referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! VRFs backed by [Bandersnatch](https://neuromancer.sk/std/bls/Bandersnatch),
//! an elliptic curve built over BLS12-381 scalar field.
//!
//! The primitive can operate both as a regular VRF or as an anonymized Ring VRF.

#[cfg(feature = "full_crypto")]
use crate::crypto::VrfSecret;
use crate::crypto::{
	ByteArray, CryptoType, CryptoTypeId, DeriveError, DeriveJunction, Pair as TraitPair,
	PublicBytes, SecretStringError, SignatureBytes, UncheckedFrom, VrfPublic,
};

use bandersnatch_vrfs::{CanonicalSerialize, SecretKey};
use codec::{Decode, Encode, EncodeLike, MaxEncodedLen};
use scale_info::TypeInfo;

use alloc::{vec, vec::Vec};

/// Identifier used to match public keys against bandersnatch-vrf keys.
pub const CRYPTO_ID: CryptoTypeId = CryptoTypeId(*b"band");

/// Context used to produce a plain signature without any VRF input/output.
pub const SIGNING_CTX: &[u8] = b"BandersnatchSigningContext";

/// The byte length of secret key seed.
pub const SEED_SERIALIZED_SIZE: usize = 32;

/// The byte length of serialized public key.
pub const PUBLIC_SERIALIZED_SIZE: usize = 33;

/// The byte length of serialized signature.
pub const SIGNATURE_SERIALIZED_SIZE: usize = 65;

/// The byte length of serialized pre-output.
pub const PREOUT_SERIALIZED_SIZE: usize = 33;

#[doc(hidden)]
pub struct BandersnatchTag;

/// Bandersnatch public key.
pub type Public = PublicBytes<PUBLIC_SERIALIZED_SIZE, BandersnatchTag>;

impl CryptoType for Public {
	type Pair = Pair;
}

/// Bandersnatch signature.
///
/// The signature is created via the [`VrfSecret::vrf_sign`] using [`SIGNING_CTX`] as transcript
/// `label`.
pub type Signature = SignatureBytes<SIGNATURE_SERIALIZED_SIZE, BandersnatchTag>;

impl CryptoType for Signature {
	type Pair = Pair;
}

/// The raw secret seed, which can be used to reconstruct the secret [`Pair`].
type Seed = [u8; SEED_SERIALIZED_SIZE];

/// Bandersnatch secret key.
#[derive(Clone)]
pub struct Pair {
	secret: SecretKey,
	seed: Seed,
}

impl Pair {
	/// Get the key seed.
	pub fn seed(&self) -> Seed {
		self.seed
	}
}

impl TraitPair for Pair {
	type Seed = Seed;
	type Public = Public;
	type Signature = Signature;

	/// Make a new key pair from secret seed material.
	///
	/// The slice must be 32 bytes long or it will return an error.
	fn from_seed_slice(seed_slice: &[u8]) -> Result<Pair, SecretStringError> {
		if seed_slice.len() != SEED_SERIALIZED_SIZE {
			return Err(SecretStringError::InvalidSeedLength)
		}
		let mut seed = [0; SEED_SERIALIZED_SIZE];
		seed.copy_from_slice(seed_slice);
		let secret = SecretKey::from_seed(&seed);
		Ok(Pair { secret, seed })
	}

	/// Derive a child key from a series of given (hard) junctions.
	///
	/// Soft junctions are not supported.
	fn derive<Iter: Iterator<Item = DeriveJunction>>(
		&self,
		path: Iter,
		_seed: Option<Seed>,
	) -> Result<(Pair, Option<Seed>), DeriveError> {
		let derive_hard = |seed, cc| -> Seed {
			("bandersnatch-vrf-HDKD", seed, cc).using_encoded(sp_crypto_hashing::blake2_256)
		};

		let mut seed = self.seed();
		for p in path {
			if let DeriveJunction::Hard(cc) = p {
				seed = derive_hard(seed, cc);
			} else {
				return Err(DeriveError::SoftKeyInPath)
			}
		}
		Ok((Self::from_seed(&seed), Some(seed)))
	}

	fn public(&self) -> Public {
		let public = self.secret.to_public();
		let mut raw = [0; PUBLIC_SERIALIZED_SIZE];
		public
			.serialize_compressed(raw.as_mut_slice())
			.expect("serialization length is constant and checked by test; qed");
		Public::unchecked_from(raw)
	}

	/// Sign a message.
	///
	/// In practice this produce a Schnorr signature of a transcript composed by
	/// the constant label [`SIGNING_CTX`] and `data` without any additional data.
	///
	/// See [`vrf::VrfSignData`] for additional details.
	#[cfg(feature = "full_crypto")]
	fn sign(&self, data: &[u8]) -> Signature {
		let data = vrf::VrfSignData::new_unchecked(SIGNING_CTX, &[data], None);
		self.vrf_sign(&data).signature
	}

	fn verify<M: AsRef<[u8]>>(signature: &Signature, data: M, public: &Public) -> bool {
		let data = vrf::VrfSignData::new_unchecked(SIGNING_CTX, &[data.as_ref()], None);
		let signature =
			vrf::VrfSignature { signature: *signature, pre_outputs: vrf::VrfIosVec::default() };
		public.vrf_verify(&data, &signature)
	}

	/// Return a vector filled with the seed (32 bytes).
	fn to_raw_vec(&self) -> Vec<u8> {
		self.seed().to_vec()
	}
}

impl CryptoType for Pair {
	type Pair = Pair;
}

/// Bandersnatch VRF types and operations.
pub mod vrf {
	use super::*;
	use crate::{bounded::BoundedVec, crypto::VrfCrypto, ConstU32};
	use bandersnatch_vrfs::{
		CanonicalDeserialize, CanonicalSerialize, IntoVrfInput, Message, PublicKey,
		ThinVrfSignature, Transcript,
	};

	/// Max number of inputs/pre-outputs which can be handled by the VRF signing procedures.
	///
	/// The number is quite arbitrary and chosen to fulfill the use cases found so far.
	/// If required it can be extended in the future.
	pub const MAX_VRF_IOS: u32 = 3;

	/// Bounded vector used for VRF inputs and pre-outputs.
	///
	/// Can contain at most [`MAX_VRF_IOS`] elements.
	pub type VrfIosVec<T> = BoundedVec<T, ConstU32<MAX_VRF_IOS>>;

	/// VRF input to construct a [`VrfPreOutput`] instance and embeddable in [`VrfSignData`].
	#[derive(Clone, Debug)]
	pub struct VrfInput(pub(super) bandersnatch_vrfs::VrfInput);

	impl VrfInput {
		/// Construct a new VRF input.
		pub fn new(domain: impl AsRef<[u8]>, data: impl AsRef<[u8]>) -> Self {
			let msg = Message { domain: domain.as_ref(), message: data.as_ref() };
			VrfInput(msg.into_vrf_input())
		}
	}

	/// VRF pre-output derived from [`VrfInput`] using a [`VrfSecret`].
	///
	/// This object is used to produce an arbitrary number of verifiable pseudo random
	/// bytes and is often called pre-output to emphasize that this is not the actual
	/// output of the VRF but an object capable of generating the output.
	#[derive(Clone, Debug, PartialEq, Eq)]
	pub struct VrfPreOutput(pub(super) bandersnatch_vrfs::VrfPreOut);

	impl Encode for VrfPreOutput {
		fn encode(&self) -> Vec<u8> {
			let mut bytes = [0; PREOUT_SERIALIZED_SIZE];
			self.0
				.serialize_compressed(bytes.as_mut_slice())
				.expect("serialization length is constant and checked by test; qed");
			bytes.encode()
		}
	}

	impl Decode for VrfPreOutput {
		fn decode<R: codec::Input>(i: &mut R) -> Result<Self, codec::Error> {
			let buf = <[u8; PREOUT_SERIALIZED_SIZE]>::decode(i)?;
			let preout =
				bandersnatch_vrfs::VrfPreOut::deserialize_compressed_unchecked(buf.as_slice())
					.map_err(|_| "vrf-preout decode error: bad preout")?;
			Ok(VrfPreOutput(preout))
		}
	}

	impl EncodeLike for VrfPreOutput {}

	impl MaxEncodedLen for VrfPreOutput {
		fn max_encoded_len() -> usize {
			<[u8; PREOUT_SERIALIZED_SIZE]>::max_encoded_len()
		}
	}

	impl TypeInfo for VrfPreOutput {
		type Identity = [u8; PREOUT_SERIALIZED_SIZE];

		fn type_info() -> scale_info::Type {
			Self::Identity::type_info()
		}
	}

	/// Data to be signed via one of the two provided vrf flavors.
	///
	/// The object contains a transcript and a sequence of [`VrfInput`]s ready to be signed.
	///
	/// The `transcript` summarizes a set of messages which are defining a particular
	/// protocol by automating the Fiat-Shamir transform for challenge generation.
	/// A good explanation of the topic can be found in Merlin [docs](https://merlin.cool/)
	///
	/// The `inputs` is a sequence of [`VrfInput`]s which, during the signing procedure, are
	/// first transformed to [`VrfPreOutput`]s. Both inputs and pre-outputs are then appended to
	/// the transcript before signing the Fiat-Shamir transform result (the challenge).
	///
	/// In practice, as a user, all these technical details can be easily ignored.
	/// What is important to remember is:
	/// - *Transcript* is an object defining the protocol and used to produce the signature. This
	///   object doesn't influence the `VrfPreOutput`s values.
	/// - *Vrf inputs* is some additional data which is used to produce *vrf pre-outputs*. This data
	///   will contribute to the signature as well.
	#[derive(Clone)]
	pub struct VrfSignData {
		/// Associated protocol transcript.
		pub transcript: Transcript,
		/// VRF inputs to be signed.
		pub inputs: VrfIosVec<VrfInput>,
	}

	impl VrfSignData {
		/// Construct a new data to be signed.
		///
		/// Fails if the `inputs` iterator yields more elements than [`MAX_VRF_IOS`]
		///
		/// Refer to [`VrfSignData`] for details about transcript and inputs.
		pub fn new(
			transcript_label: &'static [u8],
			transcript_data: impl IntoIterator<Item = impl AsRef<[u8]>>,
			inputs: impl IntoIterator<Item = VrfInput>,
		) -> Result<Self, ()> {
			let inputs: Vec<VrfInput> = inputs.into_iter().collect();
			if inputs.len() > MAX_VRF_IOS as usize {
				return Err(())
			}
			Ok(Self::new_unchecked(transcript_label, transcript_data, inputs))
		}

		/// Construct a new data to be signed.
		///
		/// At most the first [`MAX_VRF_IOS`] elements of `inputs` are used.
		///
		/// Refer to [`VrfSignData`] for details about transcript and inputs.
		pub fn new_unchecked(
			transcript_label: &'static [u8],
			transcript_data: impl IntoIterator<Item = impl AsRef<[u8]>>,
			inputs: impl IntoIterator<Item = VrfInput>,
		) -> Self {
			let inputs: Vec<VrfInput> = inputs.into_iter().collect();
			let inputs = VrfIosVec::truncate_from(inputs);
			let mut transcript = Transcript::new_labeled(transcript_label);
			transcript_data.into_iter().for_each(|data| transcript.append(data.as_ref()));
			VrfSignData { transcript, inputs }
		}

		/// Append a message to the transcript.
		pub fn push_transcript_data(&mut self, data: &[u8]) {
			self.transcript.append(data);
		}

		/// Tries to append a [`VrfInput`] to the vrf inputs list.
		///
		/// On failure, returns back the [`VrfInput`] parameter.
		pub fn push_vrf_input(&mut self, input: VrfInput) -> Result<(), VrfInput> {
			self.inputs.try_push(input)
		}

		/// Get the challenge associated to the `transcript` contained within the signing data.
		///
		/// Ignores the vrf inputs and outputs.
		pub fn challenge<const N: usize>(&self) -> [u8; N] {
			let mut output = [0; N];
			let mut transcript = self.transcript.clone();
			let mut reader = transcript.challenge(b"bandersnatch challenge");
			reader.read_bytes(&mut output);
			output
		}
	}

	/// VRF signature.
	///
	/// Includes both the transcript `signature` and the `pre-outputs` generated from the
	/// [`VrfSignData::inputs`].
	///
	/// Refer to [`VrfSignData`] for more details.
	#[derive(Clone, Debug, PartialEq, Eq, Encode, Decode, MaxEncodedLen, TypeInfo)]
	pub struct VrfSignature {
		/// Transcript signature.
		pub signature: Signature,
		/// VRF pre-outputs.
		pub pre_outputs: VrfIosVec<VrfPreOutput>,
	}

	#[cfg(feature = "full_crypto")]
	impl VrfCrypto for Pair {
		type VrfInput = VrfInput;
		type VrfPreOutput = VrfPreOutput;
		type VrfSignData = VrfSignData;
		type VrfSignature = VrfSignature;
	}

	#[cfg(feature = "full_crypto")]
	impl VrfSecret for Pair {
		fn vrf_sign(&self, data: &Self::VrfSignData) -> Self::VrfSignature {
			const _: () = assert!(MAX_VRF_IOS == 3, "`MAX_VRF_IOS` expected to be 3");
			// Workaround to overcome backend signature generic over the number of IOs.
			match data.inputs.len() {
				0 => self.vrf_sign_gen::<0>(data),
				1 => self.vrf_sign_gen::<1>(data),
				2 => self.vrf_sign_gen::<2>(data),
				3 => self.vrf_sign_gen::<3>(data),
				_ => unreachable!(),
			}
		}

		fn vrf_pre_output(&self, input: &Self::VrfInput) -> Self::VrfPreOutput {
			let pre_output = self.secret.vrf_preout(&input.0);
			VrfPreOutput(pre_output)
		}
	}

	impl VrfCrypto for Public {
		type VrfInput = VrfInput;
		type VrfPreOutput = VrfPreOutput;
		type VrfSignData = VrfSignData;
		type VrfSignature = VrfSignature;
	}

	impl VrfPublic for Public {
		fn vrf_verify(&self, data: &Self::VrfSignData, signature: &Self::VrfSignature) -> bool {
			const _: () = assert!(MAX_VRF_IOS == 3, "`MAX_VRF_IOS` expected to be 3");
			let pre_outputs_len = signature.pre_outputs.len();
			if pre_outputs_len != data.inputs.len() {
				return false
			}
			// Workaround to overcome backend signature generic over the number of IOs.
			match pre_outputs_len {
				0 => self.vrf_verify_gen::<0>(data, signature),
				1 => self.vrf_verify_gen::<1>(data, signature),
				2 => self.vrf_verify_gen::<2>(data, signature),
				3 => self.vrf_verify_gen::<3>(data, signature),
				_ => unreachable!(),
			}
		}
	}

	#[cfg(feature = "full_crypto")]
	impl Pair {
		fn vrf_sign_gen<const N: usize>(&self, data: &VrfSignData) -> VrfSignature {
			let ios = core::array::from_fn(|i| self.secret.vrf_inout(data.inputs[i].0));

			let thin_signature: ThinVrfSignature<N> =
				self.secret.sign_thin_vrf(data.transcript.clone(), &ios);

			let pre_outputs: Vec<_> =
				thin_signature.preouts.into_iter().map(VrfPreOutput).collect();
			let pre_outputs = VrfIosVec::truncate_from(pre_outputs);

			let mut signature = VrfSignature { signature: Signature::default(), pre_outputs };

			thin_signature
				.proof
				.serialize_compressed(signature.signature.0.as_mut_slice())
				.expect("serialization length is constant and checked by test; qed");

			signature
		}

		/// Generate an arbitrary number of bytes from the given `context` and VRF `input`.
		pub fn make_bytes<const N: usize>(
			&self,
			context: &'static [u8],
			input: &VrfInput,
		) -> [u8; N] {
			let transcript = Transcript::new_labeled(context);
			let inout = self.secret.vrf_inout(input.0);
			inout.vrf_output_bytes(transcript)
		}
	}

	impl Public {
		fn vrf_verify_gen<const N: usize>(
			&self,
			data: &VrfSignData,
			signature: &VrfSignature,
		) -> bool {
			let Ok(public) = PublicKey::deserialize_compressed_unchecked(self.as_slice()) else {
				return false
			};

			let preouts: [bandersnatch_vrfs::VrfPreOut; N] =
				core::array::from_fn(|i| signature.pre_outputs[i].0);

			// Deserialize only the proof, the rest has already been deserialized
			// This is another hack used because backend signature type is generic over
			// the number of ios.
			let Ok(proof) = ThinVrfSignature::<0>::deserialize_compressed_unchecked(
				signature.signature.as_slice(),
			)
			.map(|s| s.proof) else {
				return false
			};
			let signature = ThinVrfSignature { proof, preouts };

			let inputs = data.inputs.iter().map(|i| i.0);

			public.verify_thin_vrf(data.transcript.clone(), inputs, &signature).is_ok()
		}
	}

	impl VrfPreOutput {
		/// Generate an arbitrary number of bytes from the given `context` and VRF `input`.
		pub fn make_bytes<const N: usize>(
			&self,
			context: &'static [u8],
			input: &VrfInput,
		) -> [u8; N] {
			let transcript = Transcript::new_labeled(context);
			let inout = bandersnatch_vrfs::VrfInOut { input: input.0, preoutput: self.0 };
			inout.vrf_output_bytes(transcript)
		}
	}
}

/// Bandersnatch Ring-VRF types and operations.
pub mod ring_vrf {
	use super::{vrf::*, *};
	pub use bandersnatch_vrfs::ring::{RingProof, RingProver, RingVerifier, KZG};
	use bandersnatch_vrfs::{ring::VerifierKey, CanonicalDeserialize, PublicKey};

	/// Overhead in the domain size with respect to the supported ring size.
	///
	/// Some bits of the domain are reserved for the zk-proof to work.
	pub const RING_DOMAIN_OVERHEAD: u32 = 257;

	// Max size of serialized ring-vrf context given `domain_len`.
	pub(crate) const fn ring_context_serialized_size(domain_len: u32) -> usize {
		// const G1_POINT_COMPRESSED_SIZE: usize = 48;
		// const G2_POINT_COMPRESSED_SIZE: usize = 96;
		const G1_POINT_UNCOMPRESSED_SIZE: usize = 96;
		const G2_POINT_UNCOMPRESSED_SIZE: usize = 192;
		const OVERHEAD_SIZE: usize = 20;
		const G2_POINTS_NUM: usize = 2;
		let g1_points_num = 3 * domain_len as usize + 1;

		OVERHEAD_SIZE +
			g1_points_num * G1_POINT_UNCOMPRESSED_SIZE +
			G2_POINTS_NUM * G2_POINT_UNCOMPRESSED_SIZE
	}

	pub(crate) const RING_VERIFIER_DATA_SERIALIZED_SIZE: usize = 388;
	pub(crate) const RING_SIGNATURE_SERIALIZED_SIZE: usize = 755;

	/// remove as soon as soon as serialization is implemented by the backend
	pub struct RingVerifierData {
		/// Domain size.
		pub domain_size: u32,
		/// Verifier key.
		pub verifier_key: VerifierKey,
	}

	impl From<RingVerifierData> for RingVerifier {
		fn from(vd: RingVerifierData) -> RingVerifier {
			bandersnatch_vrfs::ring::make_ring_verifier(vd.verifier_key, vd.domain_size as usize)
		}
	}

	impl Encode for RingVerifierData {
		fn encode(&self) -> Vec<u8> {
			const ERR_STR: &str = "serialization length is constant and checked by test; qed";
			let mut buf = [0; RING_VERIFIER_DATA_SERIALIZED_SIZE];
			self.domain_size.serialize_compressed(&mut buf[..4]).expect(ERR_STR);
			self.verifier_key.serialize_compressed(&mut buf[4..]).expect(ERR_STR);
			buf.encode()
		}
	}

	impl Decode for RingVerifierData {
		fn decode<R: codec::Input>(i: &mut R) -> Result<Self, codec::Error> {
			const ERR_STR: &str = "serialization length is constant and checked by test; qed";
			let buf = <[u8; RING_VERIFIER_DATA_SERIALIZED_SIZE]>::decode(i)?;
			let domain_size =
				<u32 as CanonicalDeserialize>::deserialize_compressed_unchecked(&mut &buf[..4])
					.expect(ERR_STR);
			let verifier_key = <bandersnatch_vrfs::ring::VerifierKey as CanonicalDeserialize>::deserialize_compressed_unchecked(&mut &buf[4..]).expect(ERR_STR);

			Ok(RingVerifierData { domain_size, verifier_key })
		}
	}

	impl EncodeLike for RingVerifierData {}

	impl MaxEncodedLen for RingVerifierData {
		fn max_encoded_len() -> usize {
			<[u8; RING_VERIFIER_DATA_SERIALIZED_SIZE]>::max_encoded_len()
		}
	}

	impl TypeInfo for RingVerifierData {
		type Identity = [u8; RING_VERIFIER_DATA_SERIALIZED_SIZE];

		fn type_info() -> scale_info::Type {
			Self::Identity::type_info()
		}
	}

	/// Context used to construct ring prover and verifier.
	///
	/// Generic parameter `D` represents the ring domain size and drives
	/// the max number of supported ring members [`RingContext::max_keyset_size`]
	/// which is equal to `D - RING_DOMAIN_OVERHEAD`.
	#[derive(Clone)]
	pub struct RingContext<const D: u32>(KZG);

	impl<const D: u32> RingContext<D> {
		/// Build an dummy instance for testing purposes.
		pub fn new_testing() -> Self {
			Self(KZG::testing_kzg_setup([0; 32], D))
		}

		/// Get the keyset max size.
		pub fn max_keyset_size(&self) -> usize {
			self.0.max_keyset_size()
		}

		/// Get ring prover for the key at index `public_idx` in the `public_keys` set.
		pub fn prover(&self, public_keys: &[Public], public_idx: usize) -> Option<RingProver> {
			let mut pks = Vec::with_capacity(public_keys.len());
			for public_key in public_keys {
				let pk = PublicKey::deserialize_compressed_unchecked(public_key.as_slice()).ok()?;
				pks.push(pk.0.into());
			}

			let prover_key = self.0.prover_key(pks);
			let ring_prover = self.0.init_ring_prover(prover_key, public_idx);
			Some(ring_prover)
		}

		/// Get ring verifier for the `public_keys` set.
		pub fn verifier(&self, public_keys: &[Public]) -> Option<RingVerifier> {
			let mut pks = Vec::with_capacity(public_keys.len());
			for public_key in public_keys {
				let pk = PublicKey::deserialize_compressed_unchecked(public_key.as_slice()).ok()?;
				pks.push(pk.0.into());
			}

			let verifier_key = self.0.verifier_key(pks);
			let ring_verifier = self.0.init_ring_verifier(verifier_key);
			Some(ring_verifier)
		}

		/// Information required for a lazy construction of a ring verifier.
		pub fn verifier_data(&self, public_keys: &[Public]) -> Option<RingVerifierData> {
			let mut pks = Vec::with_capacity(public_keys.len());
			for public_key in public_keys {
				let pk = PublicKey::deserialize_compressed_unchecked(public_key.as_slice()).ok()?;
				pks.push(pk.0.into());
			}
			Some(RingVerifierData {
				verifier_key: self.0.verifier_key(pks),
				domain_size: self.0.domain_size,
			})
		}
	}

	impl<const D: u32> Encode for RingContext<D> {
		fn encode(&self) -> Vec<u8> {
			let mut buf = vec![0; ring_context_serialized_size(D)];
			self.0
				.serialize_uncompressed(buf.as_mut_slice())
				.expect("serialization length is constant and checked by test; qed");
			buf
		}
	}

	impl<const D: u32> Decode for RingContext<D> {
		fn decode<R: codec::Input>(input: &mut R) -> Result<Self, codec::Error> {
			let mut buf = vec![0; ring_context_serialized_size(D)];
			input.read(&mut buf[..])?;
			let kzg = KZG::deserialize_uncompressed_unchecked(buf.as_slice())
				.map_err(|_| "KZG decode error")?;
			Ok(RingContext(kzg))
		}
	}

	impl<const D: u32> EncodeLike for RingContext<D> {}

	impl<const D: u32> MaxEncodedLen for RingContext<D> {
		fn max_encoded_len() -> usize {
			ring_context_serialized_size(D)
		}
	}

	impl<const D: u32> TypeInfo for RingContext<D> {
		type Identity = Self;

		fn type_info() -> scale_info::Type {
			let path = scale_info::Path::new("RingContext", module_path!());
			let array_type_def = scale_info::TypeDefArray {
				len: ring_context_serialized_size(D) as u32,
				type_param: scale_info::MetaType::new::<u8>(),
			};
			let type_def = scale_info::TypeDef::Array(array_type_def);
			scale_info::Type { path, type_params: Vec::new(), type_def, docs: Vec::new() }
		}
	}

	/// Ring VRF signature.
	#[derive(Clone, Debug, PartialEq, Eq, Encode, Decode, MaxEncodedLen, TypeInfo)]
	pub struct RingVrfSignature {
		/// Ring signature.
		pub signature: [u8; RING_SIGNATURE_SERIALIZED_SIZE],
		/// VRF pre-outputs.
		pub pre_outputs: VrfIosVec<VrfPreOutput>,
	}

	#[cfg(feature = "full_crypto")]
	impl Pair {
		/// Produce a ring-vrf signature.
		///
		/// The ring signature is verifiable if the public key corresponding to the
		/// signing [`Pair`] is part of the ring from which the [`RingProver`] has
		/// been constructed. If not, the produced signature is just useless.
		pub fn ring_vrf_sign(&self, data: &VrfSignData, prover: &RingProver) -> RingVrfSignature {
			const _: () = assert!(MAX_VRF_IOS == 3, "`MAX_VRF_IOS` expected to be 3");
			// Workaround to overcome backend signature generic over the number of IOs.
			match data.inputs.len() {
				0 => self.ring_vrf_sign_gen::<0>(data, prover),
				1 => self.ring_vrf_sign_gen::<1>(data, prover),
				2 => self.ring_vrf_sign_gen::<2>(data, prover),
				3 => self.ring_vrf_sign_gen::<3>(data, prover),
				_ => unreachable!(),
			}
		}

		fn ring_vrf_sign_gen<const N: usize>(
			&self,
			data: &VrfSignData,
			prover: &RingProver,
		) -> RingVrfSignature {
			let ios = core::array::from_fn(|i| self.secret.vrf_inout(data.inputs[i].0));

			let ring_signature: bandersnatch_vrfs::RingVrfSignature<N> =
				bandersnatch_vrfs::RingProver { ring_prover: prover, secret: &self.secret }
					.sign_ring_vrf(data.transcript.clone(), &ios);

			let pre_outputs: Vec<_> =
				ring_signature.preouts.into_iter().map(VrfPreOutput).collect();
			let pre_outputs = VrfIosVec::truncate_from(pre_outputs);

			let mut signature =
				RingVrfSignature { pre_outputs, signature: [0; RING_SIGNATURE_SERIALIZED_SIZE] };

			ring_signature
				.proof
				.serialize_compressed(signature.signature.as_mut_slice())
				.expect("serialization length is constant and checked by test; qed");

			signature
		}
	}

	impl RingVrfSignature {
		/// Verify a ring-vrf signature.
		///
		/// The signature is verifiable if it has been produced by a member of the ring
		/// from which the [`RingVerifier`] has been constructed.
		pub fn ring_vrf_verify(&self, data: &VrfSignData, verifier: &RingVerifier) -> bool {
			const _: () = assert!(MAX_VRF_IOS == 3, "`MAX_VRF_IOS` expected to be 3");
			let preouts_len = self.pre_outputs.len();
			if preouts_len != data.inputs.len() {
				return false
			}
			// Workaround to overcome backend signature generic over the number of IOs.
			match preouts_len {
				0 => self.ring_vrf_verify_gen::<0>(data, verifier),
				1 => self.ring_vrf_verify_gen::<1>(data, verifier),
				2 => self.ring_vrf_verify_gen::<2>(data, verifier),
				3 => self.ring_vrf_verify_gen::<3>(data, verifier),
				_ => unreachable!(),
			}
		}

		fn ring_vrf_verify_gen<const N: usize>(
			&self,
			data: &VrfSignData,
			verifier: &RingVerifier,
		) -> bool {
			let Ok(vrf_signature) =
				bandersnatch_vrfs::RingVrfSignature::<0>::deserialize_compressed_unchecked(
					self.signature.as_slice(),
				)
			else {
				return false
			};

			let preouts: [bandersnatch_vrfs::VrfPreOut; N] =
				core::array::from_fn(|i| self.pre_outputs[i].0);

			let signature =
				bandersnatch_vrfs::RingVrfSignature { proof: vrf_signature.proof, preouts };

			let inputs = data.inputs.iter().map(|i| i.0);

			bandersnatch_vrfs::RingVerifier(verifier)
				.verify_ring_vrf(data.transcript.clone(), inputs, &signature)
				.is_ok()
		}
	}
}

#[cfg(test)]
mod tests {
	use super::{ring_vrf::*, vrf::*, *};
	use crate::crypto::{VrfPublic, VrfSecret, DEV_PHRASE};

	const DEV_SEED: &[u8; SEED_SERIALIZED_SIZE] = &[0xcb; SEED_SERIALIZED_SIZE];
	const TEST_DOMAIN_SIZE: u32 = 1024;

	type TestRingContext = RingContext<TEST_DOMAIN_SIZE>;

	#[allow(unused)]
	fn b2h(bytes: &[u8]) -> String {
		array_bytes::bytes2hex("", bytes)
	}

	fn h2b(hex: &str) -> Vec<u8> {
		array_bytes::hex2bytes_unchecked(hex)
	}

	#[test]
	fn backend_assumptions_sanity_check() {
		let kzg = KZG::testing_kzg_setup([0; 32], TEST_DOMAIN_SIZE);
		assert_eq!(kzg.max_keyset_size() as u32, TEST_DOMAIN_SIZE - RING_DOMAIN_OVERHEAD);

		assert_eq!(kzg.uncompressed_size(), ring_context_serialized_size(TEST_DOMAIN_SIZE));

		let pks: Vec<_> = (0..16)
			.map(|i| SecretKey::from_seed(&[i as u8; 32]).to_public().0.into())
			.collect();

		let secret = SecretKey::from_seed(&[0u8; 32]);

		let public = secret.to_public();
		assert_eq!(public.compressed_size(), PUBLIC_SERIALIZED_SIZE);

		let input = VrfInput::new(b"foo", &[]);
		let preout = secret.vrf_preout(&input.0);
		assert_eq!(preout.compressed_size(), PREOUT_SERIALIZED_SIZE);

		let verifier_key = kzg.verifier_key(pks.clone());
		assert_eq!(verifier_key.compressed_size() + 4, RING_VERIFIER_DATA_SERIALIZED_SIZE);

		let prover_key = kzg.prover_key(pks);
		let ring_prover = kzg.init_ring_prover(prover_key, 0);

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], None);

		let thin_signature: bandersnatch_vrfs::ThinVrfSignature<0> =
			secret.sign_thin_vrf(data.transcript.clone(), &[]);
		assert_eq!(thin_signature.compressed_size(), SIGNATURE_SERIALIZED_SIZE);

		let ring_signature: bandersnatch_vrfs::RingVrfSignature<0> =
			bandersnatch_vrfs::RingProver { ring_prover: &ring_prover, secret: &secret }
				.sign_ring_vrf(data.transcript.clone(), &[]);
		assert_eq!(ring_signature.compressed_size(), RING_SIGNATURE_SERIALIZED_SIZE);
	}

	#[test]
	fn max_vrf_ios_bound_respected() {
		let inputs: Vec<_> = (0..MAX_VRF_IOS - 1).map(|_| VrfInput::new(b"", &[])).collect();
		let mut sign_data = VrfSignData::new(b"", &[b""], inputs).unwrap();
		let res = sign_data.push_vrf_input(VrfInput::new(b"", b""));
		assert!(res.is_ok());
		let res = sign_data.push_vrf_input(VrfInput::new(b"", b""));
		assert!(res.is_err());
		let inputs: Vec<_> = (0..MAX_VRF_IOS + 1).map(|_| VrfInput::new(b"", b"")).collect();
		let res = VrfSignData::new(b"mydata", &[b"tdata"], inputs);
		assert!(res.is_err());
	}

	#[test]
	fn derive_works() {
		let pair = Pair::from_string(&format!("{}//Alice//Hard", DEV_PHRASE), None).unwrap();
		let known = h2b("2b340c18b94dc1916979cb83daf3ed4ac106742ddc06afc42cf26be3b18a523f80");
		assert_eq!(pair.public().as_ref(), known);

		// Soft derivation not supported
		let res = Pair::from_string(&format!("{}//Alice/Soft", DEV_PHRASE), None);
		assert!(res.is_err());
	}

	#[test]
	fn generate_with_phrase_should_be_recoverable_with_from_string() {
		let (pair, phrase, seed) = Pair::generate_with_phrase(None);
		let repair_seed = Pair::from_seed_slice(seed.as_ref()).expect("seed slice is valid");
		assert_eq!(pair.public(), repair_seed.public());
		let (repair_phrase, reseed) =
			Pair::from_phrase(phrase.as_ref(), None).expect("seed slice is valid");
		assert_eq!(seed, reseed);
		assert_eq!(pair.public(), repair_phrase.public());
		let repair_string = Pair::from_string(phrase.as_str(), None).expect("seed slice is valid");
		assert_eq!(pair.public(), repair_string.public());
	}

	#[test]
	fn sign_verify() {
		let pair = Pair::from_seed(DEV_SEED);
		let public = pair.public();
		let msg = b"hello";

		let signature = pair.sign(msg);
		assert!(Pair::verify(&signature, msg, &public));
	}

	#[test]
	fn vrf_sign_verify() {
		let pair = Pair::from_seed(DEV_SEED);
		let public = pair.public();

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");
		let i3 = VrfInput::new(b"dom3", b"baz");

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], [i1, i2, i3]);

		let signature = pair.vrf_sign(&data);

		assert!(public.vrf_verify(&data, &signature));
	}

	#[test]
	fn vrf_sign_verify_bad_inputs() {
		let pair = Pair::from_seed(DEV_SEED);
		let public = pair.public();

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");

		let data = VrfSignData::new_unchecked(b"mydata", &[b"aaaa"], [i1.clone(), i2.clone()]);
		let signature = pair.vrf_sign(&data);

		let data = VrfSignData::new_unchecked(b"mydata", &[b"bbb"], [i1, i2.clone()]);
		assert!(!public.vrf_verify(&data, &signature));

		let data = VrfSignData::new_unchecked(b"mydata", &[b"aaa"], [i2]);
		assert!(!public.vrf_verify(&data, &signature));
	}

	#[test]
	fn vrf_make_bytes_matches() {
		let pair = Pair::from_seed(DEV_SEED);

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], [i1.clone(), i2.clone()]);
		let signature = pair.vrf_sign(&data);

		let o10 = pair.make_bytes::<32>(b"ctx1", &i1);
		let o11 = signature.pre_outputs[0].make_bytes::<32>(b"ctx1", &i1);
		assert_eq!(o10, o11);

		let o20 = pair.make_bytes::<48>(b"ctx2", &i2);
		let o21 = signature.pre_outputs[1].make_bytes::<48>(b"ctx2", &i2);
		assert_eq!(o20, o21);
	}

	#[test]
	fn encode_decode_vrf_signature() {
		// Transcript data is hashed together and signed.
		// It doesn't contribute to serialized length.
		let pair = Pair::from_seed(DEV_SEED);

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], [i1.clone(), i2.clone()]);
		let expected = pair.vrf_sign(&data);

		let bytes = expected.encode();

		let expected_len =
			data.inputs.len() * PREOUT_SERIALIZED_SIZE + SIGNATURE_SERIALIZED_SIZE + 1;
		assert_eq!(bytes.len(), expected_len);

		let decoded = VrfSignature::decode(&mut bytes.as_slice()).unwrap();
		assert_eq!(expected, decoded);

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], []);
		let expected = pair.vrf_sign(&data);

		let bytes = expected.encode();

		let decoded = VrfSignature::decode(&mut bytes.as_slice()).unwrap();
		assert_eq!(expected, decoded);
	}

	#[test]
	fn ring_vrf_sign_verify() {
		let ring_ctx = TestRingContext::new_testing();

		let mut pks: Vec<_> = (0..16).map(|i| Pair::from_seed(&[i as u8; 32]).public()).collect();
		assert!(pks.len() <= ring_ctx.max_keyset_size());

		let pair = Pair::from_seed(DEV_SEED);

		// Just pick one index to patch with the actual public key
		let prover_idx = 3;
		pks[prover_idx] = pair.public();

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");
		let i3 = VrfInput::new(b"dom3", b"baz");

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], [i1, i2, i3]);

		let prover = ring_ctx.prover(&pks, prover_idx).unwrap();
		let signature = pair.ring_vrf_sign(&data, &prover);

		let verifier = ring_ctx.verifier(&pks).unwrap();
		assert!(signature.ring_vrf_verify(&data, &verifier));
	}

	#[test]
	fn ring_vrf_sign_verify_with_out_of_ring_key() {
		let ring_ctx = TestRingContext::new_testing();

		let pks: Vec<_> = (0..16).map(|i| Pair::from_seed(&[i as u8; 32]).public()).collect();
		let pair = Pair::from_seed(DEV_SEED);

		// Just pick one index to patch with the actual public key
		let i1 = VrfInput::new(b"dom1", b"foo");
		let data = VrfSignData::new_unchecked(b"mydata", Some(b"tdata"), Some(i1));

		// pair.public != pks[0]
		let prover = ring_ctx.prover(&pks, 0).unwrap();
		let signature = pair.ring_vrf_sign(&data, &prover);

		let verifier = ring_ctx.verifier(&pks).unwrap();
		assert!(!signature.ring_vrf_verify(&data, &verifier));
	}

	#[test]
	fn ring_vrf_make_bytes_matches() {
		let ring_ctx = TestRingContext::new_testing();

		let mut pks: Vec<_> = (0..16).map(|i| Pair::from_seed(&[i as u8; 32]).public()).collect();
		assert!(pks.len() <= ring_ctx.max_keyset_size());

		let pair = Pair::from_seed(DEV_SEED);

		// Just pick one index to patch with the actual public key
		let prover_idx = 3;
		pks[prover_idx] = pair.public();

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");
		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], [i1.clone(), i2.clone()]);

		let prover = ring_ctx.prover(&pks, prover_idx).unwrap();
		let signature = pair.ring_vrf_sign(&data, &prover);

		let o10 = pair.make_bytes::<32>(b"ctx1", &i1);
		let o11 = signature.pre_outputs[0].make_bytes::<32>(b"ctx1", &i1);
		assert_eq!(o10, o11);

		let o20 = pair.make_bytes::<48>(b"ctx2", &i2);
		let o21 = signature.pre_outputs[1].make_bytes::<48>(b"ctx2", &i2);
		assert_eq!(o20, o21);
	}

	#[test]
	fn encode_decode_ring_vrf_signature() {
		let ring_ctx = TestRingContext::new_testing();

		let mut pks: Vec<_> = (0..16).map(|i| Pair::from_seed(&[i as u8; 32]).public()).collect();
		assert!(pks.len() <= ring_ctx.max_keyset_size());

		let pair = Pair::from_seed(DEV_SEED);

		// Just pick one...
		let prover_idx = 3;
		pks[prover_idx] = pair.public();

		let i1 = VrfInput::new(b"dom1", b"foo");
		let i2 = VrfInput::new(b"dom2", b"bar");
		let i3 = VrfInput::new(b"dom3", b"baz");

		let data = VrfSignData::new_unchecked(b"mydata", &[b"tdata"], [i1, i2, i3]);

		let prover = ring_ctx.prover(&pks, prover_idx).unwrap();
		let expected = pair.ring_vrf_sign(&data, &prover);

		let bytes = expected.encode();

		let expected_len =
			data.inputs.len() * PREOUT_SERIALIZED_SIZE + RING_SIGNATURE_SERIALIZED_SIZE + 1;
		assert_eq!(bytes.len(), expected_len);

		let decoded = RingVrfSignature::decode(&mut bytes.as_slice()).unwrap();
		assert_eq!(expected, decoded);
	}

	#[test]
	fn encode_decode_ring_vrf_context() {
		let ctx1 = TestRingContext::new_testing();
		let enc1 = ctx1.encode();

		let _ti = <TestRingContext as TypeInfo>::type_info();

		assert_eq!(enc1.len(), ring_context_serialized_size(TEST_DOMAIN_SIZE));
		assert_eq!(enc1.len(), TestRingContext::max_encoded_len());

		let ctx2 = TestRingContext::decode(&mut enc1.as_slice()).unwrap();
		let enc2 = ctx2.encode();

		assert_eq!(enc1, enc2);
	}

	#[test]
	fn encode_decode_verifier_data() {
		let ring_ctx = TestRingContext::new_testing();

		let pks: Vec<_> = (0..16).map(|i| Pair::from_seed(&[i as u8; 32]).public()).collect();
		assert!(pks.len() <= ring_ctx.max_keyset_size());

		let verifier_data = ring_ctx.verifier_data(&pks).unwrap();
		let enc1 = verifier_data.encode();

		assert_eq!(enc1.len(), RING_VERIFIER_DATA_SERIALIZED_SIZE);
		assert_eq!(RingVerifierData::max_encoded_len(), RING_VERIFIER_DATA_SERIALIZED_SIZE);

		let vd2 = RingVerifierData::decode(&mut enc1.as_slice()).unwrap();
		let enc2 = vd2.encode();

		assert_eq!(enc1, enc2);
	}
}