1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Primitives for transaction weighting.
#![cfg_attr(not(feature = "std"), no_std)]
extern crate self as sp_weights;
mod weight_meter;
mod weight_v2;
use bounded_collections::Get;
use codec::{Decode, Encode};
use scale_info::TypeInfo;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use smallvec::SmallVec;
use sp_arithmetic::{
traits::{BaseArithmetic, SaturatedConversion, Unsigned},
Perbill,
};
use sp_debug_derive::RuntimeDebug;
pub use weight_meter::*;
pub use weight_v2::*;
pub mod constants {
pub const WEIGHT_REF_TIME_PER_SECOND: u64 = 1_000_000_000_000;
pub const WEIGHT_REF_TIME_PER_MILLIS: u64 = 1_000_000_000;
pub const WEIGHT_REF_TIME_PER_MICROS: u64 = 1_000_000;
pub const WEIGHT_REF_TIME_PER_NANOS: u64 = 1_000;
pub const WEIGHT_PROOF_SIZE_PER_MB: u64 = 1024 * 1024;
pub const WEIGHT_PROOF_SIZE_PER_KB: u64 = 1024;
}
/// The weight of database operations that the runtime can invoke.
///
/// NOTE: This is currently only measured in computational time, and will probably
/// be updated all together once proof size is accounted for.
#[derive(Clone, Copy, Eq, PartialEq, Default, RuntimeDebug, Encode, Decode, TypeInfo)]
pub struct RuntimeDbWeight {
pub read: u64,
pub write: u64,
}
impl RuntimeDbWeight {
pub fn reads(self, r: u64) -> Weight {
Weight::from_parts(self.read.saturating_mul(r), 0)
}
pub fn writes(self, w: u64) -> Weight {
Weight::from_parts(self.write.saturating_mul(w), 0)
}
pub fn reads_writes(self, r: u64, w: u64) -> Weight {
let read_weight = self.read.saturating_mul(r);
let write_weight = self.write.saturating_mul(w);
Weight::from_parts(read_weight.saturating_add(write_weight), 0)
}
}
/// One coefficient and its position in the `WeightToFee`.
///
/// One term of polynomial is calculated as:
///
/// ```ignore
/// coeff_integer * x^(degree) + coeff_frac * x^(degree)
/// ```
///
/// The `negative` value encodes whether the term is added or subtracted from the
/// overall polynomial result.
#[derive(Clone, Encode, Decode, TypeInfo)]
pub struct WeightToFeeCoefficient<Balance> {
/// The integral part of the coefficient.
pub coeff_integer: Balance,
/// The fractional part of the coefficient.
pub coeff_frac: Perbill,
/// True iff the coefficient should be interpreted as negative.
pub negative: bool,
/// Degree/exponent of the term.
pub degree: u8,
}
impl<Balance> WeightToFeeCoefficient<Balance>
where
Balance: BaseArithmetic + From<u32> + Copy + Unsigned,
{
/// Evaluate the term at `x` and saturatingly amalgamate into `result`.
///
/// The unsigned value for the term is calculated as:
/// ```ignore
/// (frac * x^(degree) + integer * x^(degree))
/// ```
/// Depending on the value of `negative`, it is added or subtracted from the `result`.
pub fn saturating_eval(&self, mut result: Balance, x: Balance) -> Balance {
let power = x.saturating_pow(self.degree.into());
let frac = self.coeff_frac * power; // Overflow safe.
let integer = self.coeff_integer.saturating_mul(power);
// Do not add them together here to avoid an underflow.
if self.negative {
result = result.saturating_sub(frac);
result = result.saturating_sub(integer);
} else {
result = result.saturating_add(frac);
result = result.saturating_add(integer);
}
result
}
}
/// A list of coefficients that represent a polynomial.
pub type WeightToFeeCoefficients<T> = SmallVec<[WeightToFeeCoefficient<T>; 4]>;
/// A list of coefficients that represent a polynomial.
///
/// Can be [eval](Self::eval)uated at a specific `u64` to get the fee. The evaluations happens by
/// summing up all term [results](`WeightToFeeCoefficient::saturating_eval`). The order of the
/// coefficients matters since it uses saturating arithmetic. This struct does therefore not model a
/// polynomial in the mathematical sense (polynomial ring).
///
/// For visualization purposes, the formulas of the unsigned terms look like:
///
/// ```ignore
/// (c[0].frac * x^(c[0].degree) + c[0].integer * x^(c[0].degree))
/// (c[1].frac * x^(c[1].degree) + c[1].integer * x^(c[1].degree))
/// ...
/// ```
/// Depending on the value of `c[i].negative`, each term is added or subtracted from the result.
/// The result is initialized as zero.
pub struct FeePolynomial<Balance> {
coefficients: SmallVec<[WeightToFeeCoefficient<Balance>; 4]>,
}
impl<Balance> From<WeightToFeeCoefficients<Balance>> for FeePolynomial<Balance> {
fn from(coefficients: WeightToFeeCoefficients<Balance>) -> Self {
Self { coefficients }
}
}
impl<Balance> FeePolynomial<Balance>
where
Balance: BaseArithmetic + From<u32> + Copy + Unsigned,
{
/// Evaluate the polynomial at a specific `x`.
pub fn eval(&self, x: u64) -> Balance {
self.coefficients.iter().fold(Balance::zero(), |acc, term| {
term.saturating_eval(acc, Balance::saturated_from(x))
})
}
}
/// A trait that describes the weight to fee calculation.
pub trait WeightToFee {
/// The type that is returned as result from calculation.
type Balance: BaseArithmetic + From<u32> + Copy + Unsigned;
/// Calculates the fee from the passed `weight`.
fn weight_to_fee(weight: &Weight) -> Self::Balance;
}
/// A trait that describes the weight to fee calculation as polynomial.
///
/// An implementor should only implement the `polynomial` function.
pub trait WeightToFeePolynomial {
/// The type that is returned as result from polynomial evaluation.
type Balance: BaseArithmetic + From<u32> + Copy + Unsigned;
/// Returns a polynomial that describes the weight to fee conversion.
///
/// This is the only function that should be manually implemented. Please note
/// that all calculation is done in the probably unsigned `Balance` type. This means
/// that the order of coefficients is important as putting the negative coefficients
/// first will most likely saturate the result to zero mid evaluation.
fn polynomial() -> WeightToFeeCoefficients<Self::Balance>;
}
impl<T> WeightToFee for T
where
T: WeightToFeePolynomial,
{
type Balance = <Self as WeightToFeePolynomial>::Balance;
/// Calculates the fee from the passed `weight` according to the `polynomial`.
///
/// This should not be overridden in most circumstances. Calculation is done in the
/// `Balance` type and never overflows. All evaluation is saturating.
fn weight_to_fee(weight: &Weight) -> Self::Balance {
let poly: FeePolynomial<Self::Balance> = Self::polynomial().into();
poly.eval(weight.ref_time())
}
}
/// Implementor of `WeightToFee` that maps one unit of weight to one unit of fee.
pub struct IdentityFee<T>(core::marker::PhantomData<T>);
impl<T> WeightToFee for IdentityFee<T>
where
T: BaseArithmetic + From<u32> + Copy + Unsigned,
{
type Balance = T;
fn weight_to_fee(weight: &Weight) -> Self::Balance {
Self::Balance::saturated_from(weight.ref_time())
}
}
/// Implementor of [`WeightToFee`] such that it maps any unit of weight to a fixed fee.
pub struct FixedFee<const F: u32, T>(core::marker::PhantomData<T>);
impl<const F: u32, T> WeightToFee for FixedFee<F, T>
where
T: BaseArithmetic + From<u32> + Copy + Unsigned,
{
type Balance = T;
fn weight_to_fee(_: &Weight) -> Self::Balance {
F.into()
}
}
/// An implementation of [`WeightToFee`] that collects no fee.
pub type NoFee<T> = FixedFee<0, T>;
/// Implementor of [`WeightToFee`] that uses a constant multiplier.
///
/// # Example
///
/// ```
/// # use bounded_collections::ConstU128;
/// # use sp_weights::ConstantMultiplier;
/// // Results in a multiplier of 10 for each unit of weight (or length)
/// type LengthToFee = ConstantMultiplier::<u128, ConstU128<10u128>>;
/// ```
pub struct ConstantMultiplier<T, M>(core::marker::PhantomData<(T, M)>);
impl<T, M> WeightToFee for ConstantMultiplier<T, M>
where
T: BaseArithmetic + From<u32> + Copy + Unsigned,
M: Get<T>,
{
type Balance = T;
fn weight_to_fee(weight: &Weight) -> Self::Balance {
Self::Balance::saturated_from(weight.ref_time()).saturating_mul(M::get())
}
}
#[cfg(test)]
#[allow(dead_code)]
mod tests {
use super::*;
use smallvec::smallvec;
type Balance = u64;
// 0.5x^3 + 2.333x^2 + 7x - 10_000
struct Poly;
impl WeightToFeePolynomial for Poly {
type Balance = Balance;
fn polynomial() -> WeightToFeeCoefficients<Self::Balance> {
smallvec![
WeightToFeeCoefficient {
coeff_integer: 0,
coeff_frac: Perbill::from_float(0.5),
negative: false,
degree: 3
},
WeightToFeeCoefficient {
coeff_integer: 2,
coeff_frac: Perbill::from_rational(1u32, 3u32),
negative: false,
degree: 2
},
WeightToFeeCoefficient {
coeff_integer: 7,
coeff_frac: Perbill::zero(),
negative: false,
degree: 1
},
WeightToFeeCoefficient {
coeff_integer: 10_000,
coeff_frac: Perbill::zero(),
negative: true,
degree: 0
},
]
}
}
#[test]
fn polynomial_works() {
// 100^3/2=500000 100^2*(2+1/3)=23333 700 -10000
assert_eq!(Poly::weight_to_fee(&Weight::from_parts(100, 0)), 514033);
// 10123^3/2=518677865433 10123^2*(2+1/3)=239108634 70861 -10000
assert_eq!(Poly::weight_to_fee(&Weight::from_parts(10_123, 0)), 518917034928);
}
#[test]
fn polynomial_does_not_underflow() {
assert_eq!(Poly::weight_to_fee(&Weight::zero()), 0);
assert_eq!(Poly::weight_to_fee(&Weight::from_parts(10, 0)), 0);
}
#[test]
fn polynomial_does_not_overflow() {
assert_eq!(Poly::weight_to_fee(&Weight::MAX), Balance::max_value() - 10_000);
}
#[test]
fn identity_fee_works() {
assert_eq!(IdentityFee::<Balance>::weight_to_fee(&Weight::zero()), 0);
assert_eq!(IdentityFee::<Balance>::weight_to_fee(&Weight::from_parts(50, 0)), 50);
assert_eq!(IdentityFee::<Balance>::weight_to_fee(&Weight::MAX), Balance::max_value());
}
#[test]
fn constant_fee_works() {
use bounded_collections::ConstU128;
assert_eq!(
ConstantMultiplier::<u128, ConstU128<100u128>>::weight_to_fee(&Weight::zero()),
0
);
assert_eq!(
ConstantMultiplier::<u128, ConstU128<10u128>>::weight_to_fee(&Weight::from_parts(
50, 0
)),
500
);
assert_eq!(
ConstantMultiplier::<u128, ConstU128<1024u128>>::weight_to_fee(&Weight::from_parts(
16, 0
)),
16384
);
assert_eq!(
ConstantMultiplier::<u128, ConstU128<{ u128::MAX }>>::weight_to_fee(
&Weight::from_parts(2, 0)
),
u128::MAX
);
}
}