1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// This file is part of Substrate.

// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! `Inspect` and `Mutate` traits for working with regular balances.

use crate::{
	dispatch::DispatchError,
	ensure,
	traits::{
		tokens::{
			misc::{
				Balance, DepositConsequence,
				Fortitude::{self, Force, Polite},
				Precision::{self, BestEffort, Exact},
				Preservation::{self, Expendable},
				Provenance::{self, Extant},
				WithdrawConsequence,
			},
			Imbalance as ImbalanceT,
		},
		SameOrOther, TryDrop,
	},
};
use sp_arithmetic::traits::{CheckedAdd, CheckedSub, One};
use sp_runtime::{traits::Saturating, ArithmeticError, TokenError};
use sp_std::marker::PhantomData;

use super::{Credit, Debt, HandleImbalanceDrop, Imbalance};

/// Trait for providing balance-inspection access to a fungible asset.
pub trait Inspect<AccountId>: Sized {
	/// Scalar type for representing balance of an account.
	type Balance: Balance;

	/// The total amount of issuance in the system.
	fn total_issuance() -> Self::Balance;

	/// The total amount of issuance in the system excluding those which are controlled by the
	/// system.
	fn active_issuance() -> Self::Balance {
		Self::total_issuance()
	}

	/// The minimum balance any single account may have.
	fn minimum_balance() -> Self::Balance;

	/// Get the total amount of funds whose ultimate beneficial ownership can be determined as
	/// `who`.
	///
	/// This may include funds which are wholly inaccessible to `who`, either temporarily or even
	/// indefinitely.
	///
	/// For the amount of the balance which is currently free to be removed from the account without
	/// error, use `reducible_balance`.
	///
	/// For the amount of the balance which may eventually be free to be removed from the account,
	/// use `balance()`.
	fn total_balance(who: &AccountId) -> Self::Balance;

	/// Get the balance of `who` which does not include funds which are exclusively allocated to
	/// subsystems of the chain ("on hold" or "reserved").
	///
	/// In general this isn't especially useful outside of tests, and for practical purposes, you'll
	/// want to use `reducible_balance()`.
	fn balance(who: &AccountId) -> Self::Balance;

	/// Get the maximum amount that `who` can withdraw/transfer successfully based on whether the
	/// account should be kept alive (`preservation`) or whether we are willing to force the
	/// reduction and potentially go below user-level restrictions on the minimum amount of the
	/// account.
	///
	/// Always less than or equal to `balance()`.
	fn reducible_balance(
		who: &AccountId,
		preservation: Preservation,
		force: Fortitude,
	) -> Self::Balance;

	/// Returns `true` if the balance of `who` may be increased by `amount`.
	///
	/// - `who`: The account of which the balance should be increased by `amount`.
	/// - `amount`: How much should the balance be increased?
	/// - `provenance`: Will `amount` be minted to deposit it into `account` or is it already in the
	///   system?
	fn can_deposit(
		who: &AccountId,
		amount: Self::Balance,
		provenance: Provenance,
	) -> DepositConsequence;

	/// Returns `Success` if the balance of `who` may be decreased by `amount`, otherwise
	/// the consequence.
	fn can_withdraw(who: &AccountId, amount: Self::Balance) -> WithdrawConsequence<Self::Balance>;
}

/// Special dust type which can be type-safely converted into a `Credit`.
#[must_use]
pub struct Dust<A, T: Inspect<A>>(pub T::Balance);

impl<A, T: Balanced<A>> Dust<A, T> {
	/// Convert `Dust` into an instance of `Credit`.
	pub fn into_credit(self) -> Credit<A, T> {
		Credit::<A, T>::new(self.0)
	}
}

/// A fungible token class where the balance can be set arbitrarily.
///
/// **WARNING**
/// Do not use this directly unless you want trouble, since it allows you to alter account balances
/// without keeping the issuance up to date. It has no safeguards against accidentally creating
/// token imbalances in your system leading to accidental inflation or deflation. It's really just
/// for the underlying datatype to implement so the user gets the much safer `Balanced` trait to
/// use.
pub trait Unbalanced<AccountId>: Inspect<AccountId> {
	/// Create some dust and handle it with `Self::handle_dust`. This is an unbalanced operation
	/// and it must only be used when an account is modified in a raw fashion, outside of the entire
	/// fungibles API. The `amount` is capped at `Self::minimum_balance() - 1`.
	///
	/// This should not be reimplemented.
	fn handle_raw_dust(amount: Self::Balance) {
		Self::handle_dust(Dust(amount.min(Self::minimum_balance().saturating_sub(One::one()))))
	}

	/// Do something with the dust which has been destroyed from the system. `Dust` can be converted
	/// into a `Credit` with the `Balanced` trait impl.
	fn handle_dust(dust: Dust<AccountId, Self>);

	/// Forcefully set the balance of `who` to `amount`.
	///
	/// If this call executes successfully, you can `assert_eq!(Self::balance(), amount);`.
	///
	/// For implementations which include one or more balances on hold, then these are *not*
	/// included in the `amount`.
	///
	/// This function does its best to force the balance change through, but will not break system
	/// invariants such as any Existential Deposits needed or overflows/underflows.
	/// If this cannot be done for some reason (e.g. because the account cannot be created, deleted
	/// or would overflow) then an `Err` is returned.
	///
	/// If `Ok` is returned then its inner, if `Some` is the amount which was discarded as dust due
	/// to existential deposit requirements. The default implementation of `decrease_balance` and
	/// `increase_balance` converts this into an `Imbalance` and then passes it into `handle_dust`.
	fn write_balance(
		who: &AccountId,
		amount: Self::Balance,
	) -> Result<Option<Self::Balance>, DispatchError>;

	/// Set the total issuance to `amount`.
	fn set_total_issuance(amount: Self::Balance);

	/// Reduce the balance of `who` by `amount`.
	///
	/// If `precision` is `Exact` and it cannot be reduced by that amount for
	/// some reason, return `Err` and don't reduce it at all. If `precision` is `BestEffort`, then
	/// reduce the balance of `who` by the most that is possible, up to `amount`.
	///
	/// In either case, if `Ok` is returned then the inner is the amount by which is was reduced.
	/// Minimum balance will be respected and thus the returned amount may be up to
	/// `Self::minimum_balance() - 1` greater than `amount` in the case that the reduction caused
	/// the account to be deleted.
	fn decrease_balance(
		who: &AccountId,
		mut amount: Self::Balance,
		precision: Precision,
		preservation: Preservation,
		force: Fortitude,
	) -> Result<Self::Balance, DispatchError> {
		let old_balance = Self::balance(who);
		let free = Self::reducible_balance(who, preservation, force);
		if let BestEffort = precision {
			amount = amount.min(free);
		}
		let new_balance = old_balance.checked_sub(&amount).ok_or(TokenError::FundsUnavailable)?;
		if let Some(dust) = Self::write_balance(who, new_balance)? {
			Self::handle_dust(Dust(dust));
		}
		Ok(old_balance.saturating_sub(new_balance))
	}

	/// Increase the balance of `who` by `amount`.
	///
	/// If it cannot be increased by that amount for some reason, return `Err` and don't increase
	/// it at all. If Ok, return the imbalance.
	/// Minimum balance will be respected and an error will be returned if
	/// `amount < Self::minimum_balance()` when the account of `who` is zero.
	fn increase_balance(
		who: &AccountId,
		amount: Self::Balance,
		precision: Precision,
	) -> Result<Self::Balance, DispatchError> {
		let old_balance = Self::balance(who);
		let new_balance = if let BestEffort = precision {
			old_balance.saturating_add(amount)
		} else {
			old_balance.checked_add(&amount).ok_or(ArithmeticError::Overflow)?
		};
		if new_balance < Self::minimum_balance() {
			// Attempt to increase from 0 to below minimum -> stays at zero.
			if let BestEffort = precision {
				Ok(Default::default())
			} else {
				Err(TokenError::BelowMinimum.into())
			}
		} else {
			if new_balance == old_balance {
				Ok(Default::default())
			} else {
				if let Some(dust) = Self::write_balance(who, new_balance)? {
					Self::handle_dust(Dust(dust));
				}
				Ok(new_balance.saturating_sub(old_balance))
			}
		}
	}

	/// Reduce the active issuance by some amount.
	fn deactivate(_: Self::Balance) {}

	/// Increase the active issuance by some amount, up to the outstanding amount reduced.
	fn reactivate(_: Self::Balance) {}
}

/// Trait for providing a basic fungible asset.
pub trait Mutate<AccountId>: Inspect<AccountId> + Unbalanced<AccountId> {
	/// Increase the balance of `who` by exactly `amount`, minting new tokens. If that isn't
	/// possible then an `Err` is returned and nothing is changed.
	fn mint_into(who: &AccountId, amount: Self::Balance) -> Result<Self::Balance, DispatchError> {
		Self::total_issuance().checked_add(&amount).ok_or(ArithmeticError::Overflow)?;
		let actual = Self::increase_balance(who, amount, Exact)?;
		Self::set_total_issuance(Self::total_issuance().saturating_add(actual));
		Self::done_mint_into(who, amount);
		Ok(actual)
	}

	/// Decrease the balance of `who` by at least `amount`, possibly slightly more in the case of
	/// minimum-balance requirements, burning the tokens. If that isn't possible then an `Err` is
	/// returned and nothing is changed. If successful, the amount of tokens reduced is returned.
	fn burn_from(
		who: &AccountId,
		amount: Self::Balance,
		precision: Precision,
		force: Fortitude,
	) -> Result<Self::Balance, DispatchError> {
		let actual = Self::reducible_balance(who, Expendable, force).min(amount);
		ensure!(actual == amount || precision == BestEffort, TokenError::FundsUnavailable);
		Self::total_issuance().checked_sub(&actual).ok_or(ArithmeticError::Overflow)?;
		let actual = Self::decrease_balance(who, actual, BestEffort, Expendable, force)?;
		Self::set_total_issuance(Self::total_issuance().saturating_sub(actual));
		Self::done_burn_from(who, actual);
		Ok(actual)
	}

	/// Attempt to decrease the `asset` balance of `who` by `amount`.
	///
	/// Equivalent to `burn_from`, except with an expectation that within the bounds of some
	/// universal issuance, the total assets `suspend`ed and `resume`d will be equivalent. The
	/// implementation may be configured such that the total assets suspended may never be less than
	/// the total assets resumed (which is the invariant for an issuing system), or the reverse
	/// (which the invariant in a non-issuing system).
	///
	/// Because of this expectation, any metadata associated with the asset is expected to survive
	/// the suspect-resume cycle.
	fn shelve(who: &AccountId, amount: Self::Balance) -> Result<Self::Balance, DispatchError> {
		let actual = Self::reducible_balance(who, Expendable, Polite).min(amount);
		ensure!(actual == amount, TokenError::FundsUnavailable);
		Self::total_issuance().checked_sub(&actual).ok_or(ArithmeticError::Overflow)?;
		let actual = Self::decrease_balance(who, actual, BestEffort, Expendable, Polite)?;
		Self::set_total_issuance(Self::total_issuance().saturating_sub(actual));
		Self::done_shelve(who, actual);
		Ok(actual)
	}

	/// Attempt to increase the `asset` balance of `who` by `amount`.
	///
	/// Equivalent to `mint_into`, except with an expectation that within the bounds of some
	/// universal issuance, the total assets `suspend`ed and `resume`d will be equivalent. The
	/// implementation may be configured such that the total assets suspended may never be less than
	/// the total assets resumed (which is the invariant for an issuing system), or the reverse
	/// (which the invariant in a non-issuing system).
	///
	/// Because of this expectation, any metadata associated with the asset is expected to survive
	/// the suspect-resume cycle.
	fn restore(who: &AccountId, amount: Self::Balance) -> Result<Self::Balance, DispatchError> {
		Self::total_issuance().checked_add(&amount).ok_or(ArithmeticError::Overflow)?;
		let actual = Self::increase_balance(who, amount, Exact)?;
		Self::set_total_issuance(Self::total_issuance().saturating_add(actual));
		Self::done_restore(who, amount);
		Ok(actual)
	}

	/// Transfer funds from one account into another.
	fn transfer(
		source: &AccountId,
		dest: &AccountId,
		amount: Self::Balance,
		preservation: Preservation,
	) -> Result<Self::Balance, DispatchError> {
		let _extra = Self::can_withdraw(source, amount).into_result(preservation != Expendable)?;
		Self::can_deposit(dest, amount, Extant).into_result()?;
		Self::decrease_balance(source, amount, BestEffort, preservation, Polite)?;
		// This should never fail as we checked `can_deposit` earlier. But we do a best-effort
		// anyway.
		let _ = Self::increase_balance(dest, amount, BestEffort);
		Self::done_transfer(source, dest, amount);
		Ok(amount)
	}

	/// Simple infallible function to force an account to have a particular balance, good for use
	/// in tests and benchmarks but not recommended for production code owing to the lack of
	/// error reporting.
	///
	/// Returns the new balance.
	fn set_balance(who: &AccountId, amount: Self::Balance) -> Self::Balance {
		let b = Self::balance(who);
		if b > amount {
			Self::burn_from(who, b - amount, BestEffort, Force).map(|d| b.saturating_sub(d))
		} else {
			Self::mint_into(who, amount - b).map(|d| b.saturating_add(d))
		}
		.unwrap_or(b)
	}

	fn done_mint_into(_who: &AccountId, _amount: Self::Balance) {}
	fn done_burn_from(_who: &AccountId, _amount: Self::Balance) {}
	fn done_shelve(_who: &AccountId, _amount: Self::Balance) {}
	fn done_restore(_who: &AccountId, _amount: Self::Balance) {}
	fn done_transfer(_source: &AccountId, _dest: &AccountId, _amount: Self::Balance) {}
}

/// Simple handler for an imbalance drop which increases the total issuance of the system by the
/// imbalance amount. Used for leftover debt.
pub struct IncreaseIssuance<AccountId, U>(PhantomData<(AccountId, U)>);
impl<AccountId, U: Unbalanced<AccountId>> HandleImbalanceDrop<U::Balance>
	for IncreaseIssuance<AccountId, U>
{
	fn handle(amount: U::Balance) {
		U::set_total_issuance(U::total_issuance().saturating_add(amount))
	}
}

/// Simple handler for an imbalance drop which decreases the total issuance of the system by the
/// imbalance amount. Used for leftover credit.
pub struct DecreaseIssuance<AccountId, U>(PhantomData<(AccountId, U)>);
impl<AccountId, U: Unbalanced<AccountId>> HandleImbalanceDrop<U::Balance>
	for DecreaseIssuance<AccountId, U>
{
	fn handle(amount: U::Balance) {
		U::set_total_issuance(U::total_issuance().saturating_sub(amount))
	}
}

/// A fungible token class where any creation and deletion of tokens is semi-explicit and where the
/// total supply is maintained automatically.
///
/// This is auto-implemented when a token class has `Unbalanced` implemented.
pub trait Balanced<AccountId>: Inspect<AccountId> + Unbalanced<AccountId> {
	/// The type for managing what happens when an instance of `Debt` is dropped without being used.
	type OnDropDebt: HandleImbalanceDrop<Self::Balance>;
	/// The type for managing what happens when an instance of `Credit` is dropped without being
	/// used.
	type OnDropCredit: HandleImbalanceDrop<Self::Balance>;

	/// Reduce the total issuance by `amount` and return the according imbalance. The imbalance will
	/// typically be used to reduce an account by the same amount with e.g. `settle`.
	///
	/// This is infallible, but doesn't guarantee that the entire `amount` is burnt, for example
	/// in the case of underflow.
	fn rescind(amount: Self::Balance) -> Debt<AccountId, Self> {
		let old = Self::total_issuance();
		let new = old.saturating_sub(amount);
		Self::set_total_issuance(new);
		let delta = old - new;
		Self::done_rescind(delta);
		Imbalance::<Self::Balance, Self::OnDropDebt, Self::OnDropCredit>::new(delta)
	}

	/// Increase the total issuance by `amount` and return the according imbalance. The imbalance
	/// will typically be used to increase an account by the same amount with e.g.
	/// `resolve_into_existing` or `resolve_creating`.
	///
	/// This is infallible, but doesn't guarantee that the entire `amount` is issued, for example
	/// in the case of overflow.
	fn issue(amount: Self::Balance) -> Credit<AccountId, Self> {
		let old = Self::total_issuance();
		let new = old.saturating_add(amount);
		Self::set_total_issuance(new);
		let delta = new - old;
		Self::done_issue(delta);
		Imbalance::<Self::Balance, Self::OnDropCredit, Self::OnDropDebt>::new(delta)
	}

	/// Produce a pair of imbalances that cancel each other out exactly.
	///
	/// This is just the same as burning and issuing the same amount and has no effect on the
	/// total issuance.
	fn pair(amount: Self::Balance) -> (Debt<AccountId, Self>, Credit<AccountId, Self>) {
		(Self::rescind(amount), Self::issue(amount))
	}

	/// Mints `value` into the account of `who`, creating it as needed.
	///
	/// If `precision` is `BestEffort` and `value` in full could not be minted (e.g. due to
	/// overflow), then the maximum is minted, up to `value`. If `precision` is `Exact`, then
	/// exactly `value` must be minted into the account of `who` or the operation will fail with an
	/// `Err` and nothing will change.
	///
	/// If the operation is successful, this will return `Ok` with a `Debt` of the total value
	/// added to the account.
	fn deposit(
		who: &AccountId,
		value: Self::Balance,
		precision: Precision,
	) -> Result<Debt<AccountId, Self>, DispatchError> {
		let increase = Self::increase_balance(who, value, precision)?;
		Self::done_deposit(who, increase);
		Ok(Imbalance::<Self::Balance, Self::OnDropDebt, Self::OnDropCredit>::new(increase))
	}

	/// Removes `value` balance from `who` account if possible.
	///
	/// If `precision` is `BestEffort` and `value` in full could not be removed (e.g. due to
	/// underflow), then the maximum is removed, up to `value`. If `precision` is `Exact`, then
	/// exactly `value` must be removed from the account of `who` or the operation will fail with an
	/// `Err` and nothing will change.
	///
	/// If the removal is needed but not possible, then it returns `Err` and nothing is changed.
	/// If the account needed to be deleted, then slightly more than `value` may be removed from the
	/// account owning since up to (but not including) minimum balance may also need to be removed.
	///
	/// If the operation is successful, this will return `Ok` with a `Credit` of the total value
	/// removed from the account.
	fn withdraw(
		who: &AccountId,
		value: Self::Balance,
		precision: Precision,
		preservation: Preservation,
		force: Fortitude,
	) -> Result<Credit<AccountId, Self>, DispatchError> {
		let decrease = Self::decrease_balance(who, value, precision, preservation, force)?;
		Self::done_withdraw(who, decrease);
		Ok(Imbalance::<Self::Balance, Self::OnDropCredit, Self::OnDropDebt>::new(decrease))
	}

	/// The balance of `who` is increased in order to counter `credit`. If the whole of `credit`
	/// cannot be countered, then nothing is changed and the original `credit` is returned in an
	/// `Err`.
	///
	/// Please note: If `credit.peek()` is less than `Self::minimum_balance()`, then `who` must
	/// already exist for this to succeed.
	fn resolve(
		who: &AccountId,
		credit: Credit<AccountId, Self>,
	) -> Result<(), Credit<AccountId, Self>> {
		let v = credit.peek();
		let debt = match Self::deposit(who, v, Exact) {
			Err(_) => return Err(credit),
			Ok(d) => d,
		};
		let result = credit.offset(debt).try_drop();
		debug_assert!(result.is_ok(), "ok deposit return must be equal to credit value; qed");
		Ok(())
	}

	/// The balance of `who` is decreased in order to counter `debt`. If the whole of `debt`
	/// cannot be countered, then nothing is changed and the original `debt` is returned in an
	/// `Err`.
	fn settle(
		who: &AccountId,
		debt: Debt<AccountId, Self>,
		preservation: Preservation,
	) -> Result<Credit<AccountId, Self>, Debt<AccountId, Self>> {
		let amount = debt.peek();
		let credit = match Self::withdraw(who, amount, Exact, preservation, Polite) {
			Err(_) => return Err(debt),
			Ok(d) => d,
		};

		match credit.offset(debt) {
			SameOrOther::None => Ok(Credit::<AccountId, Self>::zero()),
			SameOrOther::Same(dust) => Ok(dust),
			SameOrOther::Other(rest) => {
				debug_assert!(false, "ok withdraw return must be at least debt value; qed");
				Err(rest)
			},
		}
	}

	fn done_rescind(_amount: Self::Balance) {}
	fn done_issue(_amount: Self::Balance) {}
	fn done_deposit(_who: &AccountId, _amount: Self::Balance) {}
	fn done_withdraw(_who: &AccountId, _amount: Self::Balance) {}
}