1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Two phase election pallet benchmarking.

use super::*;
use crate::{unsigned::IndexAssignmentOf, Pallet as MultiPhase};
use frame_benchmarking::account;
use frame_election_provider_support::bounds::DataProviderBounds;
use frame_support::{
	assert_ok,
	traits::{Hooks, TryCollect},
	BoundedVec,
};
use frame_system::RawOrigin;
use rand::{prelude::SliceRandom, rngs::SmallRng, SeedableRng};
use sp_arithmetic::{per_things::Percent, traits::One};
use sp_runtime::InnerOf;

const SEED: u32 = 999;

/// Creates a **valid** solution with exactly the given size.
///
/// The snapshot is also created internally.
fn solution_with_size<T: Config>(
	size: SolutionOrSnapshotSize,
	active_voters_count: u32,
	desired_targets: u32,
) -> Result<RawSolution<SolutionOf<T::MinerConfig>>, &'static str> {
	ensure!(size.targets >= desired_targets, "must have enough targets");
	ensure!(
		size.targets >= (<SolutionOf<T::MinerConfig>>::LIMIT * 2) as u32,
		"must have enough targets for unique votes."
	);
	ensure!(size.voters >= active_voters_count, "must have enough voters");
	ensure!(
		(<SolutionOf<T::MinerConfig>>::LIMIT as u32) < desired_targets,
		"must have enough winners to give them votes."
	);

	let ed: VoteWeight = T::Currency::minimum_balance().saturated_into::<u64>();
	let stake: VoteWeight = ed.max(One::one()).saturating_mul(100);

	// first generates random targets.
	let targets: Vec<T::AccountId> = (0..size.targets)
		.map(|i| frame_benchmarking::account("Targets", i, SEED))
		.collect();

	let mut rng = SmallRng::seed_from_u64(SEED.into());

	// decide who are the winners.
	let winners = targets
		.as_slice()
		.choose_multiple(&mut rng, desired_targets as usize)
		.cloned()
		.collect::<Vec<_>>();

	// first generate active voters who must vote for a subset of winners.
	let active_voters = (0..active_voters_count)
		.map(|i| {
			// chose a random subset of winners.
			let winner_votes: BoundedVec<_, _> = winners
				.as_slice()
				.choose_multiple(&mut rng, <SolutionOf<T::MinerConfig>>::LIMIT)
				.cloned()
				.try_collect()
				.expect("<SolutionOf<T::MinerConfig>>::LIMIT is the correct bound; qed.");
			let voter = frame_benchmarking::account::<T::AccountId>("Voter", i, SEED);
			(voter, stake, winner_votes)
		})
		.collect::<Vec<_>>();

	// rest of the voters. They can only vote for non-winners.
	let non_winners = targets
		.iter()
		.filter(|t| !winners.contains(t))
		.cloned()
		.collect::<Vec<T::AccountId>>();
	let rest_voters = (active_voters_count..size.voters)
		.map(|i| {
			let votes: BoundedVec<_, _> = (&non_winners)
				.choose_multiple(&mut rng, <SolutionOf<T::MinerConfig>>::LIMIT)
				.cloned()
				.try_collect()
				.expect("<SolutionOf<T::MinerConfig>>::LIMIT is the correct bound; qed.");
			let voter = frame_benchmarking::account::<T::AccountId>("Voter", i, SEED);
			(voter, stake, votes)
		})
		.collect::<Vec<_>>();

	let mut all_voters = active_voters.clone();
	all_voters.extend(rest_voters);
	all_voters.shuffle(&mut rng);

	assert_eq!(active_voters.len() as u32, active_voters_count);
	assert_eq!(all_voters.len() as u32, size.voters);
	assert_eq!(winners.len() as u32, desired_targets);

	<SnapshotMetadata<T>>::put(SolutionOrSnapshotSize {
		voters: all_voters.len() as u32,
		targets: targets.len() as u32,
	});
	<DesiredTargets<T>>::put(desired_targets);
	<Snapshot<T>>::put(RoundSnapshot { voters: all_voters.clone(), targets: targets.clone() });

	// write the snapshot to staking or whoever is the data provider, in case it is needed further
	// down the road.
	T::DataProvider::put_snapshot(all_voters.clone(), targets.clone(), Some(stake));

	let cache = helpers::generate_voter_cache::<T::MinerConfig>(&all_voters);
	let stake_of = helpers::stake_of_fn::<T::MinerConfig>(&all_voters, &cache);
	let voter_index = helpers::voter_index_fn::<T::MinerConfig>(&cache);
	let target_index = helpers::target_index_fn::<T::MinerConfig>(&targets);
	let voter_at = helpers::voter_at_fn::<T::MinerConfig>(&all_voters);
	let target_at = helpers::target_at_fn::<T::MinerConfig>(&targets);

	let assignments = active_voters
		.iter()
		.map(|(voter, _stake, votes)| {
			let percent_per_edge: InnerOf<SolutionAccuracyOf<T>> =
				(100 / votes.len()).try_into().unwrap_or_else(|_| panic!("failed to convert"));
			crate::unsigned::Assignment::<T> {
				who: voter.clone(),
				distribution: votes
					.iter()
					.map(|t| (t.clone(), <SolutionAccuracyOf<T>>::from_percent(percent_per_edge)))
					.collect::<Vec<_>>(),
			}
		})
		.collect::<Vec<_>>();

	let solution =
		<SolutionOf<T::MinerConfig>>::from_assignment(&assignments, &voter_index, &target_index)
			.unwrap();
	let score = solution.clone().score(stake_of, voter_at, target_at).unwrap();
	let round = <MultiPhase<T>>::round();

	assert!(
		score.minimal_stake > 0,
		"score is zero, this probably means that the stakes are not set."
	);
	Ok(RawSolution { solution, score, round })
}

fn set_up_data_provider<T: Config>(v: u32, t: u32) {
	T::DataProvider::clear();
	log!(
		info,
		"setting up with voters = {} [degree = {}], targets = {}",
		v,
		<T::DataProvider as ElectionDataProvider>::MaxVotesPerVoter::get(),
		t
	);

	// fill targets.
	let mut targets = (0..t)
		.map(|i| {
			let target = frame_benchmarking::account::<T::AccountId>("Target", i, SEED);

			T::DataProvider::add_target(target.clone());
			target
		})
		.collect::<Vec<_>>();

	// we should always have enough voters to fill.
	assert!(
		targets.len() > <T::DataProvider as ElectionDataProvider>::MaxVotesPerVoter::get() as usize
	);
	targets.truncate(<T::DataProvider as ElectionDataProvider>::MaxVotesPerVoter::get() as usize);

	// fill voters.
	(0..v).for_each(|i| {
		let voter = frame_benchmarking::account::<T::AccountId>("Voter", i, SEED);
		let weight = T::Currency::minimum_balance().saturated_into::<u64>() * 1000;
		T::DataProvider::add_voter(voter, weight, targets.clone().try_into().unwrap());
	});
}

frame_benchmarking::benchmarks! {
	on_initialize_nothing {
		assert!(<MultiPhase<T>>::current_phase().is_off());
	}: {
		<MultiPhase<T>>::on_initialize(1u32.into());
	} verify {
		assert!(<MultiPhase<T>>::current_phase().is_off());
	}

	on_initialize_open_signed {
		assert!(<MultiPhase<T>>::snapshot().is_none());
		assert!(<MultiPhase<T>>::current_phase().is_off());
	}: {
		<MultiPhase<T>>::phase_transition(Phase::Signed);
	} verify {
		assert!(<MultiPhase<T>>::snapshot().is_none());
		assert!(<MultiPhase<T>>::current_phase().is_signed());
	}

	on_initialize_open_unsigned {
		assert!(<MultiPhase<T>>::snapshot().is_none());
		assert!(<MultiPhase<T>>::current_phase().is_off());
	}: {
		let now = frame_system::Pallet::<T>::block_number();
		<MultiPhase<T>>::phase_transition(Phase::Unsigned((true, now)));
	} verify {
		assert!(<MultiPhase<T>>::snapshot().is_none());
		assert!(<MultiPhase<T>>::current_phase().is_unsigned());
	}

	finalize_signed_phase_accept_solution {
		let receiver = account("receiver", 0, SEED);
		let initial_balance = T::Currency::minimum_balance() + 10u32.into();
		T::Currency::make_free_balance_be(&receiver, initial_balance);
		let ready = Default::default();
		let deposit: BalanceOf<T> = 10u32.into();

		let reward: BalanceOf<T> = T::SignedRewardBase::get();
		let call_fee: BalanceOf<T> = 30u32.into();

		assert_ok!(T::Currency::reserve(&receiver, deposit));
		assert_eq!(T::Currency::free_balance(&receiver), T::Currency::minimum_balance());
	}: {
		<MultiPhase<T>>::finalize_signed_phase_accept_solution(
			ready,
			&receiver,
			deposit,
			call_fee
		)
	} verify {
		assert_eq!(
			T::Currency::free_balance(&receiver),
			initial_balance + reward + call_fee
		);
		assert_eq!(T::Currency::reserved_balance(&receiver), 0u32.into());
	}

	finalize_signed_phase_reject_solution {
		let receiver = account("receiver", 0, SEED);
		let initial_balance = T::Currency::minimum_balance() + 10u32.into();
		let deposit: BalanceOf<T> = 10u32.into();
		T::Currency::make_free_balance_be(&receiver, initial_balance);
		assert_ok!(T::Currency::reserve(&receiver, deposit));

		assert_eq!(T::Currency::free_balance(&receiver), T::Currency::minimum_balance());
		assert_eq!(T::Currency::reserved_balance(&receiver), 10u32.into());
	}: {
		<MultiPhase<T>>::finalize_signed_phase_reject_solution(&receiver, deposit)
	} verify {
		assert_eq!(T::Currency::free_balance(&receiver), T::Currency::minimum_balance());
		assert_eq!(T::Currency::reserved_balance(&receiver), 0u32.into());
	}

	create_snapshot_internal {
		// number of votes in snapshot.
		let v in (T::BenchmarkingConfig::VOTERS[0]) .. T::BenchmarkingConfig::VOTERS[1];
		// number of targets in snapshot.
		let t in (T::BenchmarkingConfig::TARGETS[0]) .. T::BenchmarkingConfig::TARGETS[1];

		// we don't directly need the data-provider to be populated, but it is just easy to use it.
		set_up_data_provider::<T>(v, t);
		// default bounds are unbounded.
		let targets = T::DataProvider::electable_targets(DataProviderBounds::default())?;
		let voters = T::DataProvider::electing_voters(DataProviderBounds::default())?;
		let desired_targets = T::DataProvider::desired_targets()?;
		assert!(<MultiPhase<T>>::snapshot().is_none());
	}: {
		<MultiPhase::<T>>::create_snapshot_internal(targets, voters, desired_targets)
	} verify {
		assert!(<MultiPhase<T>>::snapshot().is_some());
		assert_eq!(<MultiPhase<T>>::snapshot_metadata().ok_or("metadata missing")?.voters, v);
		assert_eq!(<MultiPhase<T>>::snapshot_metadata().ok_or("metadata missing")?.targets, t);
	}

	// a call to `<Pallet as ElectionProvider>::elect` where we only return the queued solution.
	elect_queued {
		// number of assignments, i.e. solution.len(). This means the active nominators, thus must be
		// a subset of `v`.
		let a in (T::BenchmarkingConfig::ACTIVE_VOTERS[0]) .. T::BenchmarkingConfig::ACTIVE_VOTERS[1];
		// number of desired targets. Must be a subset of `t`.
		let d in (T::BenchmarkingConfig::DESIRED_TARGETS[0]) .. T::BenchmarkingConfig::DESIRED_TARGETS[1];

		// number of votes in snapshot. Not dominant.
		let v  = T::BenchmarkingConfig::VOTERS[1];
		// number of targets in snapshot. Not dominant.
		let t = T::BenchmarkingConfig::TARGETS[1];

		let witness = SolutionOrSnapshotSize { voters: v, targets: t };
		let raw_solution = solution_with_size::<T>(witness, a, d)?;
		let ready_solution =
			<MultiPhase<T>>::feasibility_check(raw_solution, ElectionCompute::Signed)
				.map_err(<&str>::from)?;
		<CurrentPhase<T>>::put(Phase::Signed);
		// assume a queued solution is stored, regardless of where it comes from.
		<QueuedSolution<T>>::put(ready_solution);

		// these are set by the `solution_with_size` function.
		assert!(<DesiredTargets<T>>::get().is_some());
		assert!(<Snapshot<T>>::get().is_some());
		assert!(<SnapshotMetadata<T>>::get().is_some());
	}: {
		assert_ok!(<MultiPhase<T> as ElectionProvider>::elect());
	} verify {
		assert!(<MultiPhase<T>>::queued_solution().is_none());
		assert!(<DesiredTargets<T>>::get().is_none());
		assert!(<Snapshot<T>>::get().is_none());
		assert!(<SnapshotMetadata<T>>::get().is_none());
		assert_eq!(<CurrentPhase<T>>::get(), <Phase<frame_system::pallet_prelude::BlockNumberFor::<T>>>::Off);
	}

	submit {
		// the queue is full and the solution is only better than the worse.
		<MultiPhase<T>>::create_snapshot().map_err(<&str>::from)?;
		<MultiPhase<T>>::phase_transition(Phase::Signed);
		<Round<T>>::put(1);

		let mut signed_submissions = SignedSubmissions::<T>::get();

		// Insert `max` submissions
		for i in 0..(T::SignedMaxSubmissions::get() - 1) {
			let raw_solution = RawSolution {
				score: ElectionScore { minimal_stake: 10_000_000u128 + (i as u128), ..Default::default() },
				..Default::default()
			};
			let signed_submission = SignedSubmission {
				raw_solution,
				who: account("submitters", i, SEED),
				deposit: Default::default(),
				call_fee: Default::default(),
			};
			signed_submissions.insert(signed_submission);
		}
		signed_submissions.put();

		// this score will eject the weakest one.
		let solution = RawSolution {
			score: ElectionScore { minimal_stake: 10_000_000u128 + 1, ..Default::default() },
			..Default::default()
		};

		let caller = frame_benchmarking::whitelisted_caller();
		let deposit = MultiPhase::<T>::deposit_for(
			&solution,
			MultiPhase::<T>::snapshot_metadata().unwrap_or_default(),
		);
		T::Currency::make_free_balance_be(&caller,  T::Currency::minimum_balance() * 1000u32.into() + deposit);

	}: _(RawOrigin::Signed(caller), Box::new(solution))
	verify {
		assert!(<MultiPhase<T>>::signed_submissions().len() as u32 == T::SignedMaxSubmissions::get());
	}

	submit_unsigned {
		// number of votes in snapshot.
		let v in (T::BenchmarkingConfig::VOTERS[0]) .. T::BenchmarkingConfig::VOTERS[1];
		// number of targets in snapshot.
		let t in (T::BenchmarkingConfig::TARGETS[0]) .. T::BenchmarkingConfig::TARGETS[1];
		// number of assignments, i.e. solution.len(). This means the active nominators, thus must be
		// a subset of `v` component.
		let a in
			(T::BenchmarkingConfig::ACTIVE_VOTERS[0]) .. T::BenchmarkingConfig::ACTIVE_VOTERS[1];
		// number of desired targets. Must be a subset of `t` component.
		let d in
			(T::BenchmarkingConfig::DESIRED_TARGETS[0]) ..
			T::BenchmarkingConfig::DESIRED_TARGETS[1];

		let witness = SolutionOrSnapshotSize { voters: v, targets: t };
		let raw_solution = solution_with_size::<T>(witness, a, d)?;

		assert!(<MultiPhase<T>>::queued_solution().is_none());
		<CurrentPhase<T>>::put(Phase::Unsigned((true, 1u32.into())));
	}: _(RawOrigin::None, Box::new(raw_solution), witness)
	verify {
		assert!(<MultiPhase<T>>::queued_solution().is_some());
	}

	// This is checking a valid solution. The worse case is indeed a valid solution.
	feasibility_check {
		// number of votes in snapshot.
		let v in (T::BenchmarkingConfig::VOTERS[0]) .. T::BenchmarkingConfig::VOTERS[1];
		// number of targets in snapshot.
		let t in (T::BenchmarkingConfig::TARGETS[0]) .. T::BenchmarkingConfig::TARGETS[1];
		// number of assignments, i.e. solution.len(). This means the active nominators, thus must be
		// a subset of `v` component.
		let a in (T::BenchmarkingConfig::ACTIVE_VOTERS[0]) .. T::BenchmarkingConfig::ACTIVE_VOTERS[1];
		// number of desired targets. Must be a subset of `t` component.
		let d in (T::BenchmarkingConfig::DESIRED_TARGETS[0]) .. T::BenchmarkingConfig::DESIRED_TARGETS[1];

		let size = SolutionOrSnapshotSize { voters: v, targets: t };
		let raw_solution = solution_with_size::<T>(size, a, d)?;

		assert_eq!(raw_solution.solution.voter_count() as u32, a);
		assert_eq!(raw_solution.solution.unique_targets().len() as u32, d);
	}: {
		assert!(<MultiPhase<T>>::feasibility_check(raw_solution, ElectionCompute::Unsigned).is_ok());
	}

	// NOTE: this weight is not used anywhere, but the fact that it should succeed when execution in
	// isolation is vital to ensure memory-safety. For the same reason, we don't care about the
	// components iterating, we merely check that this operation will work with the "maximum"
	// numbers.
	//
	// ONLY run this benchmark in isolation, and pass the `--extra` flag to enable it.
	//
	// NOTE: If this benchmark does not run out of memory with a given heap pages, it means that the
	// OCW process can SURELY succeed with the given configuration, but the opposite is not true.
	// This benchmark is doing more work than a raw call to `OffchainWorker_offchain_worker` runtime
	// api call, since it is also setting up some mock data, which will itself exhaust the heap to
	// some extent.
	#[extra]
	mine_solution_offchain_memory {
		// number of votes in snapshot. Fixed to maximum.
		let v = T::BenchmarkingConfig::MINER_MAXIMUM_VOTERS;
		// number of targets in snapshot. Fixed to maximum.
		let t = T::BenchmarkingConfig::MAXIMUM_TARGETS;

		set_up_data_provider::<T>(v, t);
		let now = frame_system::Pallet::<T>::block_number();
		<CurrentPhase<T>>::put(Phase::Unsigned((true, now)));
		<MultiPhase::<T>>::create_snapshot().unwrap();
	}: {
		// we can't really verify this as it won't write anything to state, check logs.
		<MultiPhase::<T>>::offchain_worker(now)
	}

	// NOTE: this weight is not used anywhere, but the fact that it should succeed when execution in
	// isolation is vital to ensure memory-safety. For the same reason, we don't care about the
	// components iterating, we merely check that this operation will work with the "maximum"
	// numbers.
	//
	// ONLY run this benchmark in isolation, and pass the `--extra` flag to enable it.
	#[extra]
	create_snapshot_memory {
		// number of votes in snapshot. Fixed to maximum.
		let v = T::BenchmarkingConfig::SNAPSHOT_MAXIMUM_VOTERS;
		// number of targets in snapshot. Fixed to maximum.
		let t = T::BenchmarkingConfig::MAXIMUM_TARGETS;

		set_up_data_provider::<T>(v, t);
		assert!(<MultiPhase<T>>::snapshot().is_none());
	}: {
		<MultiPhase::<T>>::create_snapshot().map_err(|_| "could not create snapshot")?;
	} verify {
		assert!(<MultiPhase<T>>::snapshot().is_some());
		assert_eq!(<MultiPhase<T>>::snapshot_metadata().ok_or("snapshot missing")?.voters, v);
		assert_eq!(<MultiPhase<T>>::snapshot_metadata().ok_or("snapshot missing")?.targets, t);
	}

	#[extra]
	trim_assignments_length {
		// number of votes in snapshot.
		let v in (T::BenchmarkingConfig::VOTERS[0]) .. T::BenchmarkingConfig::VOTERS[1];
		// number of targets in snapshot.
		let t in (T::BenchmarkingConfig::TARGETS[0]) .. T::BenchmarkingConfig::TARGETS[1];
		// number of assignments, i.e. solution.len(). This means the active nominators, thus must be
		// a subset of `v` component.
		let a in
			(T::BenchmarkingConfig::ACTIVE_VOTERS[0]) .. T::BenchmarkingConfig::ACTIVE_VOTERS[1];
		// number of desired targets. Must be a subset of `t` component.
		let d in
			(T::BenchmarkingConfig::DESIRED_TARGETS[0]) ..
			T::BenchmarkingConfig::DESIRED_TARGETS[1];
		// Subtract this percentage from the actual encoded size
		let f in 0 .. 95;
		use frame_election_provider_support::IndexAssignment;

		// Compute a random solution, then work backwards to get the lists of voters, targets, and
		// assignments
		let witness = SolutionOrSnapshotSize { voters: v, targets: t };
		let RawSolution { solution, .. } = solution_with_size::<T>(witness, a, d)?;
		let RoundSnapshot { voters, targets } = MultiPhase::<T>::snapshot().ok_or("snapshot missing")?;
		let voter_at = helpers::voter_at_fn::<T::MinerConfig>(&voters);
		let target_at = helpers::target_at_fn::<T::MinerConfig>(&targets);
		let mut assignments = solution.into_assignment(voter_at, target_at).expect("solution generated by `solution_with_size` must be valid.");

		// make a voter cache and some helper functions for access
		let cache = helpers::generate_voter_cache::<T::MinerConfig>(&voters);
		let voter_index = helpers::voter_index_fn::<T::MinerConfig>(&cache);
		let target_index = helpers::target_index_fn::<T::MinerConfig>(&targets);

		// sort assignments by decreasing voter stake
		assignments.sort_by_key(|crate::unsigned::Assignment::<T> { who, .. }| {
			let stake = cache.get(who).map(|idx| {
				let (_, stake, _) = voters[*idx];
				stake
			}).unwrap_or_default();
			sp_std::cmp::Reverse(stake)
		});

		let mut index_assignments = assignments
			.into_iter()
			.map(|assignment| IndexAssignment::new(&assignment, &voter_index, &target_index))
			.collect::<Result<Vec<_>, _>>()
			.unwrap();

		let encoded_size_of = |assignments: &[IndexAssignmentOf<T::MinerConfig>]| {
			SolutionOf::<T::MinerConfig>::try_from(assignments).map(|solution| solution.encoded_size())
		};

		let desired_size = Percent::from_percent(100 - f.saturated_into::<u8>())
			.mul_ceil(encoded_size_of(index_assignments.as_slice()).unwrap());
		log!(trace, "desired_size = {}", desired_size);
	}: {
		crate::Miner::<T::MinerConfig>::trim_assignments_length(
			desired_size.saturated_into(),
			&mut index_assignments,
			&encoded_size_of,
		).unwrap();
	} verify {
		let solution = SolutionOf::<T::MinerConfig>::try_from(index_assignments.as_slice()).unwrap();
		let encoding = solution.encode();
		log!(
			trace,
			"encoded size prediction = {}",
			encoded_size_of(index_assignments.as_slice()).unwrap(),
		);
		log!(trace, "actual encoded size = {}", encoding.len());
		assert!(encoding.len() <= desired_size);
	}

	impl_benchmark_test_suite!(
		MultiPhase,
		crate::mock::ExtBuilder::default().build_offchainify(10).0,
		crate::mock::Runtime,
	);
}