referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]

//! A crate which contains statement-store primitives.

extern crate alloc;

use alloc::vec::Vec;
use codec::{Decode, Encode};
use scale_info::TypeInfo;
use sp_application_crypto::RuntimeAppPublic;
#[cfg(feature = "std")]
use sp_core::Pair;
use sp_runtime_interface::pass_by::PassByCodec;

/// Statement topic.
pub type Topic = [u8; 32];
/// Decryption key identifier.
pub type DecryptionKey = [u8; 32];
/// Statement hash.
pub type Hash = [u8; 32];
/// Block hash.
pub type BlockHash = [u8; 32];
/// Account id
pub type AccountId = [u8; 32];
/// Statement channel.
pub type Channel = [u8; 32];

/// Total number of topic fields allowed.
pub const MAX_TOPICS: usize = 4;

#[cfg(feature = "std")]
pub use store_api::{
	Error, NetworkPriority, Result, StatementSource, StatementStore, SubmitResult,
};

#[cfg(feature = "std")]
mod ecies;
pub mod runtime_api;
#[cfg(feature = "std")]
mod store_api;

mod sr25519 {
	mod app_sr25519 {
		use sp_application_crypto::{app_crypto, key_types::STATEMENT, sr25519};
		app_crypto!(sr25519, STATEMENT);
	}
	pub type Public = app_sr25519::Public;
}

/// Statement-store specific ed25519 crypto primitives.
pub mod ed25519 {
	mod app_ed25519 {
		use sp_application_crypto::{app_crypto, ed25519, key_types::STATEMENT};
		app_crypto!(ed25519, STATEMENT);
	}
	/// Statement-store specific ed25519 public key.
	pub type Public = app_ed25519::Public;
	/// Statement-store specific ed25519 key pair.
	#[cfg(feature = "std")]
	pub type Pair = app_ed25519::Pair;
}

mod ecdsa {
	mod app_ecdsa {
		use sp_application_crypto::{app_crypto, ecdsa, key_types::STATEMENT};
		app_crypto!(ecdsa, STATEMENT);
	}
	pub type Public = app_ecdsa::Public;
}

/// Returns blake2-256 hash for the encoded statement.
#[cfg(feature = "std")]
pub fn hash_encoded(data: &[u8]) -> [u8; 32] {
	sp_crypto_hashing::blake2_256(data)
}

/// Statement proof.
#[derive(Encode, Decode, TypeInfo, sp_core::RuntimeDebug, Clone, PartialEq, Eq)]
pub enum Proof {
	/// Sr25519 Signature.
	Sr25519 {
		/// Signature.
		signature: [u8; 64],
		/// Public key.
		signer: [u8; 32],
	},
	/// Ed25519 Signature.
	Ed25519 {
		/// Signature.
		signature: [u8; 64],
		/// Public key.
		signer: [u8; 32],
	},
	/// Secp256k1 Signature.
	Secp256k1Ecdsa {
		/// Signature.
		signature: [u8; 65],
		/// Public key.
		signer: [u8; 33],
	},
	/// On-chain event proof.
	OnChain {
		/// Account identifier associated with the event.
		who: AccountId,
		/// Hash of block that contains the event.
		block_hash: BlockHash,
		/// Index of the event in the event list.
		event_index: u64,
	},
}

impl Proof {
	/// Return account id for the proof creator.
	pub fn account_id(&self) -> AccountId {
		match self {
			Proof::Sr25519 { signer, .. } => *signer,
			Proof::Ed25519 { signer, .. } => *signer,
			Proof::Secp256k1Ecdsa { signer, .. } =>
				<sp_runtime::traits::BlakeTwo256 as sp_core::Hasher>::hash(signer).into(),
			Proof::OnChain { who, .. } => *who,
		}
	}
}

/// Statement attributes. Each statement is a list of 0 or more fields. Fields may only appear once
/// and in the order declared here.
#[derive(Encode, Decode, TypeInfo, sp_core::RuntimeDebug, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Field {
	/// Statement proof.
	AuthenticityProof(Proof) = 0,
	/// An identifier for the key that `Data` field may be decrypted with.
	DecryptionKey(DecryptionKey) = 1,
	/// Priority when competing with other messages from the same sender.
	Priority(u32) = 2,
	/// Account channel to use. Only one message per `(account, channel)` pair is allowed.
	Channel(Channel) = 3,
	/// First statement topic.
	Topic1(Topic) = 4,
	/// Second statement topic.
	Topic2(Topic) = 5,
	/// Third statement topic.
	Topic3(Topic) = 6,
	/// Fourth statement topic.
	Topic4(Topic) = 7,
	/// Additional data.
	Data(Vec<u8>) = 8,
}

impl Field {
	fn discriminant(&self) -> u8 {
		// This is safe for repr(u8)
		// see https://doc.rust-lang.org/reference/items/enumerations.html#pointer-casting
		unsafe { *(self as *const Self as *const u8) }
	}
}

/// Statement structure.
#[derive(TypeInfo, sp_core::RuntimeDebug, PassByCodec, Clone, PartialEq, Eq, Default)]
pub struct Statement {
	proof: Option<Proof>,
	decryption_key: Option<DecryptionKey>,
	channel: Option<Channel>,
	priority: Option<u32>,
	num_topics: u8,
	topics: [Topic; MAX_TOPICS],
	data: Option<Vec<u8>>,
}

impl Decode for Statement {
	fn decode<I: codec::Input>(input: &mut I) -> core::result::Result<Self, codec::Error> {
		// Encoding matches that of Vec<Field>. Basically this just means accepting that there
		// will be a prefix of vector length.
		let num_fields: codec::Compact<u32> = Decode::decode(input)?;
		let mut tag = 0;
		let mut statement = Statement::new();
		for i in 0..num_fields.into() {
			let field: Field = Decode::decode(input)?;
			if i > 0 && field.discriminant() <= tag {
				return Err("Invalid field order or duplicate fields".into())
			}
			tag = field.discriminant();
			match field {
				Field::AuthenticityProof(p) => statement.set_proof(p),
				Field::DecryptionKey(key) => statement.set_decryption_key(key),
				Field::Priority(p) => statement.set_priority(p),
				Field::Channel(c) => statement.set_channel(c),
				Field::Topic1(t) => statement.set_topic(0, t),
				Field::Topic2(t) => statement.set_topic(1, t),
				Field::Topic3(t) => statement.set_topic(2, t),
				Field::Topic4(t) => statement.set_topic(3, t),
				Field::Data(data) => statement.set_plain_data(data),
			}
		}
		Ok(statement)
	}
}

impl Encode for Statement {
	fn encode(&self) -> Vec<u8> {
		self.encoded(false)
	}
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// Result returned by `Statement::verify_signature`
pub enum SignatureVerificationResult {
	/// Signature is valid and matches this account id.
	Valid(AccountId),
	/// Signature has failed verification.
	Invalid,
	/// No signature in the proof or no proof.
	NoSignature,
}

impl Statement {
	/// Create a new empty statement with no proof.
	pub fn new() -> Statement {
		Default::default()
	}

	/// Create a new statement with a proof.
	pub fn new_with_proof(proof: Proof) -> Statement {
		let mut statement = Self::new();
		statement.set_proof(proof);
		statement
	}

	/// Sign with a key that matches given public key in the keystore.
	///
	/// Returns `true` if signing worked (private key present etc).
	///
	/// NOTE: This can only be called from the runtime.
	pub fn sign_sr25519_public(&mut self, key: &sr25519::Public) -> bool {
		let to_sign = self.signature_material();
		if let Some(signature) = key.sign(&to_sign) {
			let proof = Proof::Sr25519 {
				signature: signature.into_inner().into(),
				signer: key.clone().into_inner().into(),
			};
			self.set_proof(proof);
			true
		} else {
			false
		}
	}

	/// Sign with a given private key and add the signature proof field.
	#[cfg(feature = "std")]
	pub fn sign_sr25519_private(&mut self, key: &sp_core::sr25519::Pair) {
		let to_sign = self.signature_material();
		let proof =
			Proof::Sr25519 { signature: key.sign(&to_sign).into(), signer: key.public().into() };
		self.set_proof(proof);
	}

	/// Sign with a key that matches given public key in the keystore.
	///
	/// Returns `true` if signing worked (private key present etc).
	///
	/// NOTE: This can only be called from the runtime.
	pub fn sign_ed25519_public(&mut self, key: &ed25519::Public) -> bool {
		let to_sign = self.signature_material();
		if let Some(signature) = key.sign(&to_sign) {
			let proof = Proof::Ed25519 {
				signature: signature.into_inner().into(),
				signer: key.clone().into_inner().into(),
			};
			self.set_proof(proof);
			true
		} else {
			false
		}
	}

	/// Sign with a given private key and add the signature proof field.
	#[cfg(feature = "std")]
	pub fn sign_ed25519_private(&mut self, key: &sp_core::ed25519::Pair) {
		let to_sign = self.signature_material();
		let proof =
			Proof::Ed25519 { signature: key.sign(&to_sign).into(), signer: key.public().into() };
		self.set_proof(proof);
	}

	/// Sign with a key that matches given public key in the keystore.
	///
	/// Returns `true` if signing worked (private key present etc).
	///
	/// NOTE: This can only be called from the runtime.
	///
	/// Returns `true` if signing worked (private key present etc).
	///
	/// NOTE: This can only be called from the runtime.
	pub fn sign_ecdsa_public(&mut self, key: &ecdsa::Public) -> bool {
		let to_sign = self.signature_material();
		if let Some(signature) = key.sign(&to_sign) {
			let proof = Proof::Secp256k1Ecdsa {
				signature: signature.into_inner().into(),
				signer: key.clone().into_inner().0,
			};
			self.set_proof(proof);
			true
		} else {
			false
		}
	}

	/// Sign with a given private key and add the signature proof field.
	#[cfg(feature = "std")]
	pub fn sign_ecdsa_private(&mut self, key: &sp_core::ecdsa::Pair) {
		let to_sign = self.signature_material();
		let proof =
			Proof::Secp256k1Ecdsa { signature: key.sign(&to_sign).into(), signer: key.public().0 };
		self.set_proof(proof);
	}

	/// Check proof signature, if any.
	pub fn verify_signature(&self) -> SignatureVerificationResult {
		use sp_runtime::traits::Verify;

		match self.proof() {
			Some(Proof::OnChain { .. }) | None => SignatureVerificationResult::NoSignature,
			Some(Proof::Sr25519 { signature, signer }) => {
				let to_sign = self.signature_material();
				let signature = sp_core::sr25519::Signature::from(*signature);
				let public = sp_core::sr25519::Public::from(*signer);
				if signature.verify(to_sign.as_slice(), &public) {
					SignatureVerificationResult::Valid(*signer)
				} else {
					SignatureVerificationResult::Invalid
				}
			},
			Some(Proof::Ed25519 { signature, signer }) => {
				let to_sign = self.signature_material();
				let signature = sp_core::ed25519::Signature::from(*signature);
				let public = sp_core::ed25519::Public::from(*signer);
				if signature.verify(to_sign.as_slice(), &public) {
					SignatureVerificationResult::Valid(*signer)
				} else {
					SignatureVerificationResult::Invalid
				}
			},
			Some(Proof::Secp256k1Ecdsa { signature, signer }) => {
				let to_sign = self.signature_material();
				let signature = sp_core::ecdsa::Signature::from(*signature);
				let public = sp_core::ecdsa::Public::from(*signer);
				if signature.verify(to_sign.as_slice(), &public) {
					let sender_hash =
						<sp_runtime::traits::BlakeTwo256 as sp_core::Hasher>::hash(signer);
					SignatureVerificationResult::Valid(sender_hash.into())
				} else {
					SignatureVerificationResult::Invalid
				}
			},
		}
	}

	/// Calculate statement hash.
	#[cfg(feature = "std")]
	pub fn hash(&self) -> [u8; 32] {
		self.using_encoded(hash_encoded)
	}

	/// Returns a topic by topic index.
	pub fn topic(&self, index: usize) -> Option<Topic> {
		if index < self.num_topics as usize {
			Some(self.topics[index])
		} else {
			None
		}
	}

	/// Returns decryption key if any.
	pub fn decryption_key(&self) -> Option<DecryptionKey> {
		self.decryption_key
	}

	/// Convert to internal data.
	pub fn into_data(self) -> Option<Vec<u8>> {
		self.data
	}

	/// Get a reference to the statement proof, if any.
	pub fn proof(&self) -> Option<&Proof> {
		self.proof.as_ref()
	}

	/// Get proof account id, if any
	pub fn account_id(&self) -> Option<AccountId> {
		self.proof.as_ref().map(Proof::account_id)
	}

	/// Get plain data.
	pub fn data(&self) -> Option<&Vec<u8>> {
		self.data.as_ref()
	}

	/// Get plain data len.
	pub fn data_len(&self) -> usize {
		self.data().map_or(0, Vec::len)
	}

	/// Get channel, if any.
	pub fn channel(&self) -> Option<Channel> {
		self.channel
	}

	/// Get priority, if any.
	pub fn priority(&self) -> Option<u32> {
		self.priority
	}

	/// Return encoded fields that can be signed to construct or verify a proof
	fn signature_material(&self) -> Vec<u8> {
		self.encoded(true)
	}

	/// Remove the proof of this statement.
	pub fn remove_proof(&mut self) {
		self.proof = None;
	}

	/// Set statement proof. Any existing proof is overwritten.
	pub fn set_proof(&mut self, proof: Proof) {
		self.proof = Some(proof)
	}

	/// Set statement priority.
	pub fn set_priority(&mut self, priority: u32) {
		self.priority = Some(priority)
	}

	/// Set statement channel.
	pub fn set_channel(&mut self, channel: Channel) {
		self.channel = Some(channel)
	}

	/// Set topic by index. Does noting if index is over `MAX_TOPICS`.
	pub fn set_topic(&mut self, index: usize, topic: Topic) {
		if index < MAX_TOPICS {
			self.topics[index] = topic;
			self.num_topics = self.num_topics.max(index as u8 + 1);
		}
	}

	/// Set decryption key.
	pub fn set_decryption_key(&mut self, key: DecryptionKey) {
		self.decryption_key = Some(key);
	}

	/// Set unencrypted statement data.
	pub fn set_plain_data(&mut self, data: Vec<u8>) {
		self.data = Some(data)
	}

	fn encoded(&self, for_signing: bool) -> Vec<u8> {
		// Encoding matches that of Vec<Field>. Basically this just means accepting that there
		// will be a prefix of vector length.
		let num_fields = if !for_signing && self.proof.is_some() { 1 } else { 0 } +
			if self.decryption_key.is_some() { 1 } else { 0 } +
			if self.priority.is_some() { 1 } else { 0 } +
			if self.channel.is_some() { 1 } else { 0 } +
			if self.data.is_some() { 1 } else { 0 } +
			self.num_topics as u32;

		let mut output = Vec::new();
		// When encoding signature payload, the length prefix is omitted.
		// This is so that the signature for encoded statement can potentially be derived without
		// needing to re-encode the statement.
		if !for_signing {
			let compact_len = codec::Compact::<u32>(num_fields);
			compact_len.encode_to(&mut output);

			if let Some(proof) = &self.proof {
				0u8.encode_to(&mut output);
				proof.encode_to(&mut output);
			}
		}
		if let Some(decryption_key) = &self.decryption_key {
			1u8.encode_to(&mut output);
			decryption_key.encode_to(&mut output);
		}
		if let Some(priority) = &self.priority {
			2u8.encode_to(&mut output);
			priority.encode_to(&mut output);
		}
		if let Some(channel) = &self.channel {
			3u8.encode_to(&mut output);
			channel.encode_to(&mut output);
		}
		for t in 0..self.num_topics {
			(4u8 + t).encode_to(&mut output);
			self.topics[t as usize].encode_to(&mut output);
		}
		if let Some(data) = &self.data {
			8u8.encode_to(&mut output);
			data.encode_to(&mut output);
		}
		output
	}

	/// Encrypt give data with given key and store both in the statements.
	#[cfg(feature = "std")]
	pub fn encrypt(
		&mut self,
		data: &[u8],
		key: &sp_core::ed25519::Public,
	) -> core::result::Result<(), ecies::Error> {
		let encrypted = ecies::encrypt_ed25519(key, data)?;
		self.data = Some(encrypted);
		self.decryption_key = Some((*key).into());
		Ok(())
	}

	/// Decrypt data (if any) with the given private key.
	#[cfg(feature = "std")]
	pub fn decrypt_private(
		&self,
		key: &sp_core::ed25519::Pair,
	) -> core::result::Result<Option<Vec<u8>>, ecies::Error> {
		self.data.as_ref().map(|d| ecies::decrypt_ed25519(key, d)).transpose()
	}
}

#[cfg(test)]
mod test {
	use crate::{hash_encoded, Field, Proof, SignatureVerificationResult, Statement};
	use codec::{Decode, Encode};
	use sp_application_crypto::Pair;

	#[test]
	fn statement_encoding_matches_vec() {
		let mut statement = Statement::new();
		assert!(statement.proof().is_none());
		let proof = Proof::OnChain { who: [42u8; 32], block_hash: [24u8; 32], event_index: 66 };

		let decryption_key = [0xde; 32];
		let topic1 = [0x01; 32];
		let topic2 = [0x02; 32];
		let data = vec![55, 99];
		let priority = 999;
		let channel = [0xcc; 32];

		statement.set_proof(proof.clone());
		statement.set_decryption_key(decryption_key);
		statement.set_priority(priority);
		statement.set_channel(channel);
		statement.set_topic(0, topic1);
		statement.set_topic(1, topic2);
		statement.set_plain_data(data.clone());

		statement.set_topic(5, [0x55; 32]);
		assert_eq!(statement.topic(5), None);

		let fields = vec![
			Field::AuthenticityProof(proof.clone()),
			Field::DecryptionKey(decryption_key),
			Field::Priority(priority),
			Field::Channel(channel),
			Field::Topic1(topic1),
			Field::Topic2(topic2),
			Field::Data(data.clone()),
		];

		let encoded = statement.encode();
		assert_eq!(statement.hash(), hash_encoded(&encoded));
		assert_eq!(encoded, fields.encode());

		let decoded = Statement::decode(&mut encoded.as_slice()).unwrap();
		assert_eq!(decoded, statement);
	}

	#[test]
	fn decode_checks_fields() {
		let topic1 = [0x01; 32];
		let topic2 = [0x02; 32];
		let priority = 999;

		let fields = vec![
			Field::Priority(priority),
			Field::Topic1(topic1),
			Field::Topic1(topic1),
			Field::Topic2(topic2),
		]
		.encode();

		assert!(Statement::decode(&mut fields.as_slice()).is_err());

		let fields =
			vec![Field::Topic1(topic1), Field::Priority(priority), Field::Topic2(topic2)].encode();

		assert!(Statement::decode(&mut fields.as_slice()).is_err());
	}

	#[test]
	fn sign_and_verify() {
		let mut statement = Statement::new();
		statement.set_plain_data(vec![42]);

		let sr25519_kp = sp_core::sr25519::Pair::from_string("//Alice", None).unwrap();
		let ed25519_kp = sp_core::ed25519::Pair::from_string("//Alice", None).unwrap();
		let secp256k1_kp = sp_core::ecdsa::Pair::from_string("//Alice", None).unwrap();

		statement.sign_sr25519_private(&sr25519_kp);
		assert_eq!(
			statement.verify_signature(),
			SignatureVerificationResult::Valid(sr25519_kp.public().0)
		);

		statement.sign_ed25519_private(&ed25519_kp);
		assert_eq!(
			statement.verify_signature(),
			SignatureVerificationResult::Valid(ed25519_kp.public().0)
		);

		statement.sign_ecdsa_private(&secp256k1_kp);
		assert_eq!(
			statement.verify_signature(),
			SignatureVerificationResult::Valid(sp_crypto_hashing::blake2_256(
				&secp256k1_kp.public().0
			))
		);

		// set an invalid signature
		statement.set_proof(Proof::Sr25519 { signature: [0u8; 64], signer: [0u8; 32] });
		assert_eq!(statement.verify_signature(), SignatureVerificationResult::Invalid);

		statement.remove_proof();
		assert_eq!(statement.verify_signature(), SignatureVerificationResult::NoSignature);
	}

	#[test]
	fn encrypt_decrypt() {
		let mut statement = Statement::new();
		let (pair, _) = sp_core::ed25519::Pair::generate();
		let plain = b"test data".to_vec();

		//let sr25519_kp = sp_core::sr25519::Pair::from_string("//Alice", None).unwrap();
		statement.encrypt(&plain, &pair.public()).unwrap();
		assert_ne!(plain.as_slice(), statement.data().unwrap().as_slice());

		let decrypted = statement.decrypt_private(&pair).unwrap();
		assert_eq!(decrypted, Some(plain));
	}
}