#[cfg(feature = "full_crypto")]
use sp_std::vec::Vec;
use crate::{
crypto::ByteArray,
hash::{H256, H512},
};
use codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;
#[cfg(feature = "serde")]
use crate::crypto::Ss58Codec;
use crate::crypto::{
CryptoType, CryptoTypeId, Derive, FromEntropy, Public as TraitPublic, UncheckedFrom,
};
#[cfg(feature = "full_crypto")]
use crate::crypto::{DeriveError, DeriveJunction, Pair as TraitPair, SecretStringError};
#[cfg(feature = "full_crypto")]
use core::convert::TryFrom;
#[cfg(feature = "full_crypto")]
use ed25519_zebra::{SigningKey, VerificationKey};
#[cfg(feature = "serde")]
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use sp_runtime_interface::pass_by::PassByInner;
#[cfg(all(not(feature = "std"), feature = "serde"))]
use sp_std::alloc::{format, string::String};
use sp_std::ops::Deref;
pub const CRYPTO_ID: CryptoTypeId = CryptoTypeId(*b"ed25");
#[cfg(feature = "full_crypto")]
type Seed = [u8; 32];
#[cfg_attr(feature = "full_crypto", derive(Hash))]
#[derive(
PartialEq,
Eq,
PartialOrd,
Ord,
Clone,
Copy,
Encode,
Decode,
PassByInner,
MaxEncodedLen,
TypeInfo,
)]
pub struct Public(pub [u8; 32]);
#[cfg(feature = "full_crypto")]
#[derive(Copy, Clone)]
pub struct Pair {
public: VerificationKey,
secret: SigningKey,
}
impl FromEntropy for Public {
fn from_entropy(input: &mut impl codec::Input) -> Result<Self, codec::Error> {
let mut result = Self([0u8; 32]);
input.read(&mut result.0[..])?;
Ok(result)
}
}
impl AsRef<[u8; 32]> for Public {
fn as_ref(&self) -> &[u8; 32] {
&self.0
}
}
impl AsRef<[u8]> for Public {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl AsMut<[u8]> for Public {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0[..]
}
}
impl Deref for Public {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl TryFrom<&[u8]> for Public {
type Error = ();
fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
if data.len() != Self::LEN {
return Err(())
}
let mut r = [0u8; Self::LEN];
r.copy_from_slice(data);
Ok(Self::unchecked_from(r))
}
}
impl From<Public> for [u8; 32] {
fn from(x: Public) -> Self {
x.0
}
}
#[cfg(feature = "full_crypto")]
impl From<Pair> for Public {
fn from(x: Pair) -> Self {
x.public()
}
}
impl From<Public> for H256 {
fn from(x: Public) -> Self {
x.0.into()
}
}
#[cfg(feature = "std")]
impl std::str::FromStr for Public {
type Err = crate::crypto::PublicError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::from_ss58check(s)
}
}
impl UncheckedFrom<[u8; 32]> for Public {
fn unchecked_from(x: [u8; 32]) -> Self {
Public::from_raw(x)
}
}
impl UncheckedFrom<H256> for Public {
fn unchecked_from(x: H256) -> Self {
Public::from_h256(x)
}
}
#[cfg(feature = "std")]
impl std::fmt::Display for Public {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.to_ss58check())
}
}
impl sp_std::fmt::Debug for Public {
#[cfg(feature = "std")]
fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
let s = self.to_ss58check();
write!(f, "{} ({}...)", crate::hexdisplay::HexDisplay::from(&self.0), &s[0..8])
}
#[cfg(not(feature = "std"))]
fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
Ok(())
}
}
#[cfg(feature = "serde")]
impl Serialize for Public {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(&self.to_ss58check())
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Public {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Public::from_ss58check(&String::deserialize(deserializer)?)
.map_err(|e| de::Error::custom(format!("{:?}", e)))
}
}
#[cfg_attr(feature = "full_crypto", derive(Hash))]
#[derive(Encode, Decode, MaxEncodedLen, PassByInner, TypeInfo, PartialEq, Eq)]
pub struct Signature(pub [u8; 64]);
impl TryFrom<&[u8]> for Signature {
type Error = ();
fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
if data.len() == 64 {
let mut inner = [0u8; 64];
inner.copy_from_slice(data);
Ok(Signature(inner))
} else {
Err(())
}
}
}
#[cfg(feature = "serde")]
impl Serialize for Signature {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(&array_bytes::bytes2hex("", self))
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Signature {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let signature_hex = array_bytes::hex2bytes(&String::deserialize(deserializer)?)
.map_err(|e| de::Error::custom(format!("{:?}", e)))?;
Signature::try_from(signature_hex.as_ref())
.map_err(|e| de::Error::custom(format!("{:?}", e)))
}
}
impl Clone for Signature {
fn clone(&self) -> Self {
let mut r = [0u8; 64];
r.copy_from_slice(&self.0[..]);
Signature(r)
}
}
impl From<Signature> for H512 {
fn from(v: Signature) -> H512 {
H512::from(v.0)
}
}
impl From<Signature> for [u8; 64] {
fn from(v: Signature) -> [u8; 64] {
v.0
}
}
impl AsRef<[u8; 64]> for Signature {
fn as_ref(&self) -> &[u8; 64] {
&self.0
}
}
impl AsRef<[u8]> for Signature {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl AsMut<[u8]> for Signature {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0[..]
}
}
impl sp_std::fmt::Debug for Signature {
#[cfg(feature = "std")]
fn fmt(&self, f: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
write!(f, "{}", crate::hexdisplay::HexDisplay::from(&self.0))
}
#[cfg(not(feature = "std"))]
fn fmt(&self, _: &mut sp_std::fmt::Formatter) -> sp_std::fmt::Result {
Ok(())
}
}
impl UncheckedFrom<[u8; 64]> for Signature {
fn unchecked_from(data: [u8; 64]) -> Signature {
Signature(data)
}
}
impl Signature {
pub fn from_raw(data: [u8; 64]) -> Signature {
Signature(data)
}
pub fn from_slice(data: &[u8]) -> Option<Self> {
if data.len() != 64 {
return None
}
let mut r = [0u8; 64];
r.copy_from_slice(data);
Some(Signature(r))
}
pub fn from_h512(v: H512) -> Signature {
Signature(v.into())
}
}
impl Public {
pub fn from_raw(data: [u8; 32]) -> Self {
Public(data)
}
pub fn from_h256(x: H256) -> Self {
Public(x.into())
}
pub fn as_array_ref(&self) -> &[u8; 32] {
self.as_ref()
}
}
impl ByteArray for Public {
const LEN: usize = 32;
}
impl TraitPublic for Public {}
impl Derive for Public {}
#[cfg(feature = "full_crypto")]
fn derive_hard_junction(secret_seed: &Seed, cc: &[u8; 32]) -> Seed {
("Ed25519HDKD", secret_seed, cc).using_encoded(sp_core_hashing::blake2_256)
}
#[cfg(feature = "full_crypto")]
impl TraitPair for Pair {
type Public = Public;
type Seed = Seed;
type Signature = Signature;
fn from_seed_slice(seed_slice: &[u8]) -> Result<Pair, SecretStringError> {
let secret =
SigningKey::try_from(seed_slice).map_err(|_| SecretStringError::InvalidSeedLength)?;
let public = VerificationKey::from(&secret);
Ok(Pair { secret, public })
}
fn derive<Iter: Iterator<Item = DeriveJunction>>(
&self,
path: Iter,
_seed: Option<Seed>,
) -> Result<(Pair, Option<Seed>), DeriveError> {
let mut acc = self.secret.into();
for j in path {
match j {
DeriveJunction::Soft(_cc) => return Err(DeriveError::SoftKeyInPath),
DeriveJunction::Hard(cc) => acc = derive_hard_junction(&acc, &cc),
}
}
Ok((Self::from_seed(&acc), Some(acc)))
}
fn public(&self) -> Public {
Public(self.public.into())
}
fn sign(&self, message: &[u8]) -> Signature {
Signature::from_raw(self.secret.sign(message).into())
}
fn verify<M: AsRef<[u8]>>(sig: &Signature, message: M, public: &Public) -> bool {
let Ok(public) = VerificationKey::try_from(public.as_slice()) else { return false };
let Ok(signature) = ed25519_zebra::Signature::try_from(sig.as_ref()) else { return false };
public.verify(&signature, message.as_ref()).is_ok()
}
fn to_raw_vec(&self) -> Vec<u8> {
self.seed().to_vec()
}
}
#[cfg(feature = "full_crypto")]
impl Pair {
pub fn seed(&self) -> Seed {
self.secret.into()
}
#[cfg(feature = "std")]
pub fn from_legacy_string(s: &str, password_override: Option<&str>) -> Pair {
Self::from_string(s, password_override).unwrap_or_else(|_| {
let mut padded_seed: Seed = [b' '; 32];
let len = s.len().min(32);
padded_seed[..len].copy_from_slice(&s.as_bytes()[..len]);
Self::from_seed(&padded_seed)
})
}
}
impl CryptoType for Public {
#[cfg(feature = "full_crypto")]
type Pair = Pair;
}
impl CryptoType for Signature {
#[cfg(feature = "full_crypto")]
type Pair = Pair;
}
#[cfg(feature = "full_crypto")]
impl CryptoType for Pair {
type Pair = Pair;
}
#[cfg(test)]
mod test {
use super::*;
use crate::crypto::DEV_PHRASE;
use serde_json;
#[test]
fn default_phrase_should_be_used() {
assert_eq!(
Pair::from_string("//Alice///password", None).unwrap().public(),
Pair::from_string(&format!("{}//Alice", DEV_PHRASE), Some("password"))
.unwrap()
.public(),
);
}
#[test]
fn seed_and_derive_should_work() {
let seed = array_bytes::hex2array_unchecked(
"9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
);
let pair = Pair::from_seed(&seed);
assert_eq!(pair.seed(), seed);
let path = vec![DeriveJunction::Hard([0u8; 32])];
let derived = pair.derive(path.into_iter(), None).ok().unwrap().0;
assert_eq!(
derived.seed(),
array_bytes::hex2array_unchecked::<_, 32>(
"ede3354e133f9c8e337ddd6ee5415ed4b4ffe5fc7d21e933f4930a3730e5b21c"
)
);
}
#[test]
fn test_vector_should_work() {
let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
"9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
));
let public = pair.public();
assert_eq!(
public,
Public::from_raw(array_bytes::hex2array_unchecked(
"d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a"
))
);
let message = b"";
let signature = array_bytes::hex2array_unchecked("e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e065224901555fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b");
let signature = Signature::from_raw(signature);
assert!(pair.sign(&message[..]) == signature);
assert!(Pair::verify(&signature, &message[..], &public));
}
#[test]
fn test_vector_by_string_should_work() {
let pair = Pair::from_string(
"0x9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
None,
)
.unwrap();
let public = pair.public();
assert_eq!(
public,
Public::from_raw(array_bytes::hex2array_unchecked(
"d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a"
))
);
let message = b"";
let signature = array_bytes::hex2array_unchecked("e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e065224901555fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b");
let signature = Signature::from_raw(signature);
assert!(pair.sign(&message[..]) == signature);
assert!(Pair::verify(&signature, &message[..], &public));
}
#[test]
fn generated_pair_should_work() {
let (pair, _) = Pair::generate();
let public = pair.public();
let message = b"Something important";
let signature = pair.sign(&message[..]);
assert!(Pair::verify(&signature, &message[..], &public));
assert!(!Pair::verify(&signature, b"Something else", &public));
}
#[test]
fn seeded_pair_should_work() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let public = pair.public();
assert_eq!(
public,
Public::from_raw(array_bytes::hex2array_unchecked(
"2f8c6129d816cf51c374bc7f08c3e63ed156cf78aefb4a6550d97b87997977ee"
))
);
let message = array_bytes::hex2bytes_unchecked("2f8c6129d816cf51c374bc7f08c3e63ed156cf78aefb4a6550d97b87997977ee00000000000000000200d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a4500000000000000");
let signature = pair.sign(&message[..]);
println!("Correct signature: {:?}", signature);
assert!(Pair::verify(&signature, &message[..], &public));
assert!(!Pair::verify(&signature, "Other message", &public));
}
#[test]
fn generate_with_phrase_recovery_possible() {
let (pair1, phrase, _) = Pair::generate_with_phrase(None);
let (pair2, _) = Pair::from_phrase(&phrase, None).unwrap();
assert_eq!(pair1.public(), pair2.public());
}
#[test]
fn generate_with_password_phrase_recovery_possible() {
let (pair1, phrase, _) = Pair::generate_with_phrase(Some("password"));
let (pair2, _) = Pair::from_phrase(&phrase, Some("password")).unwrap();
assert_eq!(pair1.public(), pair2.public());
}
#[test]
fn password_does_something() {
let (pair1, phrase, _) = Pair::generate_with_phrase(Some("password"));
let (pair2, _) = Pair::from_phrase(&phrase, None).unwrap();
assert_ne!(pair1.public(), pair2.public());
}
#[test]
fn ss58check_roundtrip_works() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let public = pair.public();
let s = public.to_ss58check();
println!("Correct: {}", s);
let cmp = Public::from_ss58check(&s).unwrap();
assert_eq!(cmp, public);
}
#[test]
fn signature_serialization_works() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let message = b"Something important";
let signature = pair.sign(&message[..]);
let serialized_signature = serde_json::to_string(&signature).unwrap();
assert_eq!(serialized_signature.len(), 130);
let signature = serde_json::from_str(&serialized_signature).unwrap();
assert!(Pair::verify(&signature, &message[..], &pair.public()));
}
#[test]
fn signature_serialization_doesnt_panic() {
fn deserialize_signature(text: &str) -> Result<Signature, serde_json::error::Error> {
serde_json::from_str(text)
}
assert!(deserialize_signature("Not valid json.").is_err());
assert!(deserialize_signature("\"Not an actual signature.\"").is_err());
assert!(deserialize_signature("\"abc123\"").is_err());
}
}