referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

#![cfg_attr(not(feature = "std"), no_std)]

// Make the WASM binary available.
#[cfg(feature = "std")]
include!(concat!(env!("OUT_DIR"), "/wasm_binary.rs"));

/// Wasm binary unwrapped. If built with `SKIP_WASM_BUILD`, the function panics.
#[cfg(feature = "std")]
pub fn wasm_binary_unwrap() -> &'static [u8] {
	WASM_BINARY.expect(
		"Development wasm binary is not available. Testing is only supported with the flag \
		 disabled.",
	)
}

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(not(feature = "std"))]
use alloc::{vec, vec::Vec};

#[cfg(not(feature = "std"))]
use sp_core::{ed25519, sr25519};
#[cfg(not(feature = "std"))]
use sp_io::{
	crypto::{ed25519_verify, sr25519_verify},
	hashing::{blake2_128, blake2_256, sha2_256, twox_128, twox_256},
	storage, wasm_tracing,
};
#[cfg(not(feature = "std"))]
use sp_runtime::{
	print,
	traits::{BlakeTwo256, Hash},
};

extern "C" {
	#[allow(dead_code)]
	fn missing_external();

	#[allow(dead_code)]
	fn yet_another_missing_external();
}

#[cfg(not(feature = "std"))]
/// The size of a WASM page in bytes.
const WASM_PAGE_SIZE: usize = 65536;

#[cfg(not(feature = "std"))]
/// Mutable static variables should be always observed to have
/// the initialized value at the start of a runtime call.
static mut MUTABLE_STATIC: u64 = 32;

#[cfg(not(feature = "std"))]
/// This is similar to `MUTABLE_STATIC`. The tests need `MUTABLE_STATIC` for testing that
/// non-null initialization data is properly restored during instance reusing.
///
/// `MUTABLE_STATIC_BSS` on the other hand focuses on the zeroed data. This is important since there
/// may be differences in handling zeroed and non-zeroed data.
static mut MUTABLE_STATIC_BSS: u64 = 0;

sp_core::wasm_export_functions! {
	fn test_calling_missing_external() {
		unsafe { missing_external() }
	}

	fn test_calling_yet_another_missing_external() {
		unsafe { yet_another_missing_external() }
	}

	fn test_data_in(input: Vec<u8>) -> Vec<u8> {
		print("set_storage");
		storage::set(b"input", &input);

		print("storage");
		let foo = storage::get(b"foo").unwrap();

		print("set_storage");
		storage::set(b"baz", &foo);

		print("finished!");
		b"all ok!".to_vec()
	}

	fn test_clear_prefix(input: Vec<u8>) -> Vec<u8> {
		storage::clear_prefix(&input, None);
		b"all ok!".to_vec()
	}

	fn test_empty_return() {}

	fn test_dirty_plenty_memory(heap_base: u32, heap_pages: u32) {
		// This piece of code will dirty multiple pages of memory. The number of pages is given by
		// the `heap_pages`. It's unit is a wasm page (64KiB). The first page to be cleared
		// is a wasm page that that follows the one that holds the `heap_base` address.
		//
		// This function dirties the **host** pages. I.e. we dirty 4KiB at a time and it will take
		// 16 writes to process a single wasm page.

		let heap_ptr = heap_base as usize;

		// Find the next wasm page boundary.
		let heap_ptr = round_up_to(heap_ptr, WASM_PAGE_SIZE);

		// Make it an actual pointer
		let heap_ptr = heap_ptr as *mut u8;

		// Traverse the host pages and make each one dirty
		let host_pages = heap_pages as usize * 16;
		for i in 0..host_pages {
			unsafe {
				// technically this is an UB, but there is no way Rust can find this out.
				heap_ptr.add(i * 4096).write(0);
			}
		}

		fn round_up_to(n: usize, divisor: usize) -> usize {
			(n + divisor - 1) / divisor
		}
	}

	fn test_allocate_vec(size: u32) -> Vec<u8> {
		Vec::with_capacity(size as usize)
	}

	fn test_fp_f32add(a: [u8; 4], b: [u8; 4]) -> [u8; 4] {
		let a = f32::from_le_bytes(a);
		let b = f32::from_le_bytes(b);
		f32::to_le_bytes(a + b)
	}

	fn test_panic() { panic!("test panic") }

	fn test_conditional_panic(input: Vec<u8>) -> Vec<u8> {
		if input.len() > 0 {
			panic!("test panic")
		}

		input
	}

	fn test_blake2_256(input: Vec<u8>) -> Vec<u8> {
		blake2_256(&input).to_vec()
	}

	fn test_blake2_128(input: Vec<u8>) -> Vec<u8> {
		blake2_128(&input).to_vec()
	}

	fn test_sha2_256(input: Vec<u8>) -> Vec<u8> {
		sha2_256(&input).to_vec()
	}

	fn test_twox_256(input: Vec<u8>) -> Vec<u8> {
		twox_256(&input).to_vec()
	}

	fn test_twox_128(input: Vec<u8>) -> Vec<u8> {
		twox_128(&input).to_vec()
	}

	fn test_ed25519_verify(input: Vec<u8>) -> bool {
		let mut pubkey = [0; 32];
		let mut sig = [0; 64];

		pubkey.copy_from_slice(&input[0..32]);
		sig.copy_from_slice(&input[32..96]);

		let msg = b"all ok!";
		ed25519_verify(&ed25519::Signature::from(sig), &msg[..], &ed25519::Public::from(pubkey))
	}

	fn test_sr25519_verify(input: Vec<u8>) -> bool {
		let mut pubkey = [0; 32];
		let mut sig = [0; 64];

		pubkey.copy_from_slice(&input[0..32]);
		sig.copy_from_slice(&input[32..96]);

		let msg = b"all ok!";
		sr25519_verify(&sr25519::Signature::from(sig), &msg[..], &sr25519::Public::from(pubkey))
	}

	fn test_ordered_trie_root() -> Vec<u8> {
		BlakeTwo256::ordered_trie_root(
			vec![
				b"zero"[..].into(),
				b"one"[..].into(),
				b"two"[..].into(),
			],
			sp_core::storage::StateVersion::V1,
		).as_ref().to_vec()
	}

	fn test_offchain_index_set() {
		sp_io::offchain_index::set(b"k", b"v");
	}

	fn test_offchain_local_storage() -> bool {
		let kind = sp_core::offchain::StorageKind::PERSISTENT;
		assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), None);
		sp_io::offchain::local_storage_set(kind, b"test", b"asd");
		assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), Some(b"asd".to_vec()));

		let res = sp_io::offchain::local_storage_compare_and_set(
			kind,
			b"test",
			Some(b"asd".to_vec()),
			b"",
		);
		assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), Some(b"".to_vec()));
		res
	}

	fn test_offchain_local_storage_with_none() {
		let kind = sp_core::offchain::StorageKind::PERSISTENT;
		assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), None);

		let res = sp_io::offchain::local_storage_compare_and_set(kind, b"test", None, b"value");
		assert_eq!(res, true);
		assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), Some(b"value".to_vec()));
	}

	fn test_offchain_http() -> bool {
		use sp_core::offchain::HttpRequestStatus;
		let run = || -> Option<()> {
			let id = sp_io::offchain::http_request_start(
				"POST",
				"http://localhost:12345",
				&[],
			).ok()?;
			sp_io::offchain::http_request_add_header(id, "X-Auth", "test").ok()?;
			sp_io::offchain::http_request_write_body(id, &[1, 2, 3, 4], None).ok()?;
			sp_io::offchain::http_request_write_body(id, &[], None).ok()?;
			let status = sp_io::offchain::http_response_wait(&[id], None);
			assert!(status == vec![HttpRequestStatus::Finished(200)], "Expected Finished(200) status.");
			let headers = sp_io::offchain::http_response_headers(id);
			assert_eq!(headers, vec![(b"X-Auth".to_vec(), b"hello".to_vec())]);
			let mut buffer = vec![0; 64];
			let read = sp_io::offchain::http_response_read_body(id, &mut buffer, None).ok()?;
			assert_eq!(read, 3);
			assert_eq!(&buffer[0..read as usize], &[1, 2, 3]);
			let read = sp_io::offchain::http_response_read_body(id, &mut buffer, None).ok()?;
			assert_eq!(read, 0);

			Some(())
		};

		run().is_some()
	}

	fn test_enter_span() -> u64 {
		wasm_tracing::enter_span(Default::default())
	}

	fn test_exit_span(span_id: u64) {
		wasm_tracing::exit(span_id)
	}

	fn test_nested_spans() {
		sp_io::init_tracing();
		let span_id = wasm_tracing::enter_span(Default::default());
		{
			sp_io::init_tracing();
			let span_id = wasm_tracing::enter_span(Default::default());
			wasm_tracing::exit(span_id);
		}
		wasm_tracing::exit(span_id);
	}

	fn returns_mutable_static() -> u64 {
		unsafe {
			MUTABLE_STATIC += 1;
			MUTABLE_STATIC
		}
	}

	fn returns_mutable_static_bss() -> u64 {
		unsafe {
			MUTABLE_STATIC_BSS += 1;
			MUTABLE_STATIC_BSS
		}
	}

	fn allocates_huge_stack_array(trap: bool) -> Vec<u8> {
		// Allocate a stack frame that is approx. 75% of the stack (assuming it is 1MB).
		// This will just decrease (stacks in wasm32-u-u grow downwards) the stack
		// pointer. This won't trap on the current compilers.
		let mut data = [0u8; 1024 * 768];

		// Then make sure we actually write something to it.
		//
		// If:
		// 1. the stack area is placed at the beginning of the linear memory space, and
		// 2. the stack pointer points to out-of-bounds area, and
		// 3. a write is performed around the current stack pointer.
		//
		// then a trap should happen.
		//
		for (i, v) in data.iter_mut().enumerate() {
			*v = i as u8; // deliberate truncation
		}

		if trap {
			// There is a small chance of this to be pulled up in theory. In practice
			// the probability of that is rather low.
			panic!()
		}

		data.to_vec()
	}

	// Check that the heap at `heap_base + offset` don't contains the test message.
	// After the check succeeds the test message is written into the heap.
	//
	// It is expected that the given pointer is not allocated.
	fn check_and_set_in_heap(heap_base: u32, offset: u32) {
		let test_message = b"Hello invalid heap memory";
		let ptr = (heap_base + offset) as *mut u8;

		let message_slice = unsafe { alloc::slice::from_raw_parts_mut(ptr, test_message.len()) };

		assert_ne!(test_message, message_slice);
		message_slice.copy_from_slice(test_message);
	}

	fn test_return_i8() -> i8 {
		-66
	}

	fn test_take_i8(value: i8) {
		assert_eq!(value, -66);
	}

	fn allocate_two_gigabyte() -> u32 {
		let mut data = Vec::new();
		for _ in 0..205 {
			data.push(Vec::<u8>::with_capacity(10 * 1024 * 1024));
		}

		data.iter().map(|d| d.capacity() as u32).sum()
	}

	fn test_abort_on_panic() {
		sp_io::panic_handler::abort_on_panic("test_abort_on_panic called");
	}

	fn test_unreachable_intrinsic() {
		core::arch::wasm32::unreachable()
	}

	fn test_return_value() -> u64 {
		// Mainly a test that the macro is working when we have a return statement here.
		return 1234;
	}
}

// Tests that check output validity. We explicitly return the ptr and len, so we avoid using the
// `wasm_export_functions` macro.
mod output_validity {
	#[cfg(not(feature = "std"))]
	use super::WASM_PAGE_SIZE;

	#[cfg(not(feature = "std"))]
	use sp_runtime_interface::pack_ptr_and_len;

	// Returns a huge len. It should result in an error, and not an allocation.
	#[no_mangle]
	#[cfg(not(feature = "std"))]
	pub extern "C" fn test_return_huge_len(_params: *const u8, _len: usize) -> u64 {
		pack_ptr_and_len(0, u32::MAX)
	}

	// Returns an offset right before the edge of the wasm memory boundary. It should succeed.
	#[no_mangle]
	#[cfg(not(feature = "std"))]
	pub extern "C" fn test_return_max_memory_offset(_params: *const u8, _len: usize) -> u64 {
		let output_ptr = (core::arch::wasm32::memory_size(0) * WASM_PAGE_SIZE) as u32 - 1;
		let ptr = output_ptr as *mut u8;
		unsafe {
			ptr.write(u8::MAX);
		}
		pack_ptr_and_len(output_ptr, 1)
	}

	// Returns an offset right after the edge of the wasm memory boundary. It should fail.
	#[no_mangle]
	#[cfg(not(feature = "std"))]
	pub extern "C" fn test_return_max_memory_offset_plus_one(
		_params: *const u8,
		_len: usize,
	) -> u64 {
		pack_ptr_and_len((core::arch::wasm32::memory_size(0) * WASM_PAGE_SIZE) as u32, 1)
	}

	// Returns an output that overflows the u32 range. It should result in an error.
	#[no_mangle]
	#[cfg(not(feature = "std"))]
	pub extern "C" fn test_return_overflow(_params: *const u8, _len: usize) -> u64 {
		pack_ptr_and_len(u32::MAX, 1)
	}
}