1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
use crate::*;
use core::convert::TryFrom;
use core::fmt;
#[cfg(feature = "datetime")]
use time::OffsetDateTime;
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct UtcTime(pub ASN1DateTime);
impl UtcTime {
pub const fn new(datetime: ASN1DateTime) -> Self {
UtcTime(datetime)
}
pub fn from_bytes(bytes: &[u8]) -> Result<Self> {
// X.680 section 43 defines a UniversalTime as a VisibleString restricted to:
//
// a) the six digits YYMMDD where YY is the two low-order digits of the Christian year, MM is the month
// (counting January as 01), and DD is the day of the month (01 to 31); and
// b) either:
// 1) the four digits hhmm where hh is hour (00 to 23) and mm is minutes (00 to 59); or
// 2) the six digits hhmmss where hh and mm are as in 1) above, and ss is seconds (00 to 59); and
// c) either:
// 1) the character Z ; or
// 2) one of the characters + or - , followed by hhmm, where hh is hour and mm is minutes.
//
// XXX // RFC 5280 requires mandatory seconds and Z-normalized time zone
let (year, month, day, hour, minute, rem) = match bytes {
[year1, year2, mon1, mon2, day1, day2, hour1, hour2, min1, min2, rem @ ..] => {
let year = decode_decimal(Self::TAG, *year1, *year2)?;
let month = decode_decimal(Self::TAG, *mon1, *mon2)?;
let day = decode_decimal(Self::TAG, *day1, *day2)?;
let hour = decode_decimal(Self::TAG, *hour1, *hour2)?;
let minute = decode_decimal(Self::TAG, *min1, *min2)?;
(year, month, day, hour, minute, rem)
}
_ => return Err(Self::TAG.invalid_value("malformed time string (not yymmddhhmm)")),
};
if rem.is_empty() {
return Err(Self::TAG.invalid_value("malformed time string"));
}
// check for seconds
let (second, rem) = match rem {
[sec1, sec2, rem @ ..] => {
let second = decode_decimal(Self::TAG, *sec1, *sec2)?;
(second, rem)
}
_ => (0, rem),
};
if month > 12 || day > 31 || hour > 23 || minute > 59 || second > 59 {
return Err(Self::TAG.invalid_value("time components with invalid values"));
}
if rem.is_empty() {
return Err(Self::TAG.invalid_value("malformed time string"));
}
let tz = match rem {
[b'Z'] => ASN1TimeZone::Z,
[b'+', h1, h2, m1, m2] => {
let hh = decode_decimal(Self::TAG, *h1, *h2)?;
let mm = decode_decimal(Self::TAG, *m1, *m2)?;
ASN1TimeZone::Offset(hh as i8, mm as i8)
}
[b'-', h1, h2, m1, m2] => {
let hh = decode_decimal(Self::TAG, *h1, *h2)?;
let mm = decode_decimal(Self::TAG, *m1, *m2)?;
ASN1TimeZone::Offset(-(hh as i8), mm as i8)
}
_ => return Err(Self::TAG.invalid_value("malformed time string: no time zone")),
};
Ok(UtcTime(ASN1DateTime::new(
year as u32,
month,
day,
hour,
minute,
second,
None,
tz,
)))
// match *bytes {
// [year1, year2, mon1, mon2, day1, day2, hour1, hour2, min1, min2, sec1, sec2, b'Z'] => {
// let year = decode_decimal(Self::TAG, year1, year2)?;
// let month = decode_decimal(Self::TAG, mon1, mon2)?;
// let day = decode_decimal(Self::TAG, day1, day2)?;
// let hour = decode_decimal(Self::TAG, hour1, hour2)?;
// let minute = decode_decimal(Self::TAG, min1, min2)?;
// let second = decode_decimal(Self::TAG, sec1, sec2)?;
// // RFC 5280 rules for interpreting the year
// let year = if year >= 50 { year + 1900 } else { year + 2000 };
// Ok(UtcTime::new(year, month, day, hour, minute, second))
// }
// _ => Err(Error::InvalidValue),
// }
}
/// Return a ISO 8601 combined date and time with time zone.
#[cfg(feature = "datetime")]
#[cfg_attr(docsrs, doc(cfg(feature = "datetime")))]
#[inline]
pub fn utc_datetime(&self) -> Result<OffsetDateTime> {
self.0.to_datetime()
}
/// Return an adjusted ISO 8601 combined date and time with time zone.
/// According to Universal time definition in X.680 we add 2000 years
/// from 0 to 49 year and 1900 otherwise.
#[cfg(feature = "datetime")]
#[cfg_attr(docsrs, doc(cfg(feature = "datetime")))]
#[inline]
pub fn utc_adjusted_datetime(&self) -> Result<OffsetDateTime> {
self.0.to_datetime().and_then(|dt| {
let year = dt.year();
// We follow the Universal time definition in X.680 for interpreting
// the adjusted year
let year = if year >= 50 { year + 1900 } else { year + 2000 };
time::Date::from_calendar_date(year, dt.month(), dt.day())
.map(|d| dt.replace_date(d))
.map_err(|_e| Self::TAG.invalid_value("Invalid adjusted date"))
})
}
/// Returns the number of non-leap seconds since the midnight on January 1, 1970.
#[cfg(feature = "datetime")]
#[cfg_attr(docsrs, doc(cfg(feature = "datetime")))]
pub fn timestamp(&self) -> Result<i64> {
let dt = self.0.to_datetime()?;
Ok(dt.unix_timestamp())
}
}
impl<'a> TryFrom<Any<'a>> for UtcTime {
type Error = Error;
fn try_from(any: Any<'a>) -> Result<UtcTime> {
TryFrom::try_from(&any)
}
}
impl<'a, 'b> TryFrom<&'b Any<'a>> for UtcTime {
type Error = Error;
fn try_from(any: &'b Any<'a>) -> Result<UtcTime> {
any.tag().assert_eq(Self::TAG)?;
#[allow(clippy::trivially_copy_pass_by_ref)]
fn is_visible(b: &u8) -> bool {
0x20 <= *b && *b <= 0x7f
}
if !any.data.iter().all(is_visible) {
return Err(Error::StringInvalidCharset);
}
UtcTime::from_bytes(any.data)
}
}
impl fmt::Display for UtcTime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let dt = &self.0;
match dt.tz {
ASN1TimeZone::Z | ASN1TimeZone::Undefined => write!(
f,
"{:04}-{:02}-{:02} {:02}:{:02}:{:02}Z",
dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second
),
ASN1TimeZone::Offset(hh, mm) => {
let (s, hh) = if hh > 0 { ('+', hh) } else { ('-', -hh) };
write!(
f,
"{:04}-{:02}-{:02} {:02}:{:02}:{:02}{}{:02}{:02}",
dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, s, hh, mm
)
}
}
}
}
impl CheckDerConstraints for UtcTime {
fn check_constraints(_any: &Any) -> Result<()> {
Ok(())
}
}
impl DerAutoDerive for UtcTime {}
impl Tagged for UtcTime {
const TAG: Tag = Tag::UtcTime;
}
#[cfg(feature = "std")]
impl ToDer for UtcTime {
fn to_der_len(&self) -> Result<usize> {
// data:
// - 6 bytes for YYMMDD
// - 6 for hhmmss in DER (X.690 section 11.8.2)
// - 1 for the character Z in DER (X.690 section 11.8.1)
// data length: 13
//
// thus, length will always be on 1 byte (short length) and
// class+structure+tag also on 1
//
// total: 15 = 1 (class+constructed+tag) + 1 (length) + 13
Ok(15)
}
fn write_der_header(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
// see above for length value
writer.write(&[Self::TAG.0 as u8, 13]).map_err(Into::into)
}
fn write_der_content(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
write!(
writer,
"{:02}{:02}{:02}{:02}{:02}{:02}Z",
self.0.year, self.0.month, self.0.day, self.0.hour, self.0.minute, self.0.second,
)?;
// write_fmt returns (), see above for length value
Ok(13)
}
}