referrerpolicy=no-referrer-when-downgrade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Collator for the `Undying` test parachain.

use codec::{Decode, Encode};
use futures::channel::oneshot;
use futures_timer::Delay;
use polkadot_node_primitives::{
	maybe_compress_pov, Collation, CollationResult, CollationSecondedSignal, CollatorFn,
	MaybeCompressedPoV, PoV, Statement,
};
use polkadot_primitives::{CollatorId, CollatorPair, Hash};
use sp_core::Pair;
use std::{
	collections::HashMap,
	sync::{
		atomic::{AtomicU32, Ordering},
		Arc, Mutex,
	},
	time::Duration,
};
use test_parachain_undying::{
	execute, hash_state, BlockData, GraveyardState, HeadData, StateMismatch,
};

/// Default PoV size which also drives state size.
const DEFAULT_POV_SIZE: usize = 1000;
/// Default PVF time complexity - 1 signature per block.
const DEFAULT_PVF_COMPLEXITY: u32 = 1;

/// Calculates the head and state for the block with the given `number`.
fn calculate_head_and_state_for_number(
	number: u64,
	graveyard_size: usize,
	pvf_complexity: u32,
) -> Result<(HeadData, GraveyardState), StateMismatch> {
	let index = 0u64;
	let mut graveyard = vec![0u8; graveyard_size * graveyard_size];
	let zombies = 0;
	let seal = [0u8; 32];

	// Ensure a larger compressed PoV.
	graveyard.iter_mut().enumerate().for_each(|(i, grave)| {
		*grave = i as u8;
	});

	let mut state = GraveyardState { index, graveyard, zombies, seal };
	let mut head =
		HeadData { number: 0, parent_hash: Hash::default().into(), post_state: hash_state(&state) };

	while head.number < number {
		let block = BlockData { state, tombstones: 1_000, iterations: pvf_complexity };
		let (new_head, new_state) = execute(head.hash(), head.clone(), block)?;
		head = new_head;
		state = new_state;
	}

	Ok((head, state))
}

/// The state of the undying parachain.
struct State {
	// We need to keep these around until the including relay chain blocks are finalized.
	// This is because disputes can trigger reverts up to last finalized block, so we
	// want that state to collate on older relay chain heads.
	head_to_state: HashMap<Arc<HeadData>, GraveyardState>,
	number_to_head: HashMap<u64, Arc<HeadData>>,
	/// Block number of the best block.
	best_block: u64,
	/// PVF time complexity.
	pvf_complexity: u32,
	/// Defines the state size (Vec<u8>). Our PoV includes the entire state so this value will
	/// drive the PoV size.
	/// Important note: block execution heavily clones this state, so something like 300.000 is
	/// the max value here, otherwise we'll get OOM during wasm execution.
	/// TODO: Implement a static state, and use `ballast` to inflate the PoV size. This way
	/// we can just discard the `ballast` before processing the block.
	graveyard_size: usize,
}

impl State {
	/// Init the genesis state.
	fn genesis(graveyard_size: usize, pvf_complexity: u32) -> Self {
		let index = 0u64;
		let mut graveyard = vec![0u8; graveyard_size * graveyard_size];
		let zombies = 0;
		let seal = [0u8; 32];

		// Ensure a larger compressed PoV.
		graveyard.iter_mut().enumerate().for_each(|(i, grave)| {
			*grave = i as u8;
		});

		let state = GraveyardState { index, graveyard, zombies, seal };

		let head_data =
			HeadData { number: 0, parent_hash: Default::default(), post_state: hash_state(&state) };
		let head_data = Arc::new(head_data);

		Self {
			head_to_state: vec![(head_data.clone(), state.clone())].into_iter().collect(),
			number_to_head: vec![(0, head_data)].into_iter().collect(),
			best_block: 0,
			pvf_complexity,
			graveyard_size,
		}
	}

	/// Advance the state and produce a new block based on the given `parent_head`.
	///
	/// Returns the new [`BlockData`] and the new [`HeadData`].
	fn advance(&mut self, parent_head: HeadData) -> Result<(BlockData, HeadData), StateMismatch> {
		self.best_block = parent_head.number;

		let state = if let Some(state) = self
			.number_to_head
			.get(&self.best_block)
			.and_then(|head_data| self.head_to_state.get(head_data).cloned())
		{
			state
		} else {
			let (_, state) = calculate_head_and_state_for_number(
				parent_head.number,
				self.graveyard_size,
				self.pvf_complexity,
			)?;
			state
		};

		// Start with prev state and transaction to execute (place 1000 tombstones).
		let block = BlockData { state, tombstones: 1000, iterations: self.pvf_complexity };

		let (new_head, new_state) = execute(parent_head.hash(), parent_head, block.clone())?;

		let new_head_arc = Arc::new(new_head.clone());

		self.head_to_state.insert(new_head_arc.clone(), new_state);
		self.number_to_head.insert(new_head.number, new_head_arc);

		Ok((block, new_head))
	}
}

/// The collator of the undying parachain.
pub struct Collator {
	state: Arc<Mutex<State>>,
	key: CollatorPair,
	seconded_collations: Arc<AtomicU32>,
}

impl Default for Collator {
	fn default() -> Self {
		Self::new(DEFAULT_POV_SIZE, DEFAULT_PVF_COMPLEXITY)
	}
}

impl Collator {
	/// Create a new collator instance with the state initialized from genesis and `pov_size`
	/// parameter. The same parameter needs to be passed when exporting the genesis state.
	pub fn new(pov_size: usize, pvf_complexity: u32) -> Self {
		let graveyard_size = ((pov_size / std::mem::size_of::<u8>()) as f64).sqrt().ceil() as usize;

		log::info!(
			"PoV target size: {} bytes. Graveyard size: ({} x {})",
			pov_size,
			graveyard_size,
			graveyard_size
		);

		log::info!("PVF time complexity: {}", pvf_complexity);

		Self {
			state: Arc::new(Mutex::new(State::genesis(graveyard_size, pvf_complexity))),
			key: CollatorPair::generate().0,
			seconded_collations: Arc::new(AtomicU32::new(0)),
		}
	}

	/// Get the SCALE encoded genesis head of the parachain.
	pub fn genesis_head(&self) -> Vec<u8> {
		self.state
			.lock()
			.unwrap()
			.number_to_head
			.get(&0)
			.expect("Genesis header exists")
			.encode()
	}

	/// Get the validation code of the undying parachain.
	pub fn validation_code(&self) -> &[u8] {
		test_parachain_undying::wasm_binary_unwrap()
	}

	/// Get the collator key.
	pub fn collator_key(&self) -> CollatorPair {
		self.key.clone()
	}

	/// Get the collator id.
	pub fn collator_id(&self) -> CollatorId {
		self.key.public()
	}

	/// Create the collation function.
	///
	/// This collation function can be plugged into the overseer to generate collations for the
	/// undying parachain.
	pub fn create_collation_function(
		&self,
		spawner: impl SpawnNamed + Clone + 'static,
	) -> CollatorFn {
		use futures::FutureExt as _;

		let state = self.state.clone();
		let seconded_collations = self.seconded_collations.clone();

		Box::new(move |relay_parent, validation_data| {
			let parent = match HeadData::decode(&mut &validation_data.parent_head.0[..]) {
				Err(err) => {
					log::error!("Requested to build on top of malformed head-data: {:?}", err);
					return futures::future::ready(None).boxed()
				},
				Ok(p) => p,
			};

			let (block_data, head_data) = match state.lock().unwrap().advance(parent.clone()) {
				Err(err) => {
					log::error!("Unable to build on top of {:?}: {:?}", parent, err);
					return futures::future::ready(None).boxed()
				},
				Ok(x) => x,
			};

			log::info!(
				"created a new collation on relay-parent({}): {:?}",
				relay_parent,
				head_data,
			);

			// The pov is the actually the initial state and the transactions.
			let pov = PoV { block_data: block_data.encode().into() };

			let collation = Collation {
				upward_messages: Default::default(),
				horizontal_messages: Default::default(),
				new_validation_code: None,
				head_data: head_data.encode().into(),
				proof_of_validity: MaybeCompressedPoV::Raw(pov.clone()),
				processed_downward_messages: 0,
				hrmp_watermark: validation_data.relay_parent_number,
			};

			log::info!("Raw PoV size for collation: {} bytes", pov.block_data.0.len(),);
			let compressed_pov = maybe_compress_pov(pov);

			log::info!(
				"Compressed PoV size for collation: {} bytes",
				compressed_pov.block_data.0.len(),
			);

			let (result_sender, recv) = oneshot::channel::<CollationSecondedSignal>();
			let seconded_collations = seconded_collations.clone();
			spawner.spawn(
				"undying-collator-seconded",
				None,
				async move {
					if let Ok(res) = recv.await {
						if !matches!(
							res.statement.payload(),
							Statement::Seconded(s) if s.descriptor.pov_hash() == compressed_pov.hash(),
						) {
							log::error!(
								"Seconded statement should match our collation: {:?}",
								res.statement.payload()
							);
						}

						seconded_collations.fetch_add(1, Ordering::Relaxed);
					}
				}
				.boxed(),
			);

			async move { Some(CollationResult { collation, result_sender: Some(result_sender) }) }
				.boxed()
		})
	}

	/// Wait until `blocks` are built and enacted.
	pub async fn wait_for_blocks(&self, blocks: u64) {
		let start_block = self.state.lock().unwrap().best_block;
		loop {
			Delay::new(Duration::from_secs(1)).await;

			let current_block = self.state.lock().unwrap().best_block;

			if start_block + blocks <= current_block {
				return
			}
		}
	}

	/// Wait until `seconded` collations of this collator are seconded by a parachain validator.
	///
	/// The internal counter isn't de-duplicating the collations when counting the number of
	/// seconded collations. This means when one collation is seconded by X validators, we record X
	/// seconded messages.
	pub async fn wait_for_seconded_collations(&self, seconded: u32) {
		let seconded_collations = self.seconded_collations.clone();
		loop {
			Delay::new(Duration::from_secs(1)).await;

			if seconded <= seconded_collations.load(Ordering::Relaxed) {
				return
			}
		}
	}
}

use sp_core::traits::SpawnNamed;

#[cfg(test)]
mod tests {
	use super::*;
	use futures::executor::block_on;
	use polkadot_parachain_primitives::primitives::{ValidationParams, ValidationResult};
	use polkadot_primitives::{Hash, PersistedValidationData};

	#[test]
	fn collator_works() {
		let spawner = sp_core::testing::TaskExecutor::new();
		let collator = Collator::new(1_000, 1);
		let collation_function = collator.create_collation_function(spawner);

		for i in 0..5 {
			let parent_head =
				collator.state.lock().unwrap().number_to_head.get(&i).unwrap().clone();

			let validation_data = PersistedValidationData {
				parent_head: parent_head.encode().into(),
				..Default::default()
			};

			let collation =
				block_on(collation_function(Default::default(), &validation_data)).unwrap();
			validate_collation(&collator, (*parent_head).clone(), collation.collation);
		}
	}

	fn validate_collation(collator: &Collator, parent_head: HeadData, collation: Collation) {
		use polkadot_node_core_pvf::testing::validate_candidate;

		let block_data = match collation.proof_of_validity {
			MaybeCompressedPoV::Raw(pov) => pov.block_data,
			MaybeCompressedPoV::Compressed(_) => panic!("Only works with uncompressed povs"),
		};

		let ret_buf = validate_candidate(
			collator.validation_code(),
			&ValidationParams {
				parent_head: parent_head.encode().into(),
				block_data,
				relay_parent_number: 1,
				relay_parent_storage_root: Hash::zero(),
			}
			.encode(),
		)
		.unwrap();
		let ret = ValidationResult::decode(&mut &ret_buf[..]).unwrap();

		let new_head = HeadData::decode(&mut &ret.head_data.0[..]).unwrap();
		assert_eq!(
			**collator
				.state
				.lock()
				.unwrap()
				.number_to_head
				.get(&(parent_head.number + 1))
				.unwrap(),
			new_head
		);
	}

	#[test]
	fn advance_to_state_when_parent_head_is_missing() {
		let collator = Collator::new(1_000, 1);
		let graveyard_size = collator.state.lock().unwrap().graveyard_size;

		let mut head = calculate_head_and_state_for_number(10, graveyard_size, 1).unwrap().0;

		for i in 1..10 {
			head = collator.state.lock().unwrap().advance(head).unwrap().1;
			assert_eq!(10 + i, head.number);
		}

		let collator = Collator::new(1_000, 1);
		let mut second_head = collator
			.state
			.lock()
			.unwrap()
			.number_to_head
			.get(&0)
			.cloned()
			.unwrap()
			.as_ref()
			.clone();

		for _ in 1..20 {
			second_head = collator.state.lock().unwrap().advance(second_head.clone()).unwrap().1;
		}

		assert_eq!(second_head, head);
	}
}