a prior version of the runtime.
// To handle this we just insert the code and link the current code hash
// to it.
if !genesis_data.validation_code.0.is_empty() {
let code_hash = genesis_data.validation_code.hash();
Self::increase_code_ref(&code_hash, &genesis_data.validation_code);
CurrentCodeHash::<T>::insert(&id, code_hash);
}
Heads::<T>::insert(&id, &genesis_data.genesis_head);
MostRecentContext::<T>::insert(&id, BlockNumberFor::<T>::from(0u32));
}
#[cfg(test)]
pub(crate) fn active_vote_state(
code_hash: &ValidationCodeHash,
) -> Option<PvfCheckActiveVoteState<BlockNumberFor<T>>> {
PvfActiveVoteMap::<T>::get(code_hash)
}
}
/// An overlay over the `Parachains` storage entry that provides a convenient interface for adding
/// or removing parachains in bulk.
pub(crate) struct ParachainsCache<T: Config> {
// `None` here means the parachains list has not been accessed yet, nevermind modified.
parachains: Option<BTreeSet<ParaId>>,
_config: PhantomData<T>,
}
impl<T: Config> ParachainsCache<T> {
pub fn new() -> Self {
Self { parachains: None, _config: PhantomData }
}
fn ensure_initialized(&mut self) -> &mut BTreeSet<ParaId> {
self.parachains
.get_or_insert_with(|| Parachains::<T>::get().into_iter().collect())
}
/// Adds the given para id to the list.
pub fn add(&mut self, id: ParaId) {
let parachains = self.ensure_initialized();
parachains.insert(id);
}
/// Removes the given para id from the list of parachains. Does nothing if the id is not in the
/// list.
pub fn remove(&mut self, id: ParaId) {
let parachains = self.ensure_initialized();
parachains.remove(&id);
}
}
impl<T: Config> Drop for ParachainsCache<T> {
fn drop(&mut self) {
if let Some(parachains) = self.parachains.take() {
Parachains::<T>::put(parachains.into_iter().collect::<Vec<ParaId>>());
}
}
}