1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//! Defines the compiled Wasm runtime that uses Wasmtime internally.
use crate::{
host::HostState,
instance_wrapper::{EntryPoint, InstanceWrapper, MemoryWrapper},
util::{self, replace_strategy_if_broken},
};
use sc_allocator::{AllocationStats, FreeingBumpHeapAllocator};
use sc_executor_common::{
error::{Error, Result, WasmError},
runtime_blob::{
self, DataSegmentsSnapshot, ExposedMutableGlobalsSet, GlobalsSnapshot, RuntimeBlob,
},
util::checked_range,
wasm_runtime::{HeapAllocStrategy, InvokeMethod, WasmInstance, WasmModule},
};
use sp_runtime_interface::unpack_ptr_and_len;
use sp_wasm_interface::{HostFunctions, Pointer, Value, WordSize};
use std::{
path::{Path, PathBuf},
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
};
use wasmtime::{AsContext, Engine, Memory, Table};
#[derive(Default)]
pub(crate) struct StoreData {
/// This will only be set when we call into the runtime.
pub(crate) host_state: Option<HostState>,
/// This will be always set once the store is initialized.
pub(crate) memory: Option<Memory>,
/// This will be set only if the runtime actually contains a table.
pub(crate) table: Option<Table>,
}
impl StoreData {
/// Returns a mutable reference to the host state.
pub fn host_state_mut(&mut self) -> Option<&mut HostState> {
self.host_state.as_mut()
}
/// Returns the host memory.
pub fn memory(&self) -> Memory {
self.memory.expect("memory is always set; qed")
}
}
pub(crate) type Store = wasmtime::Store<StoreData>;
enum Strategy {
LegacyInstanceReuse {
instance_wrapper: InstanceWrapper,
globals_snapshot: GlobalsSnapshot<wasmtime::Global>,
data_segments_snapshot: Arc<DataSegmentsSnapshot>,
heap_base: u32,
},
RecreateInstance(InstanceCreator),
}
struct InstanceCreator {
engine: wasmtime::Engine,
instance_pre: Arc<wasmtime::InstancePre<StoreData>>,
}
impl InstanceCreator {
fn instantiate(&mut self) -> Result<InstanceWrapper> {
InstanceWrapper::new(&self.engine, &self.instance_pre)
}
}
struct InstanceGlobals<'a> {
instance: &'a mut InstanceWrapper,
}
impl<'a> runtime_blob::InstanceGlobals for InstanceGlobals<'a> {
type Global = wasmtime::Global;
fn get_global(&mut self, export_name: &str) -> Self::Global {
self.instance
.get_global(export_name)
.expect("get_global is guaranteed to be called with an export name of a global; qed")
}
fn get_global_value(&mut self, global: &Self::Global) -> Value {
util::from_wasmtime_val(global.get(&mut self.instance.store_mut()))
}
fn set_global_value(&mut self, global: &Self::Global, value: Value) {
global.set(&mut self.instance.store_mut(), util::into_wasmtime_val(value)).expect(
"the value is guaranteed to be of the same value; the global is guaranteed to be mutable; qed",
);
}
}
/// Data required for creating instances with the fast instance reuse strategy.
struct InstanceSnapshotData {
mutable_globals: ExposedMutableGlobalsSet,
data_segments_snapshot: Arc<DataSegmentsSnapshot>,
}
/// A `WasmModule` implementation using wasmtime to compile the runtime module to machine code
/// and execute the compiled code.
pub struct WasmtimeRuntime {
engine: wasmtime::Engine,
instance_pre: Arc<wasmtime::InstancePre<StoreData>>,
instantiation_strategy: InternalInstantiationStrategy,
}
impl WasmModule for WasmtimeRuntime {
fn new_instance(&self) -> Result<Box<dyn WasmInstance>> {
let strategy = match self.instantiation_strategy {
InternalInstantiationStrategy::LegacyInstanceReuse(ref snapshot_data) => {
let mut instance_wrapper = InstanceWrapper::new(&self.engine, &self.instance_pre)?;
let heap_base = instance_wrapper.extract_heap_base()?;
// This function panics if the instance was created from a runtime blob different
// from which the mutable globals were collected. Here, it is easy to see that there
// is only a single runtime blob and thus it's the same that was used for both
// creating the instance and collecting the mutable globals.
let globals_snapshot = GlobalsSnapshot::take(
&snapshot_data.mutable_globals,
&mut InstanceGlobals { instance: &mut instance_wrapper },
);
Strategy::LegacyInstanceReuse {
instance_wrapper,
globals_snapshot,
data_segments_snapshot: snapshot_data.data_segments_snapshot.clone(),
heap_base,
}
},
InternalInstantiationStrategy::Builtin => Strategy::RecreateInstance(InstanceCreator {
engine: self.engine.clone(),
instance_pre: self.instance_pre.clone(),
}),
};
Ok(Box::new(WasmtimeInstance { strategy }))
}
}
/// A `WasmInstance` implementation that reuses compiled module and spawns instances
/// to execute the compiled code.
pub struct WasmtimeInstance {
strategy: Strategy,
}
impl WasmtimeInstance {
fn call_impl(
&mut self,
method: InvokeMethod,
data: &[u8],
allocation_stats: &mut Option<AllocationStats>,
) -> Result<Vec<u8>> {
match &mut self.strategy {
Strategy::LegacyInstanceReuse {
ref mut instance_wrapper,
globals_snapshot,
data_segments_snapshot,
heap_base,
} => {
let entrypoint = instance_wrapper.resolve_entrypoint(method)?;
data_segments_snapshot.apply(|offset, contents| {
util::write_memory_from(
instance_wrapper.store_mut(),
Pointer::new(offset),
contents,
)
})?;
globals_snapshot.apply(&mut InstanceGlobals { instance: instance_wrapper });
let allocator = FreeingBumpHeapAllocator::new(*heap_base);
let result =
perform_call(data, instance_wrapper, entrypoint, allocator, allocation_stats);
// Signal to the OS that we are done with the linear memory and that it can be
// reclaimed.
instance_wrapper.decommit();
result
},
Strategy::RecreateInstance(ref mut instance_creator) => {
let mut instance_wrapper = instance_creator.instantiate()?;
let heap_base = instance_wrapper.extract_heap_base()?;
let entrypoint = instance_wrapper.resolve_entrypoint(method)?;
let allocator = FreeingBumpHeapAllocator::new(heap_base);
perform_call(data, &mut instance_wrapper, entrypoint, allocator, allocation_stats)
},
}
}
}
impl WasmInstance for WasmtimeInstance {
fn call_with_allocation_stats(
&mut self,
method: InvokeMethod,
data: &[u8],
) -> (Result<Vec<u8>>, Option<AllocationStats>) {
let mut allocation_stats = None;
let result = self.call_impl(method, data, &mut allocation_stats);
(result, allocation_stats)
}
fn get_global_const(&mut self, name: &str) -> Result<Option<Value>> {
match &mut self.strategy {
Strategy::LegacyInstanceReuse { instance_wrapper, .. } =>
instance_wrapper.get_global_val(name),
Strategy::RecreateInstance(ref mut instance_creator) =>
instance_creator.instantiate()?.get_global_val(name),
}
}
fn linear_memory_base_ptr(&self) -> Option<*const u8> {
match &self.strategy {
Strategy::RecreateInstance(_) => {
// We do not keep the wasm instance around, therefore there is no linear memory
// associated with it.
None
},
Strategy::LegacyInstanceReuse { instance_wrapper, .. } =>
Some(instance_wrapper.base_ptr()),
}
}
}
/// Prepare a directory structure and a config file to enable wasmtime caching.
///
/// In case of an error the caching will not be enabled.
fn setup_wasmtime_caching(
cache_path: &Path,
config: &mut wasmtime::Config,
) -> std::result::Result<(), String> {
use std::fs;
let wasmtime_cache_root = cache_path.join("wasmtime");
fs::create_dir_all(&wasmtime_cache_root)
.map_err(|err| format!("cannot create the dirs to cache: {}", err))?;
// Canonicalize the path after creating the directories.
let wasmtime_cache_root = wasmtime_cache_root
.canonicalize()
.map_err(|err| format!("failed to canonicalize the path: {}", err))?;
// Write the cache config file
let cache_config_path = wasmtime_cache_root.join("cache-config.toml");
let config_content = format!(
"\
[cache]
enabled = true
directory = \"{cache_dir}\"
",
cache_dir = wasmtime_cache_root.display()
);
fs::write(&cache_config_path, config_content)
.map_err(|err| format!("cannot write the cache config: {}", err))?;
config
.cache_config_load(cache_config_path)
.map_err(|err| format!("failed to parse the config: {:#}", err))?;
Ok(())
}
fn common_config(semantics: &Semantics) -> std::result::Result<wasmtime::Config, WasmError> {
let mut config = wasmtime::Config::new();
config.cranelift_opt_level(wasmtime::OptLevel::SpeedAndSize);
config.cranelift_nan_canonicalization(semantics.canonicalize_nans);
// Since wasmtime 6.0.0 the default for this is `true`, but that heavily regresses
// the contracts pallet's performance, so disable it for now.
#[allow(deprecated)]
config.cranelift_use_egraphs(false);
let profiler = match std::env::var_os("WASMTIME_PROFILING_STRATEGY") {
Some(os_string) if os_string == "jitdump" => wasmtime::ProfilingStrategy::JitDump,
None => wasmtime::ProfilingStrategy::None,
Some(_) => {
// Remember if we have already logged a warning due to an unknown profiling strategy.
static UNKNOWN_PROFILING_STRATEGY: AtomicBool = AtomicBool::new(false);
// Make sure that the warning will not be relogged regularly.
if !UNKNOWN_PROFILING_STRATEGY.swap(true, Ordering::Relaxed) {
log::warn!("WASMTIME_PROFILING_STRATEGY is set to unknown value, ignored.");
}
wasmtime::ProfilingStrategy::None
},
};
config.profiler(profiler);
let native_stack_max = match semantics.deterministic_stack_limit {
Some(DeterministicStackLimit { native_stack_max, .. }) => native_stack_max,
// In `wasmtime` 0.35 the default stack size limit was changed from 1MB to 512KB.
//
// This broke at least one parachain which depended on the original 1MB limit,
// so here we restore it to what it was originally.
None => 1024 * 1024,
};
config.max_wasm_stack(native_stack_max as usize);
config.parallel_compilation(semantics.parallel_compilation);
// Be clear and specific about the extensions we support. If an update brings new features
// they should be introduced here as well.
config.wasm_reference_types(semantics.wasm_reference_types);
config.wasm_simd(semantics.wasm_simd);
config.wasm_bulk_memory(semantics.wasm_bulk_memory);
config.wasm_multi_value(semantics.wasm_multi_value);
config.wasm_multi_memory(false);
config.wasm_threads(false);
config.wasm_memory64(false);
let (use_pooling, use_cow) = match semantics.instantiation_strategy {
InstantiationStrategy::PoolingCopyOnWrite => (true, true),
InstantiationStrategy::Pooling => (true, false),
InstantiationStrategy::RecreateInstanceCopyOnWrite => (false, true),
InstantiationStrategy::RecreateInstance => (false, false),
InstantiationStrategy::LegacyInstanceReuse => (false, false),
};
const WASM_PAGE_SIZE: u64 = 65536;
config.memory_init_cow(use_cow);
config.memory_guaranteed_dense_image_size(match semantics.heap_alloc_strategy {
HeapAllocStrategy::Dynamic { maximum_pages } =>
maximum_pages.map(|p| p as u64 * WASM_PAGE_SIZE).unwrap_or(u64::MAX),
HeapAllocStrategy::Static { .. } => u64::MAX,
});
if use_pooling {
const MAX_WASM_PAGES: u64 = 0x10000;
let memory_pages = match semantics.heap_alloc_strategy {
HeapAllocStrategy::Dynamic { maximum_pages } =>
maximum_pages.map(|p| p as u64).unwrap_or(MAX_WASM_PAGES),
HeapAllocStrategy::Static { .. } => MAX_WASM_PAGES,
};
let mut pooling_config = wasmtime::PoolingAllocationConfig::default();
pooling_config
.max_unused_warm_slots(4)
// Pooling needs a bunch of hard limits to be set; if we go over
// any of these then the instantiation will fail.
//
// Current minimum values for kusama (as of 2022-04-14):
// size: 32384
// table_elements: 1249
// memory_pages: 2070
.instance_size(128 * 1024)
.instance_table_elements(8192)
.instance_memory_pages(memory_pages)
// We can only have a single of those.
.instance_tables(1)
.instance_memories(1)
// This determines how many instances of the module can be
// instantiated in parallel from the same `Module`.
.instance_count(32);
config.allocation_strategy(wasmtime::InstanceAllocationStrategy::Pooling(pooling_config));
}
Ok(config)
}
/// Knobs for deterministic stack height limiting.
///
/// The WebAssembly standard defines a call/value stack but it doesn't say anything about its
/// size except that it has to be finite. The implementations are free to choose their own notion
/// of limit: some may count the number of calls or values, others would rely on the host machine
/// stack and trap on reaching a guard page.
///
/// This obviously is a source of non-determinism during execution. This feature can be used
/// to instrument the code so that it will count the depth of execution in some deterministic
/// way (the machine stack limit should be so high that the deterministic limit always triggers
/// first).
///
/// The deterministic stack height limiting feature allows to instrument the code so that it will
/// count the number of items that may be on the stack. This counting will only act as an rough
/// estimate of the actual stack limit in wasmtime. This is because wasmtime measures it's stack
/// usage in bytes.
///
/// The actual number of bytes consumed by a function is not trivial to compute without going
/// through full compilation. Therefore, it's expected that `native_stack_max` is greatly
/// overestimated and thus never reached in practice. The stack overflow check introduced by the
/// instrumentation and that relies on the logical item count should be reached first.
///
/// See [here][stack_height] for more details of the instrumentation
///
/// [stack_height]: https://github.com/paritytech/wasm-utils/blob/d9432baf/src/stack_height/mod.rs#L1-L50
#[derive(Clone)]
pub struct DeterministicStackLimit {
/// A number of logical "values" that can be pushed on the wasm stack. A trap will be triggered
/// if exceeded.
///
/// A logical value is a local, an argument or a value pushed on operand stack.
pub logical_max: u32,
/// The maximum number of bytes for stack used by wasmtime JITed code.
///
/// It's not specified how much bytes will be consumed by a stack frame for a given wasm
/// function after translation into machine code. It is also not quite trivial.
///
/// Therefore, this number should be chosen conservatively. It must be so large so that it can
/// fit the [`logical_max`](Self::logical_max) logical values on the stack, according to the
/// current instrumentation algorithm.
///
/// This value cannot be 0.
pub native_stack_max: u32,
}
/// The instantiation strategy to use for the WASM executor.
///
/// All of the CoW strategies (with `CopyOnWrite` suffix) are only supported when either:
/// a) we're running on Linux,
/// b) we're running on an Unix-like system and we're precompiling
/// our module beforehand and instantiating from a file.
///
/// If the CoW variant of a strategy is unsupported the executor will
/// fall back to the non-CoW equivalent.
#[non_exhaustive]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum InstantiationStrategy {
/// Pool the instances to avoid initializing everything from scratch
/// on each instantiation. Use copy-on-write memory when possible.
///
/// This is the fastest instantiation strategy.
PoolingCopyOnWrite,
/// Recreate the instance from scratch on every instantiation.
/// Use copy-on-write memory when possible.
RecreateInstanceCopyOnWrite,
/// Pool the instances to avoid initializing everything from scratch
/// on each instantiation.
Pooling,
/// Recreate the instance from scratch on every instantiation. Very slow.
RecreateInstance,
/// Legacy instance reuse mechanism. DEPRECATED. Will be removed. Do not use.
LegacyInstanceReuse,
}
enum InternalInstantiationStrategy {
LegacyInstanceReuse(InstanceSnapshotData),
Builtin,
}
#[derive(Clone)]
pub struct Semantics {
/// The instantiation strategy to use.
pub instantiation_strategy: InstantiationStrategy,
/// Specifying `Some` will enable deterministic stack height. That is, all executor
/// invocations will reach stack overflow at the exactly same point across different wasmtime
/// versions and architectures.
///
/// This is achieved by a combination of running an instrumentation pass on input code and
/// configuring wasmtime accordingly.
///
/// Since this feature depends on instrumentation, it can be set only if runtime is
/// instantiated using the runtime blob, e.g. using [`create_runtime`].
// I.e. if [`CodeSupplyMode::Verbatim`] is used.
pub deterministic_stack_limit: Option<DeterministicStackLimit>,
/// Controls whether wasmtime should compile floating point in a way that doesn't allow for
/// non-determinism.
///
/// By default, the wasm spec allows some local non-determinism wrt. certain floating point
/// operations. Specifically, those operations that are not defined to operate on bits (e.g.
/// fneg) can produce NaN values. The exact bit pattern for those is not specified and may
/// depend on the particular machine that executes wasmtime generated JITed machine code. That
/// is a source of non-deterministic values.
///
/// The classical runtime environment for Substrate allowed it and punted this on the runtime
/// developers. For PVFs, we want to ensure that execution is deterministic though. Therefore,
/// for PVF execution this flag is meant to be turned on.
pub canonicalize_nans: bool,
/// Configures wasmtime to use multiple threads for compiling.
pub parallel_compilation: bool,
/// The heap allocation strategy to use.
pub heap_alloc_strategy: HeapAllocStrategy,
/// Enables WASM Multi-Value proposal
pub wasm_multi_value: bool,
/// Enables WASM Bulk Memory Operations proposal
pub wasm_bulk_memory: bool,
/// Enables WASM Reference Types proposal
pub wasm_reference_types: bool,
/// Enables WASM Fixed-Width SIMD proposal
pub wasm_simd: bool,
}
#[derive(Clone)]
pub struct Config {
/// The WebAssembly standard requires all imports of an instantiated module to be resolved,
/// otherwise, the instantiation fails. If this option is set to `true`, then this behavior is
/// overriden and imports that are requested by the module and not provided by the host
/// functions will be resolved using stubs. These stubs will trap upon a call.
pub allow_missing_func_imports: bool,
/// A directory in which wasmtime can store its compiled artifacts cache.
pub cache_path: Option<PathBuf>,
/// Tuning of various semantics of the wasmtime executor.
pub semantics: Semantics,
}
enum CodeSupplyMode<'a> {
/// The runtime is instantiated using the given runtime blob.
Fresh(RuntimeBlob),
/// The runtime is instantiated using a precompiled module at the given path.
///
/// This assumes that the code is already prepared for execution and the same `Config` was
/// used.
///
/// We use a `Path` here instead of simply passing a byte slice to allow `wasmtime` to
/// map the runtime's linear memory on supported platforms in a copy-on-write fashion.
Precompiled(&'a Path),
/// The runtime is instantiated using a precompiled module with the given bytes.
///
/// This assumes that the code is already prepared for execution and the same `Config` was
/// used.
PrecompiledBytes(&'a [u8]),
}
/// Create a new `WasmtimeRuntime` given the code. This function performs translation from Wasm to
/// machine code, which can be computationally heavy.
///
/// The `H` generic parameter is used to statically pass a set of host functions which are exposed
/// to the runtime.
pub fn create_runtime<H>(
blob: RuntimeBlob,
config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
H: HostFunctions,
{
// SAFETY: this is safe because it doesn't use `CodeSupplyMode::Precompiled`.
unsafe { do_create_runtime::<H>(CodeSupplyMode::Fresh(blob), config) }
}
/// The same as [`create_runtime`] but takes a path to a precompiled artifact,
/// which makes this function considerably faster than [`create_runtime`].
///
/// # Safety
///
/// The caller must ensure that the compiled artifact passed here was:
/// 1) produced by [`prepare_runtime_artifact`],
/// 2) written to the disk as a file,
/// 3) was not modified,
/// 4) will not be modified while any runtime using this artifact is alive, or is being
/// instantiated.
///
/// Failure to adhere to these requirements might lead to crashes and arbitrary code execution.
///
/// It is ok though if the compiled artifact was created by code of another version or with
/// different configuration flags. In such case the caller will receive an `Err` deterministically.
pub unsafe fn create_runtime_from_artifact<H>(
compiled_artifact_path: &Path,
config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
H: HostFunctions,
{
do_create_runtime::<H>(CodeSupplyMode::Precompiled(compiled_artifact_path), config)
}
/// The same as [`create_runtime`] but takes the bytes of a precompiled artifact,
/// which makes this function considerably faster than [`create_runtime`],
/// but slower than the more optimized [`create_runtime_from_artifact`].
/// This is especially slow on non-Linux Unix systems. Useful in very niche cases.
///
/// # Safety
///
/// The caller must ensure that the compiled artifact passed here was:
/// 1) produced by [`prepare_runtime_artifact`],
/// 2) was not modified,
///
/// Failure to adhere to these requirements might lead to crashes and arbitrary code execution.
///
/// It is ok though if the compiled artifact was created by code of another version or with
/// different configuration flags. In such case the caller will receive an `Err` deterministically.
pub unsafe fn create_runtime_from_artifact_bytes<H>(
compiled_artifact_bytes: &[u8],
config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
H: HostFunctions,
{
do_create_runtime::<H>(CodeSupplyMode::PrecompiledBytes(compiled_artifact_bytes), config)
}
/// # Safety
///
/// This is only unsafe if called with [`CodeSupplyMode::Artifact`]. See
/// [`create_runtime_from_artifact`] to get more details.
unsafe fn do_create_runtime<H>(
code_supply_mode: CodeSupplyMode<'_>,
mut config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
H: HostFunctions,
{
replace_strategy_if_broken(&mut config.semantics.instantiation_strategy);
let mut wasmtime_config = common_config(&config.semantics)?;
if let Some(ref cache_path) = config.cache_path {
if let Err(reason) = setup_wasmtime_caching(cache_path, &mut wasmtime_config) {
log::warn!(
"failed to setup wasmtime cache. Performance may degrade significantly: {}.",
reason,
);
}
}
let engine = Engine::new(&wasmtime_config)
.map_err(|e| WasmError::Other(format!("cannot create the wasmtime engine: {:#}", e)))?;
let (module, instantiation_strategy) = match code_supply_mode {
CodeSupplyMode::Fresh(blob) => {
let blob = prepare_blob_for_compilation(blob, &config.semantics)?;
let serialized_blob = blob.clone().serialize();
let module = wasmtime::Module::new(&engine, &serialized_blob)
.map_err(|e| WasmError::Other(format!("cannot create module: {:#}", e)))?;
match config.semantics.instantiation_strategy {
InstantiationStrategy::LegacyInstanceReuse => {
let data_segments_snapshot =
DataSegmentsSnapshot::take(&blob).map_err(|e| {
WasmError::Other(format!("cannot take data segments snapshot: {}", e))
})?;
let data_segments_snapshot = Arc::new(data_segments_snapshot);
let mutable_globals = ExposedMutableGlobalsSet::collect(&blob);
(
module,
InternalInstantiationStrategy::LegacyInstanceReuse(InstanceSnapshotData {
data_segments_snapshot,
mutable_globals,
}),
)
},
InstantiationStrategy::Pooling |
InstantiationStrategy::PoolingCopyOnWrite |
InstantiationStrategy::RecreateInstance |
InstantiationStrategy::RecreateInstanceCopyOnWrite =>
(module, InternalInstantiationStrategy::Builtin),
}
},
CodeSupplyMode::Precompiled(compiled_artifact_path) => {
if let InstantiationStrategy::LegacyInstanceReuse =
config.semantics.instantiation_strategy
{
return Err(WasmError::Other("the legacy instance reuse instantiation strategy is incompatible with precompiled modules".into()));
}
// SAFETY: The unsafety of `deserialize_file` is covered by this function. The
// responsibilities to maintain the invariants are passed to the caller.
//
// See [`create_runtime_from_artifact`] for more details.
let module = wasmtime::Module::deserialize_file(&engine, compiled_artifact_path)
.map_err(|e| WasmError::Other(format!("cannot deserialize module: {:#}", e)))?;
(module, InternalInstantiationStrategy::Builtin)
},
CodeSupplyMode::PrecompiledBytes(compiled_artifact_bytes) => {
if let InstantiationStrategy::LegacyInstanceReuse =
config.semantics.instantiation_strategy
{
return Err(WasmError::Other("the legacy instance reuse instantiation strategy is incompatible with precompiled modules".into()));
}
// SAFETY: The unsafety of `deserialize` is covered by this function. The
// responsibilities to maintain the invariants are passed to the caller.
//
// See [`create_runtime_from_artifact_bytes`] for more details.
let module = wasmtime::Module::deserialize(&engine, compiled_artifact_bytes)
.map_err(|e| WasmError::Other(format!("cannot deserialize module: {:#}", e)))?;
(module, InternalInstantiationStrategy::Builtin)
},
};
let mut linker = wasmtime::Linker::new(&engine);
crate::imports::prepare_imports::<H>(&mut linker, &module, config.allow_missing_func_imports)?;
let instance_pre = linker
.instantiate_pre(&module)
.map_err(|e| WasmError::Other(format!("cannot preinstantiate module: {:#}", e)))?;
Ok(WasmtimeRuntime { engine, instance_pre: Arc::new(instance_pre), instantiation_strategy })
}
fn prepare_blob_for_compilation(
mut blob: RuntimeBlob,
semantics: &Semantics,
) -> std::result::Result<RuntimeBlob, WasmError> {
if let Some(DeterministicStackLimit { logical_max, .. }) = semantics.deterministic_stack_limit {
blob = blob.inject_stack_depth_metering(logical_max)?;
}
if let InstantiationStrategy::LegacyInstanceReuse = semantics.instantiation_strategy {
// When this strategy is used this must be called after all other passes which may introduce
// new global variables, otherwise they will not be reset when we call into the runtime
// again.
blob.expose_mutable_globals();
}
// We don't actually need the memory to be imported so we can just convert any memory
// import into an export with impunity. This simplifies our code since `wasmtime` will
// now automatically take care of creating the memory for us, and it is also necessary
// to enable `wasmtime`'s instance pooling. (Imported memories are ineligible for pooling.)
blob.convert_memory_import_into_export()?;
blob.setup_memory_according_to_heap_alloc_strategy(semantics.heap_alloc_strategy)?;
Ok(blob)
}
/// Takes a [`RuntimeBlob`] and precompiles it returning the serialized result of compilation. It
/// can then be used for calling [`create_runtime`] avoiding long compilation times.
pub fn prepare_runtime_artifact(
blob: RuntimeBlob,
semantics: &Semantics,
) -> std::result::Result<Vec<u8>, WasmError> {
let mut semantics = semantics.clone();
replace_strategy_if_broken(&mut semantics.instantiation_strategy);
let blob = prepare_blob_for_compilation(blob, &semantics)?;
let engine = Engine::new(&common_config(&semantics)?)
.map_err(|e| WasmError::Other(format!("cannot create the engine: {:#}", e)))?;
engine
.precompile_module(&blob.serialize())
.map_err(|e| WasmError::Other(format!("cannot precompile module: {:#}", e)))
}
fn perform_call(
data: &[u8],
instance_wrapper: &mut InstanceWrapper,
entrypoint: EntryPoint,
mut allocator: FreeingBumpHeapAllocator,
allocation_stats: &mut Option<AllocationStats>,
) -> Result<Vec<u8>> {
let (data_ptr, data_len) = inject_input_data(instance_wrapper, &mut allocator, data)?;
let host_state = HostState::new(allocator);
// Set the host state before calling into wasm.
instance_wrapper.store_mut().data_mut().host_state = Some(host_state);
let ret = entrypoint
.call(instance_wrapper.store_mut(), data_ptr, data_len)
.map(unpack_ptr_and_len);
// Reset the host state
let host_state = instance_wrapper.store_mut().data_mut().host_state.take().expect(
"the host state is always set before calling into WASM so it can't be None here; qed",
);
*allocation_stats = Some(host_state.allocation_stats());
let (output_ptr, output_len) = ret?;
let output = extract_output_data(instance_wrapper, output_ptr, output_len)?;
Ok(output)
}
fn inject_input_data(
instance: &mut InstanceWrapper,
allocator: &mut FreeingBumpHeapAllocator,
data: &[u8],
) -> Result<(Pointer<u8>, WordSize)> {
let mut ctx = instance.store_mut();
let memory = ctx.data().memory();
let data_len = data.len() as WordSize;
let data_ptr = allocator.allocate(&mut MemoryWrapper(&memory, &mut ctx), data_len)?;
util::write_memory_from(instance.store_mut(), data_ptr, data)?;
Ok((data_ptr, data_len))
}
fn extract_output_data(
instance: &InstanceWrapper,
output_ptr: u32,
output_len: u32,
) -> Result<Vec<u8>> {
let ctx = instance.store();
// Do a length check before allocating. The returned output should not be bigger than the
// available WASM memory. Otherwise, a malicious parachain can trigger a large allocation,
// potentially causing memory exhaustion.
//
// Get the size of the WASM memory in bytes.
let memory_size = ctx.as_context().data().memory().data_size(ctx);
if checked_range(output_ptr as usize, output_len as usize, memory_size).is_none() {
Err(Error::OutputExceedsBounds)?
}
let mut output = vec![0; output_len as usize];
util::read_memory_into(ctx, Pointer::new(output_ptr), &mut output)?;
Ok(output)
}