referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Helper for managing the set of available leaves in the chain for DB implementations.

use codec::{Decode, Encode};
use sp_blockchain::{Error, Result};
use sp_database::{Database, Transaction};
use sp_runtime::traits::AtLeast32Bit;
use std::{cmp::Reverse, collections::BTreeMap};

type DbHash = sp_core::H256;

#[derive(Debug, Clone, PartialEq, Eq)]
struct LeafSetItem<H, N> {
	hash: H,
	number: Reverse<N>,
}

/// Inserted and removed leaves after an import action.
pub struct ImportOutcome<H, N> {
	inserted: LeafSetItem<H, N>,
	removed: Option<H>,
}

/// Inserted and removed leaves after a remove action.
pub struct RemoveOutcome<H, N> {
	inserted: Option<H>,
	removed: LeafSetItem<H, N>,
}

/// Removed leaves after a finalization action.
pub struct FinalizationOutcome<I, H, N>
where
	I: Iterator<Item = (N, H)>,
{
	removed: I,
}

impl<I, H: Ord, N: Ord> FinalizationOutcome<I, H, N>
where
	I: Iterator<Item = (N, H)>,
{
	/// Constructor
	pub fn new(new_displaced: I) -> Self {
		FinalizationOutcome { removed: new_displaced }
	}
}

/// list of leaf hashes ordered by number (descending).
/// stored in memory for fast access.
/// this allows very fast checking and modification of active leaves.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LeafSet<H, N> {
	storage: BTreeMap<Reverse<N>, Vec<H>>,
}

impl<H, N> LeafSet<H, N>
where
	H: Clone + PartialEq + Decode + Encode,
	N: std::fmt::Debug + Copy + AtLeast32Bit + Decode + Encode,
{
	/// Construct a new, blank leaf set.
	pub fn new() -> Self {
		Self { storage: BTreeMap::new() }
	}

	/// Read the leaf list from the DB, using given prefix for keys.
	pub fn read_from_db(db: &dyn Database<DbHash>, column: u32, prefix: &[u8]) -> Result<Self> {
		let mut storage = BTreeMap::new();

		match db.get(column, prefix) {
			Some(leaves) => {
				let vals: Vec<_> = match Decode::decode(&mut leaves.as_ref()) {
					Ok(vals) => vals,
					Err(_) => return Err(Error::Backend("Error decoding leaves".into())),
				};
				for (number, hashes) in vals.into_iter() {
					storage.insert(Reverse(number), hashes);
				}
			},
			None => {},
		}
		Ok(Self { storage })
	}

	/// Update the leaf list on import.
	pub fn import(&mut self, hash: H, number: N, parent_hash: H) -> ImportOutcome<H, N> {
		let number = Reverse(number);

		let removed = if number.0 != N::zero() {
			let parent_number = Reverse(number.0 - N::one());
			self.remove_leaf(&parent_number, &parent_hash).then(|| parent_hash)
		} else {
			None
		};

		self.insert_leaf(number, hash.clone());

		ImportOutcome { inserted: LeafSetItem { hash, number }, removed }
	}

	/// Update the leaf list on removal.
	///
	/// Note that the leaves set structure doesn't have the information to decide if the
	/// leaf we're removing is the last children of the parent. Follows that this method requires
	/// the caller to check this condition and optionally pass the `parent_hash` if `hash` is
	/// its last child.
	///
	/// Returns `None` if no modifications are applied.
	pub fn remove(
		&mut self,
		hash: H,
		number: N,
		parent_hash: Option<H>,
	) -> Option<RemoveOutcome<H, N>> {
		let number = Reverse(number);

		if !self.remove_leaf(&number, &hash) {
			return None
		}

		let inserted = parent_hash.and_then(|parent_hash| {
			if number.0 != N::zero() {
				let parent_number = Reverse(number.0 - N::one());
				self.insert_leaf(parent_number, parent_hash.clone());
				Some(parent_hash)
			} else {
				None
			}
		});

		Some(RemoveOutcome { inserted, removed: LeafSetItem { hash, number } })
	}

	/// Remove all leaves displaced by the last block finalization.
	pub fn remove_displaced_leaves<I>(&mut self, displaced_leaves: FinalizationOutcome<I, H, N>)
	where
		I: Iterator<Item = (N, H)>,
	{
		for (number, hash) in displaced_leaves.removed {
			self.remove_leaf(&Reverse(number), &hash);
		}
	}

	/// Undo all pending operations.
	///
	/// This returns an `Undo` struct, where any
	/// `Displaced` objects that have returned by previous method calls
	/// should be passed to via the appropriate methods. Otherwise,
	/// the on-disk state may get out of sync with in-memory state.
	pub fn undo(&mut self) -> Undo<H, N> {
		Undo { inner: self }
	}

	/// Revert to the given block height by dropping all leaves in the leaf set
	/// with a block number higher than the target.
	pub fn revert(&mut self, best_hash: H, best_number: N) {
		let items = self
			.storage
			.iter()
			.flat_map(|(number, hashes)| hashes.iter().map(move |h| (h.clone(), *number)))
			.collect::<Vec<_>>();

		for (hash, number) in items {
			if number.0 > best_number {
				assert!(
					self.remove_leaf(&number, &hash),
					"item comes from an iterator over storage; qed",
				);
			}
		}

		let best_number = Reverse(best_number);
		let leaves_contains_best = self
			.storage
			.get(&best_number)
			.map_or(false, |hashes| hashes.contains(&best_hash));

		// we need to make sure that the best block exists in the leaf set as
		// this is an invariant of regular block import.
		if !leaves_contains_best {
			self.insert_leaf(best_number, best_hash.clone());
		}
	}

	/// returns an iterator over all hashes in the leaf set
	/// ordered by their block number descending.
	pub fn hashes(&self) -> Vec<H> {
		self.storage.iter().flat_map(|(_, hashes)| hashes.iter()).cloned().collect()
	}

	/// Number of known leaves.
	pub fn count(&self) -> usize {
		self.storage.values().map(|level| level.len()).sum()
	}

	/// Write the leaf list to the database transaction.
	pub fn prepare_transaction(
		&mut self,
		tx: &mut Transaction<DbHash>,
		column: u32,
		prefix: &[u8],
	) {
		let leaves: Vec<_> = self.storage.iter().map(|(n, h)| (n.0, h.clone())).collect();
		tx.set_from_vec(column, prefix, leaves.encode());
	}

	/// Check if given block is a leaf.
	pub fn contains(&self, number: N, hash: H) -> bool {
		self.storage
			.get(&Reverse(number))
			.map_or(false, |hashes| hashes.contains(&hash))
	}

	fn insert_leaf(&mut self, number: Reverse<N>, hash: H) {
		self.storage.entry(number).or_insert_with(Vec::new).push(hash);
	}

	// Returns true if this leaf was contained, false otherwise.
	fn remove_leaf(&mut self, number: &Reverse<N>, hash: &H) -> bool {
		let mut empty = false;
		let removed = self.storage.get_mut(number).map_or(false, |leaves| {
			let mut found = false;
			leaves.retain(|h| {
				if h == hash {
					found = true;
					false
				} else {
					true
				}
			});

			if leaves.is_empty() {
				empty = true
			}

			found
		});

		if removed && empty {
			self.storage.remove(number);
		}

		removed
	}

	/// Returns the highest leaf and all hashes associated to it.
	pub fn highest_leaf(&self) -> Option<(N, &[H])> {
		self.storage.iter().next().map(|(k, v)| (k.0, &v[..]))
	}
}

/// Helper for undoing operations.
pub struct Undo<'a, H: 'a, N: 'a> {
	inner: &'a mut LeafSet<H, N>,
}

impl<'a, H: 'a, N: 'a> Undo<'a, H, N>
where
	H: Clone + PartialEq + Decode + Encode,
	N: std::fmt::Debug + Copy + AtLeast32Bit + Decode + Encode,
{
	/// Undo an imported block by providing the import operation outcome.
	/// No additional operations should be performed between import and undo.
	pub fn undo_import(&mut self, outcome: ImportOutcome<H, N>) {
		if let Some(removed_hash) = outcome.removed {
			let removed_number = Reverse(outcome.inserted.number.0 - N::one());
			self.inner.insert_leaf(removed_number, removed_hash);
		}
		self.inner.remove_leaf(&outcome.inserted.number, &outcome.inserted.hash);
	}

	/// Undo a removed block by providing the displaced leaf.
	/// No additional operations should be performed between remove and undo.
	pub fn undo_remove(&mut self, outcome: RemoveOutcome<H, N>) {
		if let Some(inserted_hash) = outcome.inserted {
			let inserted_number = Reverse(outcome.removed.number.0 - N::one());
			self.inner.remove_leaf(&inserted_number, &inserted_hash);
		}
		self.inner.insert_leaf(outcome.removed.number, outcome.removed.hash);
	}

	/// Undo a finalization operation by providing the displaced leaves.
	/// No additional operations should be performed between finalization and undo.
	pub fn undo_finalization<I>(&mut self, outcome: FinalizationOutcome<I, H, N>)
	where
		I: Iterator<Item = (N, H)>,
	{
		for (number, hash) in outcome.removed {
			self.inner.storage.entry(Reverse(number)).or_default().push(hash);
		}
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use std::sync::Arc;

	#[test]
	fn import_works() {
		let mut set = LeafSet::new();
		set.import(0u32, 0u32, 0u32);

		set.import(1_1, 1, 0);
		set.import(2_1, 2, 1_1);
		set.import(3_1, 3, 2_1);

		assert_eq!(set.count(), 1);
		assert!(set.contains(3, 3_1));
		assert!(!set.contains(2, 2_1));
		assert!(!set.contains(1, 1_1));
		assert!(!set.contains(0, 0));

		set.import(2_2, 2, 1_1);
		set.import(1_2, 1, 0);
		set.import(2_3, 2, 1_2);

		assert_eq!(set.count(), 3);
		assert!(set.contains(3, 3_1));
		assert!(set.contains(2, 2_2));
		assert!(set.contains(2, 2_3));

		// Finally test the undo feature

		let outcome = set.import(2_4, 2, 1_1);
		assert_eq!(outcome.inserted.hash, 2_4);
		assert_eq!(outcome.removed, None);
		assert_eq!(set.count(), 4);
		assert!(set.contains(2, 2_4));

		set.undo().undo_import(outcome);
		assert_eq!(set.count(), 3);
		assert!(set.contains(3, 3_1));
		assert!(set.contains(2, 2_2));
		assert!(set.contains(2, 2_3));

		let outcome = set.import(3_2, 3, 2_3);
		assert_eq!(outcome.inserted.hash, 3_2);
		assert_eq!(outcome.removed, Some(2_3));
		assert_eq!(set.count(), 3);
		assert!(set.contains(3, 3_2));

		set.undo().undo_import(outcome);
		assert_eq!(set.count(), 3);
		assert!(set.contains(3, 3_1));
		assert!(set.contains(2, 2_2));
		assert!(set.contains(2, 2_3));
	}

	#[test]
	fn removal_works() {
		let mut set = LeafSet::new();
		set.import(10_1u32, 10u32, 0u32);
		set.import(11_1, 11, 10_1);
		set.import(11_2, 11, 10_1);
		set.import(12_1, 12, 11_1);

		let outcome = set.remove(12_1, 12, Some(11_1)).unwrap();
		assert_eq!(outcome.removed.hash, 12_1);
		assert_eq!(outcome.inserted, Some(11_1));
		assert_eq!(set.count(), 2);
		assert!(set.contains(11, 11_1));
		assert!(set.contains(11, 11_2));

		let outcome = set.remove(11_1, 11, None).unwrap();
		assert_eq!(outcome.removed.hash, 11_1);
		assert_eq!(outcome.inserted, None);
		assert_eq!(set.count(), 1);
		assert!(set.contains(11, 11_2));

		let outcome = set.remove(11_2, 11, Some(10_1)).unwrap();
		assert_eq!(outcome.removed.hash, 11_2);
		assert_eq!(outcome.inserted, Some(10_1));
		assert_eq!(set.count(), 1);
		assert!(set.contains(10, 10_1));

		set.undo().undo_remove(outcome);
		assert_eq!(set.count(), 1);
		assert!(set.contains(11, 11_2));
	}

	#[test]
	fn flush_to_disk() {
		const PREFIX: &[u8] = b"abcdefg";
		let db = Arc::new(sp_database::MemDb::default());

		let mut set = LeafSet::new();
		set.import(0u32, 0u32, 0u32);

		set.import(1_1, 1, 0);
		set.import(2_1, 2, 1_1);
		set.import(3_1, 3, 2_1);

		let mut tx = Transaction::new();

		set.prepare_transaction(&mut tx, 0, PREFIX);
		db.commit(tx).unwrap();

		let set2 = LeafSet::read_from_db(&*db, 0, PREFIX).unwrap();
		assert_eq!(set, set2);
	}

	#[test]
	fn two_leaves_same_height_can_be_included() {
		let mut set = LeafSet::new();

		set.import(1_1u32, 10u32, 0u32);
		set.import(1_2, 10, 0);

		assert!(set.storage.contains_key(&Reverse(10)));
		assert!(set.contains(10, 1_1));
		assert!(set.contains(10, 1_2));
		assert!(!set.contains(10, 1_3));
	}
}