referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Trie Cache
//!
//! Provides an implementation of the [`TrieCache`](trie_db::TrieCache) trait.
//! The implementation is split into three types [`SharedTrieCache`], [`LocalTrieCache`] and
//! [`TrieCache`]. The [`SharedTrieCache`] is the instance that should be kept around for the entire
//! lifetime of the node. It will store all cached trie nodes and values on a global level. Then
//! there is the [`LocalTrieCache`] that should be kept around per state instance requested from the
//! backend. As there are very likely multiple accesses to the state per instance, this
//! [`LocalTrieCache`] is used to cache the nodes and the values before they are merged back to the
//! shared instance. Last but not least there is the [`TrieCache`] that is being used per access to
//! the state. It will use the [`SharedTrieCache`] and the [`LocalTrieCache`] to fulfill cache
//! requests. If both of them don't provide the requested data it will be inserted into the
//! [`LocalTrieCache`] and then later into the [`SharedTrieCache`].
//!
//! The [`SharedTrieCache`] is bound to some maximum number of bytes. It is ensured that it never
//! runs above this limit. However as long as data is cached inside a [`LocalTrieCache`] it isn't
//! taken into account when limiting the [`SharedTrieCache`]. This means that for the lifetime of a
//! [`LocalTrieCache`] the actual memory usage could be above the allowed maximum.

use crate::{Error, NodeCodec};
use hash_db::Hasher;
use nohash_hasher::BuildNoHashHasher;
use parking_lot::{Mutex, MutexGuard};
use schnellru::LruMap;
use shared_cache::{ValueCacheKey, ValueCacheRef};
use std::{
	collections::HashMap,
	sync::{
		atomic::{AtomicU64, Ordering},
		Arc,
	},
	time::Duration,
};
use trie_db::{node::NodeOwned, CachedValue};

mod shared_cache;

pub use shared_cache::SharedTrieCache;

use self::shared_cache::ValueCacheKeyHash;

const LOG_TARGET: &str = "trie-cache";

/// The maximum amount of time we'll wait trying to acquire the shared cache lock
/// when the local cache is dropped and synchronized with the share cache.
///
/// This is just a failsafe; normally this should never trigger.
const SHARED_CACHE_WRITE_LOCK_TIMEOUT: Duration = Duration::from_millis(100);

/// The maximum number of existing keys in the shared cache that a single local cache
/// can promote to the front of the LRU cache in one go.
///
/// If we have a big shared cache and the local cache hits all of those keys we don't
/// want to spend forever bumping all of them.
const SHARED_NODE_CACHE_MAX_PROMOTED_KEYS: u32 = 1792;
/// Same as [`SHARED_NODE_CACHE_MAX_PROMOTED_KEYS`].
const SHARED_VALUE_CACHE_MAX_PROMOTED_KEYS: u32 = 1792;

/// The maximum portion of the shared cache (in percent) that a single local
/// cache can replace in one go.
///
/// We don't want a single local cache instance to have the ability to replace
/// everything in the shared cache.
const SHARED_NODE_CACHE_MAX_REPLACE_PERCENT: usize = 33;
/// Same as [`SHARED_NODE_CACHE_MAX_REPLACE_PERCENT`].
const SHARED_VALUE_CACHE_MAX_REPLACE_PERCENT: usize = 33;

/// The maximum inline capacity of the local cache, in bytes.
///
/// This is just an upper limit; since the maps are resized in powers of two
/// their actual size will most likely not exactly match this.
const LOCAL_NODE_CACHE_MAX_INLINE_SIZE: usize = 512 * 1024;
/// Same as [`LOCAL_NODE_CACHE_MAX_INLINE_SIZE`].
const LOCAL_VALUE_CACHE_MAX_INLINE_SIZE: usize = 512 * 1024;

/// The maximum size of the memory allocated on the heap by the local cache, in bytes.
///
/// The size of the node cache should always be bigger than the value cache. The value
/// cache is only holding weak references to the actual values found in the nodes and
/// we account for the size of the node as part of the node cache.
const LOCAL_NODE_CACHE_MAX_HEAP_SIZE: usize = 8 * 1024 * 1024;
/// Same as [`LOCAL_NODE_CACHE_MAX_HEAP_SIZE`].
const LOCAL_VALUE_CACHE_MAX_HEAP_SIZE: usize = 2 * 1024 * 1024;

/// The size of the shared cache.
#[derive(Debug, Clone, Copy)]
pub struct CacheSize(usize);

impl CacheSize {
	/// An unlimited cache size.
	pub const fn unlimited() -> Self {
		CacheSize(usize::MAX)
	}

	/// A cache size `bytes` big.
	pub const fn new(bytes: usize) -> Self {
		CacheSize(bytes)
	}
}

/// A limiter for the local node cache. This makes sure the local cache doesn't grow too big.
#[derive(Default)]
pub struct LocalNodeCacheLimiter {
	/// The current size (in bytes) of data allocated by this cache on the heap.
	///
	/// This doesn't include the size of the map itself.
	current_heap_size: usize,
}

impl<H> schnellru::Limiter<H, NodeCached<H>> for LocalNodeCacheLimiter
where
	H: AsRef<[u8]> + std::fmt::Debug,
{
	type KeyToInsert<'a> = H;
	type LinkType = u32;

	#[inline]
	fn is_over_the_limit(&self, length: usize) -> bool {
		// Only enforce the limit if there's more than one element to make sure
		// we can always add a new element to the cache.
		if length <= 1 {
			return false
		}

		self.current_heap_size > LOCAL_NODE_CACHE_MAX_HEAP_SIZE
	}

	#[inline]
	fn on_insert<'a>(
		&mut self,
		_length: usize,
		key: H,
		cached_node: NodeCached<H>,
	) -> Option<(H, NodeCached<H>)> {
		self.current_heap_size += cached_node.heap_size();
		Some((key, cached_node))
	}

	#[inline]
	fn on_replace(
		&mut self,
		_length: usize,
		_old_key: &mut H,
		_new_key: H,
		old_node: &mut NodeCached<H>,
		new_node: &mut NodeCached<H>,
	) -> bool {
		debug_assert_eq!(_old_key.as_ref().len(), _new_key.as_ref().len());
		self.current_heap_size =
			self.current_heap_size + new_node.heap_size() - old_node.heap_size();
		true
	}

	#[inline]
	fn on_removed(&mut self, _key: &mut H, cached_node: &mut NodeCached<H>) {
		self.current_heap_size -= cached_node.heap_size();
	}

	#[inline]
	fn on_cleared(&mut self) {
		self.current_heap_size = 0;
	}

	#[inline]
	fn on_grow(&mut self, new_memory_usage: usize) -> bool {
		new_memory_usage <= LOCAL_NODE_CACHE_MAX_INLINE_SIZE
	}
}

/// A limiter for the local value cache. This makes sure the local cache doesn't grow too big.
#[derive(Default)]
pub struct LocalValueCacheLimiter {
	/// The current size (in bytes) of data allocated by this cache on the heap.
	///
	/// This doesn't include the size of the map itself.
	current_heap_size: usize,
}

impl<H> schnellru::Limiter<ValueCacheKey<H>, CachedValue<H>> for LocalValueCacheLimiter
where
	H: AsRef<[u8]>,
{
	type KeyToInsert<'a> = ValueCacheRef<'a, H>;
	type LinkType = u32;

	#[inline]
	fn is_over_the_limit(&self, length: usize) -> bool {
		// Only enforce the limit if there's more than one element to make sure
		// we can always add a new element to the cache.
		if length <= 1 {
			return false
		}

		self.current_heap_size > LOCAL_VALUE_CACHE_MAX_HEAP_SIZE
	}

	#[inline]
	fn on_insert(
		&mut self,
		_length: usize,
		key: Self::KeyToInsert<'_>,
		value: CachedValue<H>,
	) -> Option<(ValueCacheKey<H>, CachedValue<H>)> {
		self.current_heap_size += key.storage_key.len();
		Some((key.into(), value))
	}

	#[inline]
	fn on_replace(
		&mut self,
		_length: usize,
		_old_key: &mut ValueCacheKey<H>,
		_new_key: ValueCacheRef<H>,
		_old_value: &mut CachedValue<H>,
		_new_value: &mut CachedValue<H>,
	) -> bool {
		debug_assert_eq!(_old_key.storage_key.len(), _new_key.storage_key.len());
		true
	}

	#[inline]
	fn on_removed(&mut self, key: &mut ValueCacheKey<H>, _: &mut CachedValue<H>) {
		self.current_heap_size -= key.storage_key.len();
	}

	#[inline]
	fn on_cleared(&mut self) {
		self.current_heap_size = 0;
	}

	#[inline]
	fn on_grow(&mut self, new_memory_usage: usize) -> bool {
		new_memory_usage <= LOCAL_VALUE_CACHE_MAX_INLINE_SIZE
	}
}

/// A struct to gather hit/miss stats to aid in debugging the performance of the cache.
#[derive(Default)]
struct HitStats {
	shared_hits: AtomicU64,
	shared_fetch_attempts: AtomicU64,
	local_hits: AtomicU64,
	local_fetch_attempts: AtomicU64,
}

impl std::fmt::Display for HitStats {
	fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
		let shared_hits = self.shared_hits.load(Ordering::Relaxed);
		let shared_fetch_attempts = self.shared_fetch_attempts.load(Ordering::Relaxed);
		let local_hits = self.local_hits.load(Ordering::Relaxed);
		let local_fetch_attempts = self.local_fetch_attempts.load(Ordering::Relaxed);
		if shared_fetch_attempts == 0 && local_hits == 0 {
			write!(fmt, "empty")
		} else {
			let percent_local = (local_hits as f32 / local_fetch_attempts as f32) * 100.0;
			let percent_shared = (shared_hits as f32 / shared_fetch_attempts as f32) * 100.0;
			write!(
				fmt,
				"local hit rate = {}% [{}/{}], shared hit rate = {}% [{}/{}]",
				percent_local as u32,
				local_hits,
				local_fetch_attempts,
				percent_shared as u32,
				shared_hits,
				shared_fetch_attempts
			)
		}
	}
}

/// A struct to gather hit/miss stats for the node cache and the value cache.
#[derive(Default)]
struct TrieHitStats {
	node_cache: HitStats,
	value_cache: HitStats,
}

/// An internal struct to store the cached trie nodes.
pub(crate) struct NodeCached<H> {
	/// The cached node.
	pub node: NodeOwned<H>,
	/// Whether this node was fetched from the shared cache or not.
	pub is_from_shared_cache: bool,
}

impl<H> NodeCached<H> {
	/// Returns the number of bytes allocated on the heap by this node.
	fn heap_size(&self) -> usize {
		self.node.size_in_bytes() - std::mem::size_of::<NodeOwned<H>>()
	}
}

type NodeCacheMap<H> = LruMap<H, NodeCached<H>, LocalNodeCacheLimiter, schnellru::RandomState>;

type ValueCacheMap<H> = LruMap<
	ValueCacheKey<H>,
	CachedValue<H>,
	LocalValueCacheLimiter,
	BuildNoHashHasher<ValueCacheKey<H>>,
>;

type ValueAccessSet =
	LruMap<ValueCacheKeyHash, (), schnellru::ByLength, BuildNoHashHasher<ValueCacheKeyHash>>;

/// The local trie cache.
///
/// This cache should be used per state instance created by the backend. One state instance is
/// referring to the state of one block. It will cache all the accesses that are done to the state
/// which could not be fulfilled by the [`SharedTrieCache`]. These locally cached items are merged
/// back to the shared trie cache when this instance is dropped.
///
/// When using [`Self::as_trie_db_cache`] or [`Self::as_trie_db_mut_cache`], it will lock Mutexes.
/// So, it is important that these methods are not called multiple times, because they otherwise
/// deadlock.
pub struct LocalTrieCache<H: Hasher> {
	/// The shared trie cache that created this instance.
	shared: SharedTrieCache<H>,

	/// The local cache for the trie nodes.
	node_cache: Mutex<NodeCacheMap<H::Out>>,

	/// The local cache for the values.
	value_cache: Mutex<ValueCacheMap<H::Out>>,

	/// Keeps track of all values accessed in the shared cache.
	///
	/// This will be used to ensure that these nodes are brought to the front of the lru when this
	/// local instance is merged back to the shared cache. This can actually lead to collision when
	/// two [`ValueCacheKey`]s with different storage roots and keys map to the same hash. However,
	/// as we only use this set to update the lru position it is fine, even if we bring the wrong
	/// value to the top. The important part is that we always get the correct value from the value
	/// cache for a given key.
	shared_value_cache_access: Mutex<ValueAccessSet>,

	stats: TrieHitStats,
}

impl<H: Hasher> LocalTrieCache<H> {
	/// Return self as a [`TrieDB`](trie_db::TrieDB) compatible cache.
	///
	/// The given `storage_root` needs to be the storage root of the trie this cache is used for.
	pub fn as_trie_db_cache(&self, storage_root: H::Out) -> TrieCache<'_, H> {
		let value_cache = ValueCache::ForStorageRoot {
			storage_root,
			local_value_cache: self.value_cache.lock(),
			shared_value_cache_access: self.shared_value_cache_access.lock(),
			buffered_value: None,
		};

		TrieCache {
			shared_cache: self.shared.clone(),
			local_cache: self.node_cache.lock(),
			value_cache,
			stats: &self.stats,
		}
	}

	/// Return self as [`TrieDBMut`](trie_db::TrieDBMut) compatible cache.
	///
	/// After finishing all operations with [`TrieDBMut`](trie_db::TrieDBMut) and having obtained
	/// the new storage root, [`TrieCache::merge_into`] should be called to update this local
	/// cache instance. If the function is not called, cached data is just thrown away and not
	/// propagated to the shared cache. So, accessing these new items will be slower, but nothing
	/// would break because of this.
	pub fn as_trie_db_mut_cache(&self) -> TrieCache<'_, H> {
		TrieCache {
			shared_cache: self.shared.clone(),
			local_cache: self.node_cache.lock(),
			value_cache: ValueCache::Fresh(Default::default()),
			stats: &self.stats,
		}
	}
}

impl<H: Hasher> Drop for LocalTrieCache<H> {
	fn drop(&mut self) {
		tracing::debug!(
			target: LOG_TARGET,
			"Local node trie cache dropped: {}",
			self.stats.node_cache
		);

		tracing::debug!(
			target: LOG_TARGET,
			"Local value trie cache dropped: {}",
			self.stats.value_cache
		);

		let mut shared_inner = match self.shared.write_lock_inner() {
			Some(inner) => inner,
			None => {
				tracing::warn!(
					target: LOG_TARGET,
					"Timeout while trying to acquire a write lock for the shared trie cache"
				);
				return
			},
		};

		shared_inner.node_cache_mut().update(self.node_cache.get_mut().drain());

		shared_inner.value_cache_mut().update(
			self.value_cache.get_mut().drain(),
			self.shared_value_cache_access.get_mut().drain().map(|(key, ())| key),
		);
	}
}

/// The abstraction of the value cache for the [`TrieCache`].
enum ValueCache<'a, H: Hasher> {
	/// The value cache is fresh, aka not yet associated to any storage root.
	/// This is used for example when a new trie is being build, to cache new values.
	Fresh(HashMap<Arc<[u8]>, CachedValue<H::Out>>),
	/// The value cache is already bound to a specific storage root.
	ForStorageRoot {
		shared_value_cache_access: MutexGuard<'a, ValueAccessSet>,
		local_value_cache: MutexGuard<'a, ValueCacheMap<H::Out>>,
		storage_root: H::Out,
		// The shared value cache needs to be temporarily locked when reading from it
		// so we need to clone the value that is returned, but we need to be able to
		// return a reference to the value, so we just buffer it here.
		buffered_value: Option<CachedValue<H::Out>>,
	},
}

impl<H: Hasher> ValueCache<'_, H> {
	/// Get the value for the given `key`.
	fn get(
		&mut self,
		key: &[u8],
		shared_cache: &SharedTrieCache<H>,
		stats: &HitStats,
	) -> Option<&CachedValue<H::Out>> {
		stats.local_fetch_attempts.fetch_add(1, Ordering::Relaxed);

		match self {
			Self::Fresh(map) =>
				if let Some(value) = map.get(key) {
					stats.local_hits.fetch_add(1, Ordering::Relaxed);
					Some(value)
				} else {
					None
				},
			Self::ForStorageRoot {
				local_value_cache,
				shared_value_cache_access,
				storage_root,
				buffered_value,
			} => {
				// We first need to look up in the local cache and then the shared cache.
				// It can happen that some value is cached in the shared cache, but the
				// weak reference of the data can not be upgraded anymore. This for example
				// happens when the node is dropped that contains the strong reference to the data.
				//
				// So, the logic of the trie would lookup the data and the node and store both
				// in our local caches.

				let hash = ValueCacheKey::hash_data(key, storage_root);

				if let Some(value) = local_value_cache
					.peek_by_hash(hash.raw(), |existing_key, _| {
						existing_key.is_eq(storage_root, key)
					}) {
					stats.local_hits.fetch_add(1, Ordering::Relaxed);

					return Some(value)
				}

				stats.shared_fetch_attempts.fetch_add(1, Ordering::Relaxed);
				if let Some(value) = shared_cache.peek_value_by_hash(hash, storage_root, key) {
					stats.shared_hits.fetch_add(1, Ordering::Relaxed);
					shared_value_cache_access.insert(hash, ());
					*buffered_value = Some(value.clone());
					return buffered_value.as_ref()
				}

				None
			},
		}
	}

	/// Insert some new `value` under the given `key`.
	fn insert(&mut self, key: &[u8], value: CachedValue<H::Out>) {
		match self {
			Self::Fresh(map) => {
				map.insert(key.into(), value);
			},
			Self::ForStorageRoot { local_value_cache, storage_root, .. } => {
				local_value_cache.insert(ValueCacheRef::new(key, *storage_root), value);
			},
		}
	}
}

/// The actual [`TrieCache`](trie_db::TrieCache) implementation.
///
/// If this instance was created for using it with a [`TrieDBMut`](trie_db::TrieDBMut), it needs to
/// be merged back into the [`LocalTrieCache`] with [`Self::merge_into`] after all operations are
/// done.
pub struct TrieCache<'a, H: Hasher> {
	shared_cache: SharedTrieCache<H>,
	local_cache: MutexGuard<'a, NodeCacheMap<H::Out>>,
	value_cache: ValueCache<'a, H>,
	stats: &'a TrieHitStats,
}

impl<'a, H: Hasher> TrieCache<'a, H> {
	/// Merge this cache into the given [`LocalTrieCache`].
	///
	/// This function is only required to be called when this instance was created through
	/// [`LocalTrieCache::as_trie_db_mut_cache`], otherwise this method is a no-op. The given
	/// `storage_root` is the new storage root that was obtained after finishing all operations
	/// using the [`TrieDBMut`](trie_db::TrieDBMut).
	pub fn merge_into(self, local: &LocalTrieCache<H>, storage_root: H::Out) {
		let ValueCache::Fresh(cache) = self.value_cache else { return };

		if !cache.is_empty() {
			let mut value_cache = local.value_cache.lock();
			let partial_hash = ValueCacheKey::hash_partial_data(&storage_root);

			cache.into_iter().for_each(|(k, v)| {
				let hash = ValueCacheKeyHash::from_hasher_and_storage_key(partial_hash.clone(), &k);
				let k = ValueCacheRef { storage_root, storage_key: &k, hash };
				value_cache.insert(k, v);
			});
		}
	}
}

impl<'a, H: Hasher> trie_db::TrieCache<NodeCodec<H>> for TrieCache<'a, H> {
	fn get_or_insert_node(
		&mut self,
		hash: H::Out,
		fetch_node: &mut dyn FnMut() -> trie_db::Result<NodeOwned<H::Out>, H::Out, Error<H::Out>>,
	) -> trie_db::Result<&NodeOwned<H::Out>, H::Out, Error<H::Out>> {
		let mut is_local_cache_hit = true;
		self.stats.node_cache.local_fetch_attempts.fetch_add(1, Ordering::Relaxed);

		// First try to grab the node from the local cache.
		let node = self.local_cache.get_or_insert_fallible(hash, || {
			is_local_cache_hit = false;

			// It was not in the local cache; try the shared cache.
			self.stats.node_cache.shared_fetch_attempts.fetch_add(1, Ordering::Relaxed);
			if let Some(node) = self.shared_cache.peek_node(&hash) {
				self.stats.node_cache.shared_hits.fetch_add(1, Ordering::Relaxed);
				tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from shared cache");

				return Ok(NodeCached::<H::Out> { node: node.clone(), is_from_shared_cache: true })
			}

			// It was not in the shared cache; try fetching it from the database.
			match fetch_node() {
				Ok(node) => {
					tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from database");
					Ok(NodeCached::<H::Out> { node, is_from_shared_cache: false })
				},
				Err(error) => {
					tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from database failed");
					Err(error)
				},
			}
		});

		if is_local_cache_hit {
			tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from local cache");
			self.stats.node_cache.local_hits.fetch_add(1, Ordering::Relaxed);
		}

		Ok(&node?
			.expect("you can always insert at least one element into the local cache; qed")
			.node)
	}

	fn get_node(&mut self, hash: &H::Out) -> Option<&NodeOwned<H::Out>> {
		let mut is_local_cache_hit = true;
		self.stats.node_cache.local_fetch_attempts.fetch_add(1, Ordering::Relaxed);

		// First try to grab the node from the local cache.
		let cached_node = self.local_cache.get_or_insert_fallible(*hash, || {
			is_local_cache_hit = false;

			// It was not in the local cache; try the shared cache.
			self.stats.node_cache.shared_fetch_attempts.fetch_add(1, Ordering::Relaxed);
			if let Some(node) = self.shared_cache.peek_node(&hash) {
				self.stats.node_cache.shared_hits.fetch_add(1, Ordering::Relaxed);
				tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from shared cache");

				Ok(NodeCached::<H::Out> { node: node.clone(), is_from_shared_cache: true })
			} else {
				tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from cache failed");

				Err(())
			}
		});

		if is_local_cache_hit {
			tracing::trace!(target: LOG_TARGET, ?hash, "Serving node from local cache");
			self.stats.node_cache.local_hits.fetch_add(1, Ordering::Relaxed);
		}

		match cached_node {
			Ok(Some(cached_node)) => Some(&cached_node.node),
			Ok(None) => {
				unreachable!(
					"you can always insert at least one element into the local cache; qed"
				);
			},
			Err(()) => None,
		}
	}

	fn lookup_value_for_key(&mut self, key: &[u8]) -> Option<&CachedValue<H::Out>> {
		let res = self.value_cache.get(key, &self.shared_cache, &self.stats.value_cache);

		tracing::trace!(
			target: LOG_TARGET,
			key = ?sp_core::hexdisplay::HexDisplay::from(&key),
			found = res.is_some(),
			"Looked up value for key",
		);

		res
	}

	fn cache_value_for_key(&mut self, key: &[u8], data: CachedValue<H::Out>) {
		tracing::trace!(
			target: LOG_TARGET,
			key = ?sp_core::hexdisplay::HexDisplay::from(&key),
			"Caching value for key",
		);

		self.value_cache.insert(key, data);
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use trie_db::{Bytes, Trie, TrieDBBuilder, TrieDBMutBuilder, TrieHash, TrieMut};

	type MemoryDB = crate::MemoryDB<sp_core::Blake2Hasher>;
	type Layout = crate::LayoutV1<sp_core::Blake2Hasher>;
	type Cache = super::SharedTrieCache<sp_core::Blake2Hasher>;
	type Recorder = crate::recorder::Recorder<sp_core::Blake2Hasher>;

	const TEST_DATA: &[(&[u8], &[u8])] =
		&[(b"key1", b"val1"), (b"key2", &[2; 64]), (b"key3", b"val3"), (b"key4", &[4; 64])];
	const CACHE_SIZE_RAW: usize = 1024 * 10;
	const CACHE_SIZE: CacheSize = CacheSize::new(CACHE_SIZE_RAW);

	fn create_trie() -> (MemoryDB, TrieHash<Layout>) {
		let mut db = MemoryDB::default();
		let mut root = Default::default();

		{
			let mut trie = TrieDBMutBuilder::<Layout>::new(&mut db, &mut root).build();
			for (k, v) in TEST_DATA {
				trie.insert(k, v).expect("Inserts data");
			}
		}

		(db, root)
	}

	#[test]
	fn basic_cache_works() {
		let (db, root) = create_trie();

		let shared_cache = Cache::new(CACHE_SIZE);
		let local_cache = shared_cache.local_cache();

		{
			let mut cache = local_cache.as_trie_db_cache(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root).with_cache(&mut cache).build();
			assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
		}

		// Local cache wasn't dropped yet, so there should nothing in the shared caches.
		assert!(shared_cache.read_lock_inner().value_cache().lru.is_empty());
		assert!(shared_cache.read_lock_inner().node_cache().lru.is_empty());

		drop(local_cache);

		// Now we should have the cached items in the shared cache.
		assert!(shared_cache.read_lock_inner().node_cache().lru.len() >= 1);
		let cached_data = shared_cache
			.read_lock_inner()
			.value_cache()
			.lru
			.peek(&ValueCacheKey::new_value(TEST_DATA[0].0, root))
			.unwrap()
			.clone();
		assert_eq!(Bytes::from(TEST_DATA[0].1.to_vec()), cached_data.data().flatten().unwrap());

		let fake_data = Bytes::from(&b"fake_data"[..]);

		let local_cache = shared_cache.local_cache();
		shared_cache.write_lock_inner().unwrap().value_cache_mut().lru.insert(
			ValueCacheKey::new_value(TEST_DATA[1].0, root),
			(fake_data.clone(), Default::default()).into(),
		);

		{
			let mut cache = local_cache.as_trie_db_cache(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root).with_cache(&mut cache).build();

			// We should now get the "fake_data", because we inserted this manually to the cache.
			assert_eq!(b"fake_data".to_vec(), trie.get(TEST_DATA[1].0).unwrap().unwrap());
		}
	}

	#[test]
	fn trie_db_mut_cache_works() {
		let (mut db, root) = create_trie();

		let new_key = b"new_key".to_vec();
		// Use some long value to not have it inlined
		let new_value = vec![23; 64];

		let shared_cache = Cache::new(CACHE_SIZE);
		let mut new_root = root;

		{
			let local_cache = shared_cache.local_cache();

			let mut cache = local_cache.as_trie_db_mut_cache();

			{
				let mut trie = TrieDBMutBuilder::<Layout>::from_existing(&mut db, &mut new_root)
					.with_cache(&mut cache)
					.build();

				trie.insert(&new_key, &new_value).unwrap();
			}

			cache.merge_into(&local_cache, new_root);
		}

		// After the local cache is dropped, all changes should have been merged back to the shared
		// cache.
		let cached_data = shared_cache
			.read_lock_inner()
			.value_cache()
			.lru
			.peek(&ValueCacheKey::new_value(new_key, new_root))
			.unwrap()
			.clone();
		assert_eq!(Bytes::from(new_value), cached_data.data().flatten().unwrap());
	}

	#[test]
	fn trie_db_cache_and_recorder_work_together() {
		let (db, root) = create_trie();

		let shared_cache = Cache::new(CACHE_SIZE);

		for i in 0..5 {
			// Clear some of the caches.
			if i == 2 {
				shared_cache.reset_node_cache();
			} else if i == 3 {
				shared_cache.reset_value_cache();
			}

			let local_cache = shared_cache.local_cache();
			let recorder = Recorder::default();

			{
				let mut cache = local_cache.as_trie_db_cache(root);
				let mut recorder = recorder.as_trie_recorder(root);
				let trie = TrieDBBuilder::<Layout>::new(&db, &root)
					.with_cache(&mut cache)
					.with_recorder(&mut recorder)
					.build();

				for (key, value) in TEST_DATA {
					assert_eq!(*value, trie.get(&key).unwrap().unwrap());
				}
			}

			let storage_proof = recorder.drain_storage_proof();
			let memory_db: MemoryDB = storage_proof.into_memory_db();

			{
				let trie = TrieDBBuilder::<Layout>::new(&memory_db, &root).build();

				for (key, value) in TEST_DATA {
					assert_eq!(*value, trie.get(&key).unwrap().unwrap());
				}
			}
		}
	}

	#[test]
	fn trie_db_mut_cache_and_recorder_work_together() {
		const DATA_TO_ADD: &[(&[u8], &[u8])] = &[(b"key11", &[45; 78]), (b"key33", &[78; 89])];

		let (db, root) = create_trie();

		let shared_cache = Cache::new(CACHE_SIZE);

		// Run this twice so that we use the data cache in the second run.
		for i in 0..5 {
			// Clear some of the caches.
			if i == 2 {
				shared_cache.reset_node_cache();
			} else if i == 3 {
				shared_cache.reset_value_cache();
			}

			let recorder = Recorder::default();
			let local_cache = shared_cache.local_cache();
			let mut new_root = root;

			{
				let mut db = db.clone();
				let mut cache = local_cache.as_trie_db_cache(root);
				let mut recorder = recorder.as_trie_recorder(root);
				let mut trie = TrieDBMutBuilder::<Layout>::from_existing(&mut db, &mut new_root)
					.with_cache(&mut cache)
					.with_recorder(&mut recorder)
					.build();

				for (key, value) in DATA_TO_ADD {
					trie.insert(key, value).unwrap();
				}
			}

			let storage_proof = recorder.drain_storage_proof();
			let mut memory_db: MemoryDB = storage_proof.into_memory_db();
			let mut proof_root = root;

			{
				let mut trie =
					TrieDBMutBuilder::<Layout>::from_existing(&mut memory_db, &mut proof_root)
						.build();

				for (key, value) in DATA_TO_ADD {
					trie.insert(key, value).unwrap();
				}
			}

			assert_eq!(new_root, proof_root)
		}
	}

	#[test]
	fn cache_lru_works() {
		let (db, root) = create_trie();

		let shared_cache = Cache::new(CACHE_SIZE);

		{
			let local_cache = shared_cache.local_cache();

			let mut cache = local_cache.as_trie_db_cache(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root).with_cache(&mut cache).build();

			for (k, _) in TEST_DATA {
				trie.get(k).unwrap().unwrap();
			}
		}

		// Check that all items are there.
		assert!(shared_cache
			.read_lock_inner()
			.value_cache()
			.lru
			.iter()
			.map(|d| d.0)
			.all(|l| TEST_DATA.iter().any(|d| &*l.storage_key == d.0)));

		// Run this in a loop. The first time we check that with the filled value cache,
		// the expected values are at the top of the LRU.
		// The second run is using an empty value cache to ensure that we access the nodes.
		for _ in 0..2 {
			{
				let local_cache = shared_cache.local_cache();

				let mut cache = local_cache.as_trie_db_cache(root);
				let trie = TrieDBBuilder::<Layout>::new(&db, &root).with_cache(&mut cache).build();

				for (k, _) in TEST_DATA.iter().take(2) {
					trie.get(k).unwrap().unwrap();
				}
			}

			// Ensure that the accessed items are most recently used items of the shared value
			// cache.
			assert!(shared_cache
				.read_lock_inner()
				.value_cache()
				.lru
				.iter()
				.take(2)
				.map(|d| d.0)
				.all(|l| { TEST_DATA.iter().take(2).any(|d| &*l.storage_key == d.0) }));

			// Delete the value cache, so that we access the nodes.
			shared_cache.reset_value_cache();
		}

		let most_recently_used_nodes = shared_cache
			.read_lock_inner()
			.node_cache()
			.lru
			.iter()
			.map(|d| *d.0)
			.collect::<Vec<_>>();

		{
			let local_cache = shared_cache.local_cache();

			let mut cache = local_cache.as_trie_db_cache(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root).with_cache(&mut cache).build();

			for (k, _) in TEST_DATA.iter().skip(2) {
				trie.get(k).unwrap().unwrap();
			}
		}

		// Ensure that the most recently used nodes changed as well.
		assert_ne!(
			most_recently_used_nodes,
			shared_cache
				.read_lock_inner()
				.node_cache()
				.lru
				.iter()
				.map(|d| *d.0)
				.collect::<Vec<_>>()
		);
	}

	#[test]
	fn cache_respects_bounds() {
		let (mut db, root) = create_trie();

		let shared_cache = Cache::new(CACHE_SIZE);
		{
			let local_cache = shared_cache.local_cache();

			let mut new_root = root;

			{
				let mut cache = local_cache.as_trie_db_cache(root);
				{
					let mut trie =
						TrieDBMutBuilder::<Layout>::from_existing(&mut db, &mut new_root)
							.with_cache(&mut cache)
							.build();

					let value = vec![10u8; 100];
					// Ensure we add enough data that would overflow the cache.
					for i in 0..CACHE_SIZE_RAW / 100 * 2 {
						trie.insert(format!("key{}", i).as_bytes(), &value).unwrap();
					}
				}

				cache.merge_into(&local_cache, new_root);
			}
		}

		assert!(shared_cache.used_memory_size() < CACHE_SIZE_RAW);
	}
}