referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Cross-Consensus Message format data structures.

pub use crate::v3::{Error, Result, SendError, XcmHash};
use codec::{Decode, Encode};
use core::result;
use scale_info::TypeInfo;

pub use sp_weights::Weight;

use super::*;

/// Outcome of an XCM execution.
#[derive(Clone, Encode, Decode, Eq, PartialEq, Debug, TypeInfo)]
pub enum Outcome {
	/// Execution completed successfully; given weight was used.
	Complete { used: Weight },
	/// Execution started, but did not complete successfully due to the given error; given weight
	/// was used.
	Incomplete { used: Weight, error: Error },
	/// Execution did not start due to the given error.
	Error { error: Error },
}

impl Outcome {
	pub fn ensure_complete(self) -> Result {
		match self {
			Outcome::Complete { .. } => Ok(()),
			Outcome::Incomplete { error, .. } => Err(error),
			Outcome::Error { error, .. } => Err(error),
		}
	}
	pub fn ensure_execution(self) -> result::Result<Weight, Error> {
		match self {
			Outcome::Complete { used, .. } => Ok(used),
			Outcome::Incomplete { used, .. } => Ok(used),
			Outcome::Error { error, .. } => Err(error),
		}
	}
	/// How much weight was used by the XCM execution attempt.
	pub fn weight_used(&self) -> Weight {
		match self {
			Outcome::Complete { used, .. } => *used,
			Outcome::Incomplete { used, .. } => *used,
			Outcome::Error { .. } => Weight::zero(),
		}
	}
}

impl From<Error> for Outcome {
	fn from(error: Error) -> Self {
		Self::Error { error }
	}
}

pub trait PreparedMessage {
	fn weight_of(&self) -> Weight;
}

/// Type of XCM message executor.
pub trait ExecuteXcm<Call> {
	type Prepared: PreparedMessage;
	fn prepare(message: Xcm<Call>) -> result::Result<Self::Prepared, Xcm<Call>>;
	fn execute(
		origin: impl Into<Location>,
		pre: Self::Prepared,
		id: &mut XcmHash,
		weight_credit: Weight,
	) -> Outcome;
	fn prepare_and_execute(
		origin: impl Into<Location>,
		message: Xcm<Call>,
		id: &mut XcmHash,
		weight_limit: Weight,
		weight_credit: Weight,
	) -> Outcome {
		let pre = match Self::prepare(message) {
			Ok(x) => x,
			Err(_) => return Outcome::Error { error: Error::WeightNotComputable },
		};
		let xcm_weight = pre.weight_of();
		if xcm_weight.any_gt(weight_limit) {
			return Outcome::Error { error: Error::WeightLimitReached(xcm_weight) }
		}
		Self::execute(origin, pre, id, weight_credit)
	}

	/// Deduct some `fees` to the sovereign account of the given `location` and place them as per
	/// the convention for fees.
	fn charge_fees(location: impl Into<Location>, fees: Assets) -> Result;
}

pub enum Weightless {}
impl PreparedMessage for Weightless {
	fn weight_of(&self) -> Weight {
		unreachable!()
	}
}

impl<C> ExecuteXcm<C> for () {
	type Prepared = Weightless;
	fn prepare(message: Xcm<C>) -> result::Result<Self::Prepared, Xcm<C>> {
		Err(message)
	}
	fn execute(_: impl Into<Location>, _: Self::Prepared, _: &mut XcmHash, _: Weight) -> Outcome {
		unreachable!()
	}
	fn charge_fees(_location: impl Into<Location>, _fees: Assets) -> Result {
		Err(Error::Unimplemented)
	}
}

pub trait Reanchorable: Sized {
	/// Type to return in case of an error.
	type Error: Debug;

	/// Mutate `self` so that it represents the same location from the point of view of `target`.
	/// The context of `self` is provided as `context`.
	///
	/// Does not modify `self` in case of overflow.
	fn reanchor(
		&mut self,
		target: &Location,
		context: &InteriorLocation,
	) -> core::result::Result<(), ()>;

	/// Consume `self` and return a new value representing the same location from the point of view
	/// of `target`. The context of `self` is provided as `context`.
	///
	/// Returns the original `self` in case of overflow.
	fn reanchored(
		self,
		target: &Location,
		context: &InteriorLocation,
	) -> core::result::Result<Self, Self::Error>;
}

/// Result value when attempting to send an XCM message.
pub type SendResult<T> = result::Result<(T, Assets), SendError>;

/// Utility for sending an XCM message to a given location.
///
/// These can be amalgamated in tuples to form sophisticated routing systems. In tuple format, each
/// router might return `NotApplicable` to pass the execution to the next sender item. Note that
/// each `NotApplicable` might alter the destination and the XCM message for to the next router.
///
/// # Example
/// ```rust
/// # use codec::Encode;
/// # use staging_xcm::v4::{prelude::*, Weight};
/// # use staging_xcm::VersionedXcm;
/// # use std::convert::Infallible;
///
/// /// A sender that only passes the message through and does nothing.
/// struct Sender1;
/// impl SendXcm for Sender1 {
///     type Ticket = Infallible;
///     fn validate(_: &mut Option<Location>, _: &mut Option<Xcm<()>>) -> SendResult<Infallible> {
///         Err(SendError::NotApplicable)
///     }
///     fn deliver(_: Infallible) -> Result<XcmHash, SendError> {
///         unreachable!()
///     }
/// }
///
/// /// A sender that accepts a message that has two junctions, otherwise stops the routing.
/// struct Sender2;
/// impl SendXcm for Sender2 {
///     type Ticket = ();
///     fn validate(destination: &mut Option<Location>, message: &mut Option<Xcm<()>>) -> SendResult<()> {
///         match destination.as_ref().ok_or(SendError::MissingArgument)?.unpack() {
///             (0, [j1, j2]) => Ok(((), Assets::new())),
///             _ => Err(SendError::Unroutable),
///         }
///     }
///     fn deliver(_: ()) -> Result<XcmHash, SendError> {
///         Ok([0; 32])
///     }
/// }
///
/// /// A sender that accepts a message from a parent, passing through otherwise.
/// struct Sender3;
/// impl SendXcm for Sender3 {
///     type Ticket = ();
///     fn validate(destination: &mut Option<Location>, message: &mut Option<Xcm<()>>) -> SendResult<()> {
///         match destination.as_ref().ok_or(SendError::MissingArgument)?.unpack() {
///             (1, []) => Ok(((), Assets::new())),
///             _ => Err(SendError::NotApplicable),
///         }
///     }
///     fn deliver(_: ()) -> Result<XcmHash, SendError> {
///         Ok([0; 32])
///     }
/// }
///
/// // A call to send via XCM. We don't really care about this.
/// # fn main() {
/// let call: Vec<u8> = ().encode();
/// let message = Xcm(vec![Instruction::Transact {
///     origin_kind: OriginKind::Superuser,
///     require_weight_at_most: Weight::zero(),
///     call: call.into(),
/// }]);
/// let message_hash = message.using_encoded(sp_io::hashing::blake2_256);
///
/// // Sender2 will block this.
/// assert!(send_xcm::<(Sender1, Sender2, Sender3)>(Parent.into(), message.clone()).is_err());
///
/// // Sender3 will catch this.
/// assert!(send_xcm::<(Sender1, Sender3)>(Parent.into(), message.clone()).is_ok());
/// # }
/// ```
pub trait SendXcm {
	/// Intermediate value which connects the two phases of the send operation.
	type Ticket;

	/// Check whether the given `_message` is deliverable to the given `_destination` and if so
	/// determine the cost which will be paid by this chain to do so, returning a `Validated` token
	/// which can be used to enact delivery.
	///
	/// The `destination` and `message` must be `Some` (or else an error will be returned) and they
	/// may only be consumed if the `Err` is not `NotApplicable`.
	///
	/// If it is not a destination which can be reached with this type but possibly could by others,
	/// then this *MUST* return `NotApplicable`. Any other error will cause the tuple
	/// implementation to exit early without trying other type fields.
	fn validate(
		destination: &mut Option<Location>,
		message: &mut Option<Xcm<()>>,
	) -> SendResult<Self::Ticket>;

	/// Actually carry out the delivery operation for a previously validated message sending.
	fn deliver(ticket: Self::Ticket) -> result::Result<XcmHash, SendError>;
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl SendXcm for Tuple {
	for_tuples! { type Ticket = (#( Option<Tuple::Ticket> ),* ); }

	fn validate(
		destination: &mut Option<Location>,
		message: &mut Option<Xcm<()>>,
	) -> SendResult<Self::Ticket> {
		let mut maybe_cost: Option<Assets> = None;
		let one_ticket: Self::Ticket = (for_tuples! { #(
			if maybe_cost.is_some() {
				None
			} else {
				match Tuple::validate(destination, message) {
					Err(SendError::NotApplicable) => None,
					Err(e) => { return Err(e) },
					Ok((v, c)) => {
						maybe_cost = Some(c);
						Some(v)
					},
				}
			}
		),* });
		if let Some(cost) = maybe_cost {
			Ok((one_ticket, cost))
		} else {
			Err(SendError::NotApplicable)
		}
	}

	fn deliver(one_ticket: Self::Ticket) -> result::Result<XcmHash, SendError> {
		for_tuples!( #(
			if let Some(validated) = one_ticket.Tuple {
				return Tuple::deliver(validated);
			}
		)* );
		Err(SendError::Unroutable)
	}
}

/// Convenience function for using a `SendXcm` implementation. Just interprets the `dest` and wraps
/// both in `Some` before passing them as mutable references into `T::send_xcm`.
pub fn validate_send<T: SendXcm>(dest: Location, msg: Xcm<()>) -> SendResult<T::Ticket> {
	T::validate(&mut Some(dest), &mut Some(msg))
}

/// Convenience function for using a `SendXcm` implementation. Just interprets the `dest` and wraps
/// both in `Some` before passing them as mutable references into `T::send_xcm`.
///
/// Returns either `Ok` with the price of the delivery, or `Err` with the reason why the message
/// could not be sent.
///
/// Generally you'll want to validate and get the price first to ensure that the sender can pay it
/// before actually doing the delivery.
pub fn send_xcm<T: SendXcm>(
	dest: Location,
	msg: Xcm<()>,
) -> result::Result<(XcmHash, Assets), SendError> {
	let (ticket, price) = T::validate(&mut Some(dest), &mut Some(msg))?;
	let hash = T::deliver(ticket)?;
	Ok((hash, price))
}