referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Cross-Consensus Message format asset data structures.
//!
//! This encompasses four types for representing assets:
//! - `Asset`: A description of a single asset, either an instance of a non-fungible or some amount
//!   of a fungible.
//! - `Assets`: A collection of `Asset`s. These are stored in a `Vec` and sorted with fungibles
//!   first.
//! - `Wild`: A single asset wildcard, this can either be "all" assets, or all assets of a specific
//!   kind.
//! - `AssetFilter`: A combination of `Wild` and `Assets` designed for efficiently filtering an XCM
//!   holding account.

use super::{InteriorLocation, Location, Reanchorable};
use crate::{
	v3::{
		AssetId as OldAssetId, AssetInstance as OldAssetInstance, Fungibility as OldFungibility,
		MultiAsset as OldAsset, MultiAssetFilter as OldAssetFilter, MultiAssets as OldAssets,
		WildFungibility as OldWildFungibility, WildMultiAsset as OldWildAsset,
	},
	v5::{
		Asset as NewAsset, AssetFilter as NewAssetFilter, AssetId as NewAssetId,
		AssetInstance as NewAssetInstance, Assets as NewAssets, Fungibility as NewFungibility,
		WildAsset as NewWildAsset, WildFungibility as NewWildFungibility,
	},
};
use alloc::{vec, vec::Vec};
use bounded_collections::{BoundedVec, ConstU32};
use codec::{self as codec, Decode, Encode, MaxEncodedLen};
use core::cmp::Ordering;
use scale_info::TypeInfo;

/// A general identifier for an instance of a non-fungible asset class.
#[derive(
	Copy,
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Encode,
	Decode,
	Debug,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub enum AssetInstance {
	/// Undefined - used if the non-fungible asset class has only one instance.
	Undefined,

	/// A compact index. Technically this could be greater than `u128`, but this implementation
	/// supports only values up to `2**128 - 1`.
	Index(#[codec(compact)] u128),

	/// A 4-byte fixed-length datum.
	Array4([u8; 4]),

	/// An 8-byte fixed-length datum.
	Array8([u8; 8]),

	/// A 16-byte fixed-length datum.
	Array16([u8; 16]),

	/// A 32-byte fixed-length datum.
	Array32([u8; 32]),
}

impl TryFrom<OldAssetInstance> for AssetInstance {
	type Error = ();
	fn try_from(value: OldAssetInstance) -> Result<Self, Self::Error> {
		use OldAssetInstance::*;
		Ok(match value {
			Undefined => Self::Undefined,
			Index(n) => Self::Index(n),
			Array4(n) => Self::Array4(n),
			Array8(n) => Self::Array8(n),
			Array16(n) => Self::Array16(n),
			Array32(n) => Self::Array32(n),
		})
	}
}

impl TryFrom<NewAssetInstance> for AssetInstance {
	type Error = ();
	fn try_from(value: NewAssetInstance) -> Result<Self, Self::Error> {
		use NewAssetInstance::*;
		Ok(match value {
			Undefined => Self::Undefined,
			Index(n) => Self::Index(n),
			Array4(n) => Self::Array4(n),
			Array8(n) => Self::Array8(n),
			Array16(n) => Self::Array16(n),
			Array32(n) => Self::Array32(n),
		})
	}
}

impl From<()> for AssetInstance {
	fn from(_: ()) -> Self {
		Self::Undefined
	}
}

impl From<[u8; 4]> for AssetInstance {
	fn from(x: [u8; 4]) -> Self {
		Self::Array4(x)
	}
}

impl From<[u8; 8]> for AssetInstance {
	fn from(x: [u8; 8]) -> Self {
		Self::Array8(x)
	}
}

impl From<[u8; 16]> for AssetInstance {
	fn from(x: [u8; 16]) -> Self {
		Self::Array16(x)
	}
}

impl From<[u8; 32]> for AssetInstance {
	fn from(x: [u8; 32]) -> Self {
		Self::Array32(x)
	}
}

impl From<u8> for AssetInstance {
	fn from(x: u8) -> Self {
		Self::Index(x as u128)
	}
}

impl From<u16> for AssetInstance {
	fn from(x: u16) -> Self {
		Self::Index(x as u128)
	}
}

impl From<u32> for AssetInstance {
	fn from(x: u32) -> Self {
		Self::Index(x as u128)
	}
}

impl From<u64> for AssetInstance {
	fn from(x: u64) -> Self {
		Self::Index(x as u128)
	}
}

impl TryFrom<AssetInstance> for () {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Undefined => Ok(()),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for [u8; 4] {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Array4(x) => Ok(x),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for [u8; 8] {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Array8(x) => Ok(x),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for [u8; 16] {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Array16(x) => Ok(x),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for [u8; 32] {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Array32(x) => Ok(x),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for u8 {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Index(x) => x.try_into().map_err(|_| ()),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for u16 {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Index(x) => x.try_into().map_err(|_| ()),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for u32 {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Index(x) => x.try_into().map_err(|_| ()),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for u64 {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Index(x) => x.try_into().map_err(|_| ()),
			_ => Err(()),
		}
	}
}

impl TryFrom<AssetInstance> for u128 {
	type Error = ();
	fn try_from(x: AssetInstance) -> Result<Self, ()> {
		match x {
			AssetInstance::Index(x) => Ok(x),
			_ => Err(()),
		}
	}
}

impl TryFrom<NewFungibility> for Fungibility {
	type Error = ();
	fn try_from(value: NewFungibility) -> Result<Self, Self::Error> {
		use NewFungibility::*;
		Ok(match value {
			Fungible(n) => Self::Fungible(n),
			NonFungible(i) => Self::NonFungible(i.try_into()?),
		})
	}
}

/// Classification of whether an asset is fungible or not, along with a mandatory amount or
/// instance.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Debug,
	Encode,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub enum Fungibility {
	/// A fungible asset; we record a number of units, as a `u128` in the inner item.
	Fungible(#[codec(compact)] u128),
	/// A non-fungible asset. We record the instance identifier in the inner item. Only one asset
	/// of each instance identifier may ever be in existence at once.
	NonFungible(AssetInstance),
}

#[derive(Decode)]
enum UncheckedFungibility {
	Fungible(#[codec(compact)] u128),
	NonFungible(AssetInstance),
}

impl Decode for Fungibility {
	fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
		match UncheckedFungibility::decode(input)? {
			UncheckedFungibility::Fungible(a) if a != 0 => Ok(Self::Fungible(a)),
			UncheckedFungibility::NonFungible(i) => Ok(Self::NonFungible(i)),
			UncheckedFungibility::Fungible(_) =>
				Err("Fungible asset of zero amount is not allowed".into()),
		}
	}
}

impl Fungibility {
	pub fn is_kind(&self, w: WildFungibility) -> bool {
		use Fungibility::*;
		use WildFungibility::{Fungible as WildFungible, NonFungible as WildNonFungible};
		matches!((self, w), (Fungible(_), WildFungible) | (NonFungible(_), WildNonFungible))
	}
}

impl From<i32> for Fungibility {
	fn from(amount: i32) -> Fungibility {
		debug_assert_ne!(amount, 0);
		Fungibility::Fungible(amount as u128)
	}
}

impl From<u128> for Fungibility {
	fn from(amount: u128) -> Fungibility {
		debug_assert_ne!(amount, 0);
		Fungibility::Fungible(amount)
	}
}

impl<T: Into<AssetInstance>> From<T> for Fungibility {
	fn from(instance: T) -> Fungibility {
		Fungibility::NonFungible(instance.into())
	}
}

impl TryFrom<OldFungibility> for Fungibility {
	type Error = ();
	fn try_from(value: OldFungibility) -> Result<Self, Self::Error> {
		use OldFungibility::*;
		Ok(match value {
			Fungible(n) => Self::Fungible(n),
			NonFungible(i) => Self::NonFungible(i.try_into()?),
		})
	}
}

/// Classification of whether an asset is fungible or not.
#[derive(
	Copy,
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Debug,
	Encode,
	Decode,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub enum WildFungibility {
	/// The asset is fungible.
	Fungible,
	/// The asset is not fungible.
	NonFungible,
}

impl TryFrom<OldWildFungibility> for WildFungibility {
	type Error = ();
	fn try_from(value: OldWildFungibility) -> Result<Self, Self::Error> {
		use OldWildFungibility::*;
		Ok(match value {
			Fungible => Self::Fungible,
			NonFungible => Self::NonFungible,
		})
	}
}

impl TryFrom<NewWildFungibility> for WildFungibility {
	type Error = ();
	fn try_from(value: NewWildFungibility) -> Result<Self, Self::Error> {
		use NewWildFungibility::*;
		Ok(match value {
			Fungible => Self::Fungible,
			NonFungible => Self::NonFungible,
		})
	}
}

/// Location to identify an asset.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Debug,
	Encode,
	Decode,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub struct AssetId(pub Location);

impl<T: Into<Location>> From<T> for AssetId {
	fn from(x: T) -> Self {
		Self(x.into())
	}
}

impl TryFrom<OldAssetId> for AssetId {
	type Error = ();
	fn try_from(old: OldAssetId) -> Result<Self, ()> {
		use OldAssetId::*;
		Ok(match old {
			Concrete(l) => Self(l.try_into()?),
			Abstract(_) => return Err(()),
		})
	}
}

impl TryFrom<NewAssetId> for AssetId {
	type Error = ();
	fn try_from(new: NewAssetId) -> Result<Self, Self::Error> {
		Ok(Self(new.0.try_into()?))
	}
}

impl AssetId {
	/// Prepend a `Location` to an asset id, giving it a new root location.
	pub fn prepend_with(&mut self, prepend: &Location) -> Result<(), ()> {
		self.0.prepend_with(prepend.clone()).map_err(|_| ())?;
		Ok(())
	}

	/// Use the value of `self` along with a `fun` fungibility specifier to create the corresponding
	/// `Asset` value.
	pub fn into_asset(self, fun: Fungibility) -> Asset {
		Asset { fun, id: self }
	}

	/// Use the value of `self` along with a `fun` fungibility specifier to create the corresponding
	/// `WildAsset` wildcard (`AllOf`) value.
	pub fn into_wild(self, fun: WildFungibility) -> WildAsset {
		WildAsset::AllOf { fun, id: self }
	}
}

impl Reanchorable for AssetId {
	type Error = ();

	/// Mutate the asset to represent the same value from the perspective of a new `target`
	/// location. The local chain's location is provided in `context`.
	fn reanchor(&mut self, target: &Location, context: &InteriorLocation) -> Result<(), ()> {
		self.0.reanchor(target, context)?;
		Ok(())
	}

	fn reanchored(mut self, target: &Location, context: &InteriorLocation) -> Result<Self, ()> {
		match self.reanchor(target, context) {
			Ok(()) => Ok(self),
			Err(()) => Err(()),
		}
	}
}

/// Either an amount of a single fungible asset, or a single well-identified non-fungible asset.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Debug,
	Encode,
	Decode,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub struct Asset {
	/// The overall asset identity (aka *class*, in the case of a non-fungible).
	pub id: AssetId,
	/// The fungibility of the asset, which contains either the amount (in the case of a fungible
	/// asset) or the *instance ID*, the secondary asset identifier.
	pub fun: Fungibility,
}

impl PartialOrd for Asset {
	fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
		Some(self.cmp(other))
	}
}

impl Ord for Asset {
	fn cmp(&self, other: &Self) -> Ordering {
		match (&self.fun, &other.fun) {
			(Fungibility::Fungible(..), Fungibility::NonFungible(..)) => Ordering::Less,
			(Fungibility::NonFungible(..), Fungibility::Fungible(..)) => Ordering::Greater,
			_ => (&self.id, &self.fun).cmp(&(&other.id, &other.fun)),
		}
	}
}

impl<A: Into<AssetId>, B: Into<Fungibility>> From<(A, B)> for Asset {
	fn from((id, fun): (A, B)) -> Asset {
		Asset { fun: fun.into(), id: id.into() }
	}
}

impl Asset {
	pub fn is_fungible(&self, maybe_id: Option<AssetId>) -> bool {
		use Fungibility::*;
		matches!(self.fun, Fungible(..)) && maybe_id.map_or(true, |i| i == self.id)
	}

	pub fn is_non_fungible(&self, maybe_id: Option<AssetId>) -> bool {
		use Fungibility::*;
		matches!(self.fun, NonFungible(..)) && maybe_id.map_or(true, |i| i == self.id)
	}

	/// Prepend a `Location` to a concrete asset, giving it a new root location.
	pub fn prepend_with(&mut self, prepend: &Location) -> Result<(), ()> {
		self.id.prepend_with(prepend)
	}

	/// Returns true if `self` is a super-set of the given `inner` asset.
	pub fn contains(&self, inner: &Asset) -> bool {
		use Fungibility::*;
		if self.id == inner.id {
			match (&self.fun, &inner.fun) {
				(Fungible(a), Fungible(i)) if a >= i => return true,
				(NonFungible(a), NonFungible(i)) if a == i => return true,
				_ => (),
			}
		}
		false
	}
}

impl Reanchorable for Asset {
	type Error = ();

	/// Mutate the location of the asset identifier if concrete, giving it the same location
	/// relative to a `target` context. The local context is provided as `context`.
	fn reanchor(&mut self, target: &Location, context: &InteriorLocation) -> Result<(), ()> {
		self.id.reanchor(target, context)
	}

	/// Mutate the location of the asset identifier if concrete, giving it the same location
	/// relative to a `target` context. The local context is provided as `context`.
	fn reanchored(mut self, target: &Location, context: &InteriorLocation) -> Result<Self, ()> {
		self.id.reanchor(target, context)?;
		Ok(self)
	}
}

impl TryFrom<OldAsset> for Asset {
	type Error = ();
	fn try_from(old: OldAsset) -> Result<Self, ()> {
		Ok(Self { id: old.id.try_into()?, fun: old.fun.try_into()? })
	}
}

impl TryFrom<NewAsset> for Asset {
	type Error = ();
	fn try_from(new: NewAsset) -> Result<Self, Self::Error> {
		Ok(Self { id: new.id.try_into()?, fun: new.fun.try_into()? })
	}
}

/// A `Vec` of `Asset`s.
///
/// There are a number of invariants which the construction and mutation functions must ensure are
/// maintained:
/// - It may contain no items of duplicate asset class;
/// - All items must be ordered;
/// - The number of items should grow no larger than `MAX_ITEMS_IN_ASSETS`.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Debug,
	Encode,
	TypeInfo,
	Default,
	serde::Serialize,
	serde::Deserialize,
)]
pub struct Assets(Vec<Asset>);

/// Maximum number of items we expect in a single `Assets` value. Note this is not (yet)
/// enforced, and just serves to provide a sensible `max_encoded_len` for `Assets`.
pub const MAX_ITEMS_IN_ASSETS: usize = 20;

impl MaxEncodedLen for Assets {
	fn max_encoded_len() -> usize {
		Asset::max_encoded_len() * MAX_ITEMS_IN_ASSETS
	}
}

impl Decode for Assets {
	fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
		let bounded_instructions =
			BoundedVec::<Asset, ConstU32<{ MAX_ITEMS_IN_ASSETS as u32 }>>::decode(input)?;
		Self::from_sorted_and_deduplicated(bounded_instructions.into_inner())
			.map_err(|()| "Out of order".into())
	}
}

impl TryFrom<OldAssets> for Assets {
	type Error = ();
	fn try_from(old: OldAssets) -> Result<Self, ()> {
		let v = old
			.into_inner()
			.into_iter()
			.map(Asset::try_from)
			.collect::<Result<Vec<_>, ()>>()?;
		Ok(Assets(v))
	}
}

impl TryFrom<NewAssets> for Assets {
	type Error = ();
	fn try_from(new: NewAssets) -> Result<Self, Self::Error> {
		let v = new
			.into_inner()
			.into_iter()
			.map(Asset::try_from)
			.collect::<Result<Vec<_>, ()>>()?;
		Ok(Assets(v))
	}
}

impl From<Vec<Asset>> for Assets {
	fn from(mut assets: Vec<Asset>) -> Self {
		let mut res = Vec::with_capacity(assets.len());
		if !assets.is_empty() {
			assets.sort();
			let mut iter = assets.into_iter();
			if let Some(first) = iter.next() {
				let last = iter.fold(first, |a, b| -> Asset {
					match (a, b) {
						(
							Asset { fun: Fungibility::Fungible(a_amount), id: a_id },
							Asset { fun: Fungibility::Fungible(b_amount), id: b_id },
						) if a_id == b_id => Asset {
							id: a_id,
							fun: Fungibility::Fungible(a_amount.saturating_add(b_amount)),
						},
						(
							Asset { fun: Fungibility::NonFungible(a_instance), id: a_id },
							Asset { fun: Fungibility::NonFungible(b_instance), id: b_id },
						) if a_id == b_id && a_instance == b_instance =>
							Asset { fun: Fungibility::NonFungible(a_instance), id: a_id },
						(to_push, to_remember) => {
							res.push(to_push);
							to_remember
						},
					}
				});
				res.push(last);
			}
		}
		Self(res)
	}
}

impl<T: Into<Asset>> From<T> for Assets {
	fn from(x: T) -> Self {
		Self(vec![x.into()])
	}
}

impl Assets {
	/// A new (empty) value.
	pub fn new() -> Self {
		Self(Vec::new())
	}

	/// Create a new instance of `Assets` from a `Vec<Asset>` whose contents are sorted
	/// and which contain no duplicates.
	///
	/// Returns `Ok` if the operation succeeds and `Err` if `r` is out of order or had duplicates.
	/// If you can't guarantee that `r` is sorted and deduplicated, then use
	/// `From::<Vec<Asset>>::from` which is infallible.
	pub fn from_sorted_and_deduplicated(r: Vec<Asset>) -> Result<Self, ()> {
		if r.is_empty() {
			return Ok(Self(Vec::new()))
		}
		r.iter().skip(1).try_fold(&r[0], |a, b| -> Result<&Asset, ()> {
			if a.id < b.id || a < b && (a.is_non_fungible(None) || b.is_non_fungible(None)) {
				Ok(b)
			} else {
				Err(())
			}
		})?;
		Ok(Self(r))
	}

	/// Create a new instance of `Assets` from a `Vec<Asset>` whose contents are sorted
	/// and which contain no duplicates.
	///
	/// In release mode, this skips any checks to ensure that `r` is correct, making it a
	/// negligible-cost operation. Generally though you should avoid using it unless you have a
	/// strict proof that `r` is valid.
	#[cfg(test)]
	pub fn from_sorted_and_deduplicated_skip_checks(r: Vec<Asset>) -> Self {
		Self::from_sorted_and_deduplicated(r).expect("Invalid input r is not sorted/deduped")
	}
	/// Create a new instance of `Assets` from a `Vec<Asset>` whose contents are sorted
	/// and which contain no duplicates.
	///
	/// In release mode, this skips any checks to ensure that `r` is correct, making it a
	/// negligible-cost operation. Generally though you should avoid using it unless you have a
	/// strict proof that `r` is valid.
	///
	/// In test mode, this checks anyway and panics on fail.
	#[cfg(not(test))]
	pub fn from_sorted_and_deduplicated_skip_checks(r: Vec<Asset>) -> Self {
		Self(r)
	}

	/// Add some asset onto the list, saturating. This is quite a laborious operation since it
	/// maintains the ordering.
	pub fn push(&mut self, a: Asset) {
		for asset in self.0.iter_mut().filter(|x| x.id == a.id) {
			match (&a.fun, &mut asset.fun) {
				(Fungibility::Fungible(amount), Fungibility::Fungible(balance)) => {
					*balance = balance.saturating_add(*amount);
					return
				},
				(Fungibility::NonFungible(inst1), Fungibility::NonFungible(inst2))
					if inst1 == inst2 =>
					return,
				_ => (),
			}
		}
		self.0.push(a);
		self.0.sort();
	}

	/// Returns `true` if this definitely represents no asset.
	pub fn is_none(&self) -> bool {
		self.0.is_empty()
	}

	/// Returns true if `self` is a super-set of the given `inner` asset.
	pub fn contains(&self, inner: &Asset) -> bool {
		self.0.iter().any(|i| i.contains(inner))
	}

	/// Consume `self` and return the inner vec.
	#[deprecated = "Use `into_inner()` instead"]
	pub fn drain(self) -> Vec<Asset> {
		self.0
	}

	/// Consume `self` and return the inner vec.
	pub fn into_inner(self) -> Vec<Asset> {
		self.0
	}

	/// Return a reference to the inner vec.
	pub fn inner(&self) -> &Vec<Asset> {
		&self.0
	}

	/// Return the number of distinct asset instances contained.
	pub fn len(&self) -> usize {
		self.0.len()
	}

	/// Prepend a `Location` to any concrete asset items, giving it a new root location.
	pub fn prepend_with(&mut self, prefix: &Location) -> Result<(), ()> {
		self.0.iter_mut().try_for_each(|i| i.prepend_with(prefix))?;
		self.0.sort();
		Ok(())
	}

	/// Return a reference to an item at a specific index or `None` if it doesn't exist.
	pub fn get(&self, index: usize) -> Option<&Asset> {
		self.0.get(index)
	}
}

impl Reanchorable for Assets {
	type Error = ();

	fn reanchor(&mut self, target: &Location, context: &InteriorLocation) -> Result<(), ()> {
		self.0.iter_mut().try_for_each(|i| i.reanchor(target, context))?;
		self.0.sort();
		Ok(())
	}

	fn reanchored(mut self, target: &Location, context: &InteriorLocation) -> Result<Self, ()> {
		match self.reanchor(target, context) {
			Ok(()) => Ok(self),
			Err(()) => Err(()),
		}
	}
}

/// A wildcard representing a set of assets.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Debug,
	Encode,
	Decode,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub enum WildAsset {
	/// All assets in Holding.
	All,
	/// All assets in Holding of a given fungibility and ID.
	AllOf { id: AssetId, fun: WildFungibility },
	/// All assets in Holding, up to `u32` individual assets (different instances of non-fungibles
	/// are separate assets).
	AllCounted(#[codec(compact)] u32),
	/// All assets in Holding of a given fungibility and ID up to `count` individual assets
	/// (different instances of non-fungibles are separate assets).
	AllOfCounted {
		id: AssetId,
		fun: WildFungibility,
		#[codec(compact)]
		count: u32,
	},
}

impl TryFrom<OldWildAsset> for WildAsset {
	type Error = ();
	fn try_from(old: OldWildAsset) -> Result<WildAsset, ()> {
		use OldWildAsset::*;
		Ok(match old {
			AllOf { id, fun } => Self::AllOf { id: id.try_into()?, fun: fun.try_into()? },
			All => Self::All,
			AllOfCounted { id, fun, count } =>
				Self::AllOfCounted { id: id.try_into()?, fun: fun.try_into()?, count },
			AllCounted(count) => Self::AllCounted(count),
		})
	}
}

impl TryFrom<NewWildAsset> for WildAsset {
	type Error = ();
	fn try_from(new: NewWildAsset) -> Result<Self, ()> {
		use NewWildAsset::*;
		Ok(match new {
			AllOf { id, fun } => Self::AllOf { id: id.try_into()?, fun: fun.try_into()? },
			AllOfCounted { id, fun, count } =>
				Self::AllOfCounted { id: id.try_into()?, fun: fun.try_into()?, count },
			All => Self::All,
			AllCounted(count) => Self::AllCounted(count),
		})
	}
}

impl WildAsset {
	/// Returns true if `self` is a super-set of the given `inner` asset.
	pub fn contains(&self, inner: &Asset) -> bool {
		use WildAsset::*;
		match self {
			AllOfCounted { count: 0, .. } | AllCounted(0) => false,
			AllOf { fun, id } | AllOfCounted { id, fun, .. } =>
				inner.fun.is_kind(*fun) && &inner.id == id,
			All | AllCounted(_) => true,
		}
	}

	/// Returns true if the wild element of `self` matches `inner`.
	///
	/// Note that for `Counted` variants of wildcards, then it will disregard the count except for
	/// always returning `false` when equal to 0.
	#[deprecated = "Use `contains` instead"]
	pub fn matches(&self, inner: &Asset) -> bool {
		self.contains(inner)
	}

	/// Mutate the asset to represent the same value from the perspective of a new `target`
	/// location. The local chain's location is provided in `context`.
	pub fn reanchor(&mut self, target: &Location, context: &InteriorLocation) -> Result<(), ()> {
		use WildAsset::*;
		match self {
			AllOf { ref mut id, .. } | AllOfCounted { ref mut id, .. } =>
				id.reanchor(target, context),
			All | AllCounted(_) => Ok(()),
		}
	}

	/// Maximum count of assets allowed to match, if any.
	pub fn count(&self) -> Option<u32> {
		use WildAsset::*;
		match self {
			AllOfCounted { count, .. } | AllCounted(count) => Some(*count),
			All | AllOf { .. } => None,
		}
	}

	/// Explicit limit on number of assets allowed to match, if any.
	pub fn limit(&self) -> Option<u32> {
		self.count()
	}

	/// Consume self and return the equivalent version but counted and with the `count` set to the
	/// given parameter.
	pub fn counted(self, count: u32) -> Self {
		use WildAsset::*;
		match self {
			AllOfCounted { fun, id, .. } | AllOf { fun, id } => AllOfCounted { fun, id, count },
			All | AllCounted(_) => AllCounted(count),
		}
	}
}

impl<A: Into<AssetId>, B: Into<WildFungibility>> From<(A, B)> for WildAsset {
	fn from((id, fun): (A, B)) -> WildAsset {
		WildAsset::AllOf { fun: fun.into(), id: id.into() }
	}
}

/// `Asset` collection, defined either by a number of `Assets` or a single wildcard.
#[derive(
	Clone,
	Eq,
	PartialEq,
	Ord,
	PartialOrd,
	Debug,
	Encode,
	Decode,
	TypeInfo,
	MaxEncodedLen,
	serde::Serialize,
	serde::Deserialize,
)]
pub enum AssetFilter {
	/// Specify the filter as being everything contained by the given `Assets` inner.
	Definite(Assets),
	/// Specify the filter as the given `WildAsset` wildcard.
	Wild(WildAsset),
}

impl<T: Into<WildAsset>> From<T> for AssetFilter {
	fn from(x: T) -> Self {
		Self::Wild(x.into())
	}
}

impl From<Asset> for AssetFilter {
	fn from(x: Asset) -> Self {
		Self::Definite(vec![x].into())
	}
}

impl From<Vec<Asset>> for AssetFilter {
	fn from(x: Vec<Asset>) -> Self {
		Self::Definite(x.into())
	}
}

impl From<Assets> for AssetFilter {
	fn from(x: Assets) -> Self {
		Self::Definite(x)
	}
}

impl AssetFilter {
	/// Returns true if `inner` would be matched by `self`.
	///
	/// Note that for `Counted` variants of wildcards, then it will disregard the count except for
	/// always returning `false` when equal to 0.
	pub fn matches(&self, inner: &Asset) -> bool {
		match self {
			AssetFilter::Definite(ref assets) => assets.contains(inner),
			AssetFilter::Wild(ref wild) => wild.contains(inner),
		}
	}

	/// Mutate the location of the asset identifier if concrete, giving it the same location
	/// relative to a `target` context. The local context is provided as `context`.
	pub fn reanchor(&mut self, target: &Location, context: &InteriorLocation) -> Result<(), ()> {
		match self {
			AssetFilter::Definite(ref mut assets) => assets.reanchor(target, context),
			AssetFilter::Wild(ref mut wild) => wild.reanchor(target, context),
		}
	}

	/// Maximum count of assets it is possible to match, if known.
	pub fn count(&self) -> Option<u32> {
		use AssetFilter::*;
		match self {
			Definite(x) => Some(x.len() as u32),
			Wild(x) => x.count(),
		}
	}

	/// Explicit limit placed on the number of items, if any.
	pub fn limit(&self) -> Option<u32> {
		use AssetFilter::*;
		match self {
			Definite(_) => None,
			Wild(x) => x.limit(),
		}
	}
}

impl TryFrom<NewAssetFilter> for AssetFilter {
	type Error = ();
	fn try_from(new: NewAssetFilter) -> Result<AssetFilter, Self::Error> {
		use NewAssetFilter::*;
		Ok(match new {
			Definite(x) => Self::Definite(x.try_into()?),
			Wild(x) => Self::Wild(x.try_into()?),
		})
	}
}

impl TryFrom<OldAssetFilter> for AssetFilter {
	type Error = ();
	fn try_from(old: OldAssetFilter) -> Result<AssetFilter, ()> {
		Ok(match old {
			OldAssetFilter::Definite(x) => Self::Definite(x.try_into()?),
			OldAssetFilter::Wild(x) => Self::Wild(x.try_into()?),
		})
	}
}

#[cfg(test)]
mod tests {
	use super::super::prelude::*;

	#[test]
	fn conversion_works() {
		let _: Assets = (Here, 1u128).into();
	}

	#[test]
	fn from_sorted_and_deduplicated_works() {
		use super::*;
		use alloc::vec;

		let empty = vec![];
		let r = Assets::from_sorted_and_deduplicated(empty);
		assert_eq!(r, Ok(Assets(vec![])));

		let dup_fun = vec![(Here, 100).into(), (Here, 10).into()];
		let r = Assets::from_sorted_and_deduplicated(dup_fun);
		assert!(r.is_err());

		let dup_nft = vec![(Here, *b"notgood!").into(), (Here, *b"notgood!").into()];
		let r = Assets::from_sorted_and_deduplicated(dup_nft);
		assert!(r.is_err());

		let good_fun = vec![(Here, 10).into(), (Parent, 10).into()];
		let r = Assets::from_sorted_and_deduplicated(good_fun.clone());
		assert_eq!(r, Ok(Assets(good_fun)));

		let bad_fun = vec![(Parent, 10).into(), (Here, 10).into()];
		let r = Assets::from_sorted_and_deduplicated(bad_fun);
		assert!(r.is_err());

		let good_nft = vec![(Here, ()).into(), (Here, *b"good").into()];
		let r = Assets::from_sorted_and_deduplicated(good_nft.clone());
		assert_eq!(r, Ok(Assets(good_nft)));

		let bad_nft = vec![(Here, *b"bad!").into(), (Here, ()).into()];
		let r = Assets::from_sorted_and_deduplicated(bad_nft);
		assert!(r.is_err());

		let mixed_good = vec![(Here, 10).into(), (Here, *b"good").into()];
		let r = Assets::from_sorted_and_deduplicated(mixed_good.clone());
		assert_eq!(r, Ok(Assets(mixed_good)));

		let mixed_bad = vec![(Here, *b"bad!").into(), (Here, 10).into()];
		let r = Assets::from_sorted_and_deduplicated(mixed_bad);
		assert!(r.is_err());
	}

	#[test]
	fn reanchor_preserves_sorting() {
		use super::*;
		use alloc::vec;

		let reanchor_context: Junctions = Parachain(2000).into();
		let dest = Location::new(1, []);

		let asset_1: Asset = (Location::new(0, [PalletInstance(50), GeneralIndex(1)]), 10).into();
		let mut asset_1_reanchored = asset_1.clone();
		assert!(asset_1_reanchored.reanchor(&dest, &reanchor_context).is_ok());
		assert_eq!(
			asset_1_reanchored,
			(Location::new(0, [Parachain(2000), PalletInstance(50), GeneralIndex(1)]), 10).into()
		);

		let asset_2: Asset = (Location::new(1, []), 10).into();
		let mut asset_2_reanchored = asset_2.clone();
		assert!(asset_2_reanchored.reanchor(&dest, &reanchor_context).is_ok());
		assert_eq!(asset_2_reanchored, (Location::new(0, []), 10).into());

		let asset_3: Asset = (Location::new(1, [Parachain(1000)]), 10).into();
		let mut asset_3_reanchored = asset_3.clone();
		assert!(asset_3_reanchored.reanchor(&dest, &reanchor_context).is_ok());
		assert_eq!(asset_3_reanchored, (Location::new(0, [Parachain(1000)]), 10).into());

		let mut assets: Assets = vec![asset_1.clone(), asset_2.clone(), asset_3.clone()].into();
		assert_eq!(assets.clone(), vec![asset_1.clone(), asset_2.clone(), asset_3.clone()].into());

		// decoding respects limits and sorting
		assert!(assets.using_encoded(|mut enc| Assets::decode(&mut enc).map(|_| ())).is_ok());

		assert!(assets.reanchor(&dest, &reanchor_context).is_ok());
		assert_eq!(assets.0, vec![asset_2_reanchored, asset_3_reanchored, asset_1_reanchored]);

		// decoding respects limits and sorting
		assert!(assets.using_encoded(|mut enc| Assets::decode(&mut enc).map(|_| ())).is_ok());
	}

	#[test]
	fn prepend_preserves_sorting() {
		use super::*;
		use alloc::vec;

		let prefix = Location::new(0, [Parachain(1000)]);

		let asset_1: Asset = (Location::new(0, [PalletInstance(50), GeneralIndex(1)]), 10).into();
		let mut asset_1_prepended = asset_1.clone();
		assert!(asset_1_prepended.prepend_with(&prefix).is_ok());
		// changes interior X2->X3
		assert_eq!(
			asset_1_prepended,
			(Location::new(0, [Parachain(1000), PalletInstance(50), GeneralIndex(1)]), 10).into()
		);

		let asset_2: Asset = (Location::new(1, [PalletInstance(50), GeneralIndex(1)]), 10).into();
		let mut asset_2_prepended = asset_2.clone();
		assert!(asset_2_prepended.prepend_with(&prefix).is_ok());
		// changes parent
		assert_eq!(
			asset_2_prepended,
			(Location::new(0, [PalletInstance(50), GeneralIndex(1)]), 10).into()
		);

		let asset_3: Asset = (Location::new(2, [PalletInstance(50), GeneralIndex(1)]), 10).into();
		let mut asset_3_prepended = asset_3.clone();
		assert!(asset_3_prepended.prepend_with(&prefix).is_ok());
		// changes parent
		assert_eq!(
			asset_3_prepended,
			(Location::new(1, [PalletInstance(50), GeneralIndex(1)]), 10).into()
		);

		// `From` impl does sorting.
		let mut assets: Assets = vec![asset_1, asset_2, asset_3].into();
		// decoding respects limits and sorting
		assert!(assets.using_encoded(|mut enc| Assets::decode(&mut enc).map(|_| ())).is_ok());

		// let's do `prepend_with`
		assert!(assets.prepend_with(&prefix).is_ok());
		assert_eq!(assets.0, vec![asset_2_prepended, asset_1_prepended, asset_3_prepended]);

		// decoding respects limits and sorting
		assert!(assets.using_encoded(|mut enc| Assets::decode(&mut enc).map(|_| ())).is_ok());
	}

	#[test]
	fn decoding_respects_limit() {
		use super::*;

		// Having lots of one asset will work since they are deduplicated
		let lots_of_one_asset: Assets =
			vec![(GeneralIndex(1), 1u128).into(); MAX_ITEMS_IN_ASSETS + 1].into();
		let encoded = lots_of_one_asset.encode();
		assert!(Assets::decode(&mut &encoded[..]).is_ok());

		// Fewer assets than the limit works
		let mut few_assets: Assets = Vec::new().into();
		for i in 0..MAX_ITEMS_IN_ASSETS {
			few_assets.push((GeneralIndex(i as u128), 1u128).into());
		}
		let encoded = few_assets.encode();
		assert!(Assets::decode(&mut &encoded[..]).is_ok());

		// Having lots of different assets will not work
		let mut too_many_different_assets: Assets = Vec::new().into();
		for i in 0..MAX_ITEMS_IN_ASSETS + 1 {
			too_many_different_assets.push((GeneralIndex(i as u128), 1u128).into());
		}
		let encoded = too_many_different_assets.encode();
		assert!(Assets::decode(&mut &encoded[..]).is_err());
	}
}