1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{exec::ExecError, Config, Error};
use frame_support::{
	dispatch::{
		DispatchError, DispatchErrorWithPostInfo, DispatchResultWithPostInfo, PostDispatchInfo,
	},
	weights::Weight,
	DefaultNoBound,
};
use sp_core::Get;
use sp_runtime::traits::Zero;
use sp_std::marker::PhantomData;

#[cfg(test)]
use std::{any::Any, fmt::Debug};

#[derive(Debug, PartialEq, Eq)]
pub struct ChargedAmount(Weight);

impl ChargedAmount {
	pub fn amount(&self) -> Weight {
		self.0
	}
}

#[cfg(not(test))]
pub trait TestAuxiliaries {}
#[cfg(not(test))]
impl<T> TestAuxiliaries for T {}

#[cfg(test)]
pub trait TestAuxiliaries: Any + Debug + PartialEq + Eq {}
#[cfg(test)]
impl<T: Any + Debug + PartialEq + Eq> TestAuxiliaries for T {}

/// This trait represents a token that can be used for charging `GasMeter`.
/// There is no other way of charging it.
///
/// Implementing type is expected to be super lightweight hence `Copy` (`Clone` is added
/// for consistency). If inlined there should be no observable difference compared
/// to a hand-written code.
pub trait Token<T: Config>: Copy + Clone + TestAuxiliaries {
	/// Return the amount of gas that should be taken by this token.
	///
	/// This function should be really lightweight and must not fail. It is not
	/// expected that implementors will query the storage or do any kinds of heavy operations.
	///
	/// That said, implementors of this function still can run into overflows
	/// while calculating the amount. In this case it is ok to use saturating operations
	/// since on overflow they will return `max_value` which should consume all gas.
	fn weight(&self) -> Weight;
}

/// A wrapper around a type-erased trait object of what used to be a `Token`.
#[cfg(test)]
pub struct ErasedToken {
	pub description: String,
	pub token: Box<dyn Any>,
}

#[derive(DefaultNoBound)]
pub struct GasMeter<T: Config> {
	gas_limit: Weight,
	/// Amount of gas left from initial gas limit. Can reach zero.
	gas_left: Weight,
	/// Due to `adjust_gas` and `nested` the `gas_left` can temporarily dip below its final value.
	gas_left_lowest: Weight,
	/// Amount of fuel consumed by the engine from the last host function call.
	engine_consumed: u64,
	_phantom: PhantomData<T>,
	#[cfg(test)]
	tokens: Vec<ErasedToken>,
}

impl<T: Config> GasMeter<T> {
	pub fn new(gas_limit: Weight) -> Self {
		GasMeter {
			gas_limit,
			gas_left: gas_limit,
			gas_left_lowest: gas_limit,
			engine_consumed: Default::default(),
			_phantom: PhantomData,
			#[cfg(test)]
			tokens: Vec::new(),
		}
	}

	/// Create a new gas meter by removing gas from the current meter.
	///
	/// # Note
	///
	/// Passing `0` as amount is interpreted as "all remaining gas".
	pub fn nested(&mut self, amount: Weight) -> Result<Self, DispatchError> {
		// NOTE that it is ok to allocate all available gas since it still ensured
		// by `charge` that it doesn't reach zero.
		let amount = Weight::from_parts(
			if amount.ref_time().is_zero() {
				self.gas_left().ref_time()
			} else {
				amount.ref_time()
			},
			if amount.proof_size().is_zero() {
				self.gas_left().proof_size()
			} else {
				amount.proof_size()
			},
		);
		self.gas_left = self.gas_left.checked_sub(&amount).ok_or_else(|| <Error<T>>::OutOfGas)?;
		Ok(GasMeter::new(amount))
	}

	/// Absorb the remaining gas of a nested meter after we are done using it.
	pub fn absorb_nested(&mut self, nested: Self) {
		if self.gas_left.ref_time().is_zero() {
			// All of the remaining gas was inherited by the nested gas meter. When absorbing
			// we can therefore safely inherit the lowest gas that the nested gas meter experienced
			// as long as it is lower than the lowest gas that was experienced by the parent.
			// We cannot call `self.gas_left_lowest()` here because in the state that this
			// code is run the parent gas meter has `0` gas left.
			*self.gas_left_lowest.ref_time_mut() =
				nested.gas_left_lowest().ref_time().min(self.gas_left_lowest.ref_time());
		} else {
			// The nested gas meter was created with a fixed amount that did not consume all of the
			// parents (self) gas. The lowest gas that self will experience is when the nested
			// gas was pre charged with the fixed amount.
			*self.gas_left_lowest.ref_time_mut() = self.gas_left_lowest().ref_time();
		}
		if self.gas_left.proof_size().is_zero() {
			*self.gas_left_lowest.proof_size_mut() =
				nested.gas_left_lowest().proof_size().min(self.gas_left_lowest.proof_size());
		} else {
			*self.gas_left_lowest.proof_size_mut() = self.gas_left_lowest().proof_size();
		}
		self.gas_left += nested.gas_left;
	}

	/// Account for used gas.
	///
	/// Amount is calculated by the given `token`.
	///
	/// Returns `OutOfGas` if there is not enough gas or addition of the specified
	/// amount of gas has lead to overflow.
	///
	/// NOTE that amount isn't consumed if there is not enough gas. This is considered
	/// safe because we always charge gas before performing any resource-spending action.
	#[inline]
	pub fn charge<Tok: Token<T>>(&mut self, token: Tok) -> Result<ChargedAmount, DispatchError> {
		#[cfg(test)]
		{
			// Unconditionally add the token to the storage.
			let erased_tok =
				ErasedToken { description: format!("{:?}", token), token: Box::new(token) };
			self.tokens.push(erased_tok);
		}
		let amount = token.weight();
		// It is OK to not charge anything on failure because we always charge _before_ we perform
		// any action
		self.gas_left = self.gas_left.checked_sub(&amount).ok_or_else(|| Error::<T>::OutOfGas)?;
		Ok(ChargedAmount(amount))
	}

	/// Adjust a previously charged amount down to its actual amount.
	///
	/// This is when a maximum a priori amount was charged and then should be partially
	/// refunded to match the actual amount.
	pub fn adjust_gas<Tok: Token<T>>(&mut self, charged_amount: ChargedAmount, token: Tok) {
		self.gas_left_lowest = self.gas_left_lowest();
		let adjustment = charged_amount.0.saturating_sub(token.weight());
		self.gas_left = self.gas_left.saturating_add(adjustment).min(self.gas_limit);
	}

	/// This method is used for gas syncs with the engine.
	///
	/// Updates internal `engine_comsumed` tracker of engine fuel consumption.
	///
	/// Charges self with the `ref_time` Weight corresponding to wasmi fuel consumed on the engine
	/// side since last sync. Passed value is scaled by multiplying it by the weight of a basic
	/// operation, as such an operation in wasmi engine costs 1.
	///
	/// Returns the updated `gas_left` `Weight` value from the meter.
	/// Normally this would never fail, as engine should fail first when out of gas.
	pub fn charge_fuel(&mut self, wasmi_fuel_total: u64) -> Result<Weight, DispatchError> {
		// Take the part consumed since the last update.
		let wasmi_fuel = wasmi_fuel_total.saturating_sub(self.engine_consumed);
		if !wasmi_fuel.is_zero() {
			self.engine_consumed = wasmi_fuel_total;
			let reftime_consumed =
				wasmi_fuel.saturating_mul(T::Schedule::get().instruction_weights.base as u64);
			let ref_time_left = self
				.gas_left
				.ref_time()
				.checked_sub(reftime_consumed)
				.ok_or_else(|| Error::<T>::OutOfGas)?;

			*(self.gas_left.ref_time_mut()) = ref_time_left;
		}
		Ok(self.gas_left)
	}

	/// Returns the amount of gas that is required to run the same call.
	///
	/// This can be different from `gas_spent` because due to `adjust_gas` the amount of
	/// spent gas can temporarily drop and be refunded later.
	pub fn gas_required(&self) -> Weight {
		self.gas_limit.saturating_sub(self.gas_left_lowest())
	}

	/// Returns how much gas was spent
	pub fn gas_consumed(&self) -> Weight {
		self.gas_limit.saturating_sub(self.gas_left)
	}

	/// Returns how much gas left from the initial budget.
	pub fn gas_left(&self) -> Weight {
		self.gas_left
	}

	/// Turn this GasMeter into a DispatchResult that contains the actually used gas.
	pub fn into_dispatch_result<R, E>(
		self,
		result: Result<R, E>,
		base_weight: Weight,
	) -> DispatchResultWithPostInfo
	where
		E: Into<ExecError>,
	{
		let post_info = PostDispatchInfo {
			actual_weight: Some(self.gas_consumed().saturating_add(base_weight)),
			pays_fee: Default::default(),
		};

		result
			.map(|_| post_info)
			.map_err(|e| DispatchErrorWithPostInfo { post_info, error: e.into().error })
	}

	fn gas_left_lowest(&self) -> Weight {
		self.gas_left_lowest.min(self.gas_left)
	}

	#[cfg(test)]
	pub fn tokens(&self) -> &[ErasedToken] {
		&self.tokens
	}
}

#[cfg(test)]
mod tests {
	use super::{GasMeter, Token, Weight};
	use crate::tests::Test;

	/// A simple utility macro that helps to match against a
	/// list of tokens.
	macro_rules! match_tokens {
		($tokens_iter:ident,) => {
		};
		($tokens_iter:ident, $x:expr, $($rest:tt)*) => {
			{
				let next = ($tokens_iter).next().unwrap();
				let pattern = $x;

				// Note that we don't specify the type name directly in this macro,
				// we only have some expression $x of some type. At the same time, we
				// have an iterator of Box<dyn Any> and to downcast we need to specify
				// the type which we want downcast to.
				//
				// So what we do is we assign `_pattern_typed_next_ref` to a variable which has
				// the required type.
				//
				// Then we make `_pattern_typed_next_ref = token.downcast_ref()`. This makes
				// rustc infer the type `T` (in `downcast_ref<T: Any>`) to be the same as in $x.

				let mut _pattern_typed_next_ref = &pattern;
				_pattern_typed_next_ref = match next.token.downcast_ref() {
					Some(p) => {
						assert_eq!(p, &pattern);
						p
					}
					None => {
						panic!("expected type {} got {}", stringify!($x), next.description);
					}
				};
			}

			match_tokens!($tokens_iter, $($rest)*);
		};
	}

	/// A trivial token that charges the specified number of gas units.
	#[derive(Copy, Clone, PartialEq, Eq, Debug)]
	struct SimpleToken(u64);
	impl Token<Test> for SimpleToken {
		fn weight(&self) -> Weight {
			Weight::from_parts(self.0, 0)
		}
	}

	#[test]
	fn it_works() {
		let gas_meter = GasMeter::<Test>::new(Weight::from_parts(50000, 0));
		assert_eq!(gas_meter.gas_left(), Weight::from_parts(50000, 0));
	}

	#[test]
	fn tracing() {
		let mut gas_meter = GasMeter::<Test>::new(Weight::from_parts(50000, 0));
		assert!(!gas_meter.charge(SimpleToken(1)).is_err());

		let mut tokens = gas_meter.tokens().iter();
		match_tokens!(tokens, SimpleToken(1),);
	}

	// This test makes sure that nothing can be executed if there is no gas.
	#[test]
	fn refuse_to_execute_anything_if_zero() {
		let mut gas_meter = GasMeter::<Test>::new(Weight::zero());
		assert!(gas_meter.charge(SimpleToken(1)).is_err());
	}

	// Make sure that the gas meter does not charge in case of overcharger
	#[test]
	fn overcharge_does_not_charge() {
		let mut gas_meter = GasMeter::<Test>::new(Weight::from_parts(200, 0));

		// The first charge is should lead to OOG.
		assert!(gas_meter.charge(SimpleToken(300)).is_err());

		// The gas meter should still contain the full 200.
		assert!(gas_meter.charge(SimpleToken(200)).is_ok());
	}

	// Charging the exact amount that the user paid for should be
	// possible.
	#[test]
	fn charge_exact_amount() {
		let mut gas_meter = GasMeter::<Test>::new(Weight::from_parts(25, 0));
		assert!(!gas_meter.charge(SimpleToken(25)).is_err());
	}
}