1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
// SPDX-License-Identifier: CC0-1.0
#[macro_export]
/// Adds hexadecimal formatting implementation of a trait `$imp` to a given type `$ty`.
macro_rules! hex_fmt_impl(
($reverse:expr, $ty:ident) => (
$crate::hex_fmt_impl!($reverse, $ty, );
);
($reverse:expr, $ty:ident, $($gen:ident: $gent:ident),*) => (
impl<$($gen: $gent),*> $crate::_export::_core::fmt::LowerHex for $ty<$($gen),*> {
#[inline]
fn fmt(&self, f: &mut $crate::_export::_core::fmt::Formatter) -> $crate::_export::_core::fmt::Result {
if $reverse {
$crate::_export::_core::fmt::LowerHex::fmt(&self.0.backward_hex(), f)
} else {
$crate::_export::_core::fmt::LowerHex::fmt(&self.0.forward_hex(), f)
}
}
}
impl<$($gen: $gent),*> $crate::_export::_core::fmt::UpperHex for $ty<$($gen),*> {
#[inline]
fn fmt(&self, f: &mut $crate::_export::_core::fmt::Formatter) -> $crate::_export::_core::fmt::Result {
if $reverse {
$crate::_export::_core::fmt::UpperHex::fmt(&self.0.backward_hex(), f)
} else {
$crate::_export::_core::fmt::UpperHex::fmt(&self.0.forward_hex(), f)
}
}
}
impl<$($gen: $gent),*> $crate::_export::_core::fmt::Display for $ty<$($gen),*> {
#[inline]
fn fmt(&self, f: &mut $crate::_export::_core::fmt::Formatter) -> $crate::_export::_core::fmt::Result {
$crate::_export::_core::fmt::LowerHex::fmt(&self, f)
}
}
impl<$($gen: $gent),*> $crate::_export::_core::fmt::Debug for $ty<$($gen),*> {
#[inline]
fn fmt(&self, f: &mut $crate::_export::_core::fmt::Formatter) -> $crate::_export::_core::fmt::Result {
write!(f, "{:#}", self)
}
}
);
);
/// Adds slicing traits implementations to a given type `$ty`
#[macro_export]
macro_rules! borrow_slice_impl(
($ty:ident) => (
$crate::borrow_slice_impl!($ty, );
);
($ty:ident, $($gen:ident: $gent:ident),*) => (
impl<$($gen: $gent),*> $crate::_export::_core::borrow::Borrow<[u8]> for $ty<$($gen),*> {
fn borrow(&self) -> &[u8] {
&self[..]
}
}
impl<$($gen: $gent),*> $crate::_export::_core::convert::AsRef<[u8]> for $ty<$($gen),*> {
fn as_ref(&self) -> &[u8] {
&self[..]
}
}
)
);
macro_rules! engine_input_impl(
() => (
#[cfg(not(hashes_fuzz))]
fn input(&mut self, mut inp: &[u8]) {
while !inp.is_empty() {
let buf_idx = self.length % <Self as crate::HashEngine>::BLOCK_SIZE;
let rem_len = <Self as crate::HashEngine>::BLOCK_SIZE - buf_idx;
let write_len = cmp::min(rem_len, inp.len());
self.buffer[buf_idx..buf_idx + write_len]
.copy_from_slice(&inp[..write_len]);
self.length += write_len;
if self.length % <Self as crate::HashEngine>::BLOCK_SIZE == 0 {
self.process_block();
}
inp = &inp[write_len..];
}
}
#[cfg(hashes_fuzz)]
fn input(&mut self, inp: &[u8]) {
for c in inp {
self.buffer[0] ^= *c;
}
self.length += inp.len();
}
)
);
/// Creates a new newtype around a [`Hash`] type.
///
/// The syntax is similar to the usual tuple struct syntax:
///
/// ```
/// # use bitcoin_hashes::{hash_newtype, sha256};
/// hash_newtype! {
/// /// Hash of `Foo`.
/// pub struct MyNewtype(pub sha256::Hash);
/// }
/// ```
///
/// You can use any valid visibility specifier in place of `pub` or you can omit either or both, if
/// you want the type or its field to be private.
///
/// Whether the hash is reversed or not when displaying depends on the inner type. However you can
/// override it like this:
///
/// ```
/// # use bitcoin_hashes::{hash_newtype, sha256};
/// hash_newtype! {
/// #[hash_newtype(backward)]
/// struct MyNewtype(sha256::Hash);
/// }
/// ```
///
/// This will display the hash backwards regardless of what the inner type does. Use `forward`
/// instead of `backward` to force displaying forward.
///
/// You can add arbitrary doc comments or other attributes to the struct or it's field. Note that
/// the macro already derives [`Copy`], [`Clone`], [`Eq`], [`PartialEq`],
/// [`Hash`](core::hash::Hash), [`Ord`], [`PartialOrd`]. With the `serde` feature on, this also adds
/// `Serialize` and `Deserialize` implementations.
///
/// You can also define multiple newtypes within one macro call:
///
/// ```
/// # use bitcoin_hashes::{hash_newtype, sha256, hash160};
///
/// hash_newtype! {
/// /// My custom type 1
/// pub struct Newtype1(sha256::Hash);
///
/// /// My custom type 2
/// struct Newtype2(hash160::Hash);
/// }
/// ```
///
/// Note: the macro is internally recursive. If you use too many attributes (> 256 tokens) you may
/// hit recursion limit. If you have so many attributes for a good reason, just raising the limit
/// should be OK. Note however that attribute-processing part has to use [TT muncher] which has
/// quadratic complexity, so having many attributes may blow up compile time. This should be rare.
///
/// [TT muncher]: https://danielkeep.github.io/tlborm/book/pat-incremental-tt-munchers.html
///
// Ever heard of legendary comments warning developers to not touch the code? Yep, here's another
// one. The following code is written the way it is for some specific reasons. If you think you can
// simplify it, I suggest spending your time elsewhere.
//
// If you looks at the code carefully you might ask these questions:
//
// * Why are attributes using `tt` and not `meta`?!
// * Why are the macros split like that?!
// * Why use recursion instead of `$()*`?
//
// None of these are here by accident. For some reason unknown to me, if you accept an argument to
// macro with any fragment specifier other than `tt` it will **not** match any of the rules
// requiring a specific token. Yep, I tried it, I literally got error that `hash_newtype` doesn't
// match `hash_newtype`. So all input attributes must be `tt`.
//
// Originally I wanted to define a bunch of macros that would filter-out hash_type attributes. Then
// I remembered (by seeing compiler error) that calling macros is not allowed inside attributes.
// And no, you can't bypass it by calling a helper macro and passing "output of another macro" into
// it. The whole macro gets passed, not the resulting value. So we have to generate the entire
// attributes. And you can't just place an attribute-producing macro above struct - they are
// considered separate items. This is not C.
//
// Thus struct is generated in a separate macro together with attributes. And since the macro needs
// attributes as the input and I didn't want to create confusion by using `#[]` syntax *after*
// struct, I opted to use `{}` as a separator. Yes, a separator is required because an attribute
// may be composed of multiple token trees - that's the point of "double repetition".
#[macro_export]
macro_rules! hash_newtype {
($($(#[$($type_attrs:tt)*])* $type_vis:vis struct $newtype:ident($(#[$field_attrs:tt])* $field_vis:vis $hash:path);)+) => {
$(
$($crate::hash_newtype_known_attrs!(#[ $($type_attrs)* ]);)*
$crate::hash_newtype_struct! {
$type_vis struct $newtype($(#[$field_attrs])* $field_vis $hash);
$({ $($type_attrs)* })*
}
$crate::hex_fmt_impl!(<$newtype as $crate::Hash>::DISPLAY_BACKWARD, $newtype);
$crate::serde_impl!($newtype, <$newtype as $crate::Hash>::LEN);
$crate::borrow_slice_impl!($newtype);
impl $newtype {
/// Creates this wrapper type from the inner hash type.
#[allow(unused)] // the user of macro may not need this
pub fn from_raw_hash(inner: $hash) -> $newtype {
$newtype(inner)
}
/// Returns the inner hash (sha256, sh256d etc.).
#[allow(unused)] // the user of macro may not need this
pub fn to_raw_hash(self) -> $hash {
self.0
}
/// Returns a reference to the inner hash (sha256, sh256d etc.).
#[allow(unused)] // the user of macro may not need this
pub fn as_raw_hash(&self) -> &$hash {
&self.0
}
}
impl $crate::_export::_core::convert::From<$hash> for $newtype {
fn from(inner: $hash) -> $newtype {
// Due to rust 1.22 we have to use this instead of simple `Self(inner)`
Self { 0: inner }
}
}
impl $crate::_export::_core::convert::From<$newtype> for $hash {
fn from(hashtype: $newtype) -> $hash {
hashtype.0
}
}
impl $crate::Hash for $newtype {
type Engine = <$hash as $crate::Hash>::Engine;
type Bytes = <$hash as $crate::Hash>::Bytes;
const LEN: usize = <$hash as $crate::Hash>::LEN;
const DISPLAY_BACKWARD: bool = $crate::hash_newtype_get_direction!($hash, $(#[$($type_attrs)*])*);
fn engine() -> Self::Engine {
<$hash as $crate::Hash>::engine()
}
fn from_engine(e: Self::Engine) -> Self {
Self::from(<$hash as $crate::Hash>::from_engine(e))
}
#[inline]
fn from_slice(sl: &[u8]) -> Result<$newtype, $crate::FromSliceError> {
Ok($newtype(<$hash as $crate::Hash>::from_slice(sl)?))
}
#[inline]
fn from_byte_array(bytes: Self::Bytes) -> Self {
$newtype(<$hash as $crate::Hash>::from_byte_array(bytes))
}
#[inline]
fn to_byte_array(self) -> Self::Bytes {
self.0.to_byte_array()
}
#[inline]
fn as_byte_array(&self) -> &Self::Bytes {
self.0.as_byte_array()
}
#[inline]
fn all_zeros() -> Self {
let zeros = <$hash>::all_zeros();
$newtype(zeros)
}
}
impl $crate::_export::_core::str::FromStr for $newtype {
type Err = $crate::hex::HexToArrayError;
fn from_str(s: &str) -> $crate::_export::_core::result::Result<$newtype, Self::Err> {
use $crate::hex::{FromHex, HexToBytesIter};
use $crate::Hash;
let inner: <$hash as Hash>::Bytes = if <Self as $crate::Hash>::DISPLAY_BACKWARD {
FromHex::from_byte_iter(HexToBytesIter::new(s)?.rev())?
} else {
FromHex::from_byte_iter(HexToBytesIter::new(s)?)?
};
Ok($newtype(<$hash>::from_byte_array(inner)))
}
}
impl $crate::_export::_core::convert::AsRef<[u8; <$hash as $crate::Hash>::LEN]> for $newtype {
fn as_ref(&self) -> &[u8; <$hash as $crate::Hash>::LEN] {
AsRef::<[u8; <$hash as $crate::Hash>::LEN]>::as_ref(&self.0)
}
}
impl<I: $crate::_export::_core::slice::SliceIndex<[u8]>> $crate::_export::_core::ops::Index<I> for $newtype {
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
&self.0[index]
}
}
)+
};
}
// Generates the struct only (no impls)
//
// This is a separate macro to make it more readable and have a separate interface that allows for
// two groups of type attributes: processed and not-yet-processed ones (think about it like
// computation via recursion). The macro recursively matches unprocessed attributes, popping them
// one at a time and either ignoring them (`hash_newtype`) or appending them to the list of
// processed attributes to be added to the struct.
//
// Once the list of not-yet-processed attributes is empty the struct is generated with processed
// attributes added.
#[doc(hidden)]
#[macro_export]
macro_rules! hash_newtype_struct {
($(#[$other_attrs:meta])* $type_vis:vis struct $newtype:ident($(#[$field_attrs:meta])* $field_vis:vis $hash:path);) => {
$(#[$other_attrs])*
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
$type_vis struct $newtype($(#[$field_attrs])* $field_vis $hash);
};
($(#[$other_attrs:meta])* $type_vis:vis struct $newtype:ident($(#[$field_attrs:meta])* $field_vis:vis $hash:path); { hash_newtype($($ignore:tt)*) } $($type_attrs:tt)*) => {
$crate::hash_newtype_struct! {
$(#[$other_attrs])*
$type_vis struct $newtype($(#[$field_attrs])* $field_vis $hash);
$($type_attrs)*
}
};
($(#[$other_attrs:meta])* $type_vis:vis struct $newtype:ident($(#[$field_attrs:meta])* $field_vis:vis $hash:path); { $other_attr:meta } $($type_attrs:tt)*) => {
$crate::hash_newtype_struct! {
$(#[$other_attrs])*
#[$other_attr]
$type_vis struct $newtype($(#[$field_attrs])* $field_vis $hash);
$($type_attrs)*
}
};
}
// Extracts `hash_newtype(forward)` and `hash_newtype(backward)` attributes if any and turns them
// into bool, defaulting to `DISPLAY_BACKWARD` of the wrapped type if the attribute is omitted.
//
// Once an appropriate attribute is found we pass the remaining ones into another macro to detect
// duplicates/conflicts and report an error.
//
// FYI, no, we can't use a helper macro to first filter all `hash_newtype` attributes. We would be
// attempting to match on macros instead. So we must write `hashe_newtype` in each branch.
#[doc(hidden)]
#[macro_export]
macro_rules! hash_newtype_get_direction {
($hash:ty, ) => { <$hash as $crate::Hash>::DISPLAY_BACKWARD };
($hash:ty, #[hash_newtype(forward)] $($others:tt)*) => { { $crate::hash_newtype_forbid_direction!(forward, $($others)*); false } };
($hash:ty, #[hash_newtype(backward)] $($others:tt)*) => { { $crate::hash_newtype_forbid_direction!(backward, $($others)*); true } };
($hash:ty, #[$($ignore:tt)*] $($others:tt)*) => { $crate::hash_newtype_get_direction!($hash, $($others)*) };
}
// Reports an error if any of the attributes is `hash_newtype($direction)`.
//
// This is used for detection of duplicates/conflicts, see the macro above.
#[doc(hidden)]
#[macro_export]
macro_rules! hash_newtype_forbid_direction {
($direction:ident, ) => {};
($direction:ident, #[hash_newtype(forward)] $(others:tt)*) => {
compile_error!(concat!("Cannot set display direction to forward: ", stringify!($direction), " was already specified"));
};
($direction:ident, #[hash_newtype(backward)] $(others:tt)*) => {
compile_error!(concat!("Cannot set display direction to backward: ", stringify!($direction), " was already specified"));
};
($direction:ident, #[$($ignore:tt)*] $(#[$others:tt])*) => {
$crate::hash_newtype_forbid_direction!($direction, $(#[$others])*)
};
}
// Checks (at compile time) that all `hash_newtype` attributes are known.
//
// An unknown attribute could be a typo that could cause problems - e.g. wrong display direction if
// it's missing. To prevent this, we call this macro above. The macro produces nothing unless an
// unknown attribute is found in which case it produces `compile_error!`.
#[doc(hidden)]
#[macro_export]
macro_rules! hash_newtype_known_attrs {
(#[hash_newtype(forward)]) => {};
(#[hash_newtype(backward)]) => {};
(#[hash_newtype($($unknown:tt)*)]) => { compile_error!(concat!("Unrecognized attribute ", stringify!($($unknown)*))); };
($($ignore:tt)*) => {};
}
#[cfg(feature = "schemars")]
pub mod json_hex_string {
use schemars::gen::SchemaGenerator;
use schemars::schema::{Schema, SchemaObject};
use schemars::JsonSchema;
macro_rules! define_custom_hex {
($name:ident, $len:expr) => {
pub fn $name(gen: &mut SchemaGenerator) -> Schema {
let mut schema: SchemaObject = <String>::json_schema(gen).into();
schema.string = Some(Box::new(schemars::schema::StringValidation {
max_length: Some($len * 2),
min_length: Some($len * 2),
pattern: Some("[0-9a-fA-F]+".to_owned()),
}));
schema.into()
}
};
}
define_custom_hex!(len_8, 8);
define_custom_hex!(len_20, 20);
define_custom_hex!(len_32, 32);
define_custom_hex!(len_64, 64);
}
#[cfg(test)]
mod test {
use crate::{sha256, Hash};
#[test]
fn hash_as_ref_array() {
let hash = sha256::Hash::hash(&[3, 50]);
let r = AsRef::<[u8; 32]>::as_ref(&hash);
assert_eq!(r, hash.as_byte_array());
}
#[test]
fn hash_as_ref_slice() {
let hash = sha256::Hash::hash(&[3, 50]);
let r = AsRef::<[u8]>::as_ref(&hash);
assert_eq!(r, hash.as_byte_array());
}
#[test]
fn hash_borrow() {
use core::borrow::Borrow;
let hash = sha256::Hash::hash(&[3, 50]);
let borrowed: &[u8] = hash.borrow();
assert_eq!(borrowed, hash.as_byte_array());
}
hash_newtype! {
/// Test hash.
struct TestHash(crate::sha256d::Hash);
}
#[test]
fn display() {
let want = "0000000000000000000000000000000000000000000000000000000000000000";
let got = format!("{}", TestHash::all_zeros());
assert_eq!(got, want)
}
#[test]
fn display_alternate() {
let want = "0x0000000000000000000000000000000000000000000000000000000000000000";
let got = format!("{:#}", TestHash::all_zeros());
assert_eq!(got, want)
}
#[test]
fn lower_hex() {
let want = "0000000000000000000000000000000000000000000000000000000000000000";
let got = format!("{:x}", TestHash::all_zeros());
assert_eq!(got, want)
}
#[test]
fn lower_hex_alternate() {
let want = "0x0000000000000000000000000000000000000000000000000000000000000000";
let got = format!("{:#x}", TestHash::all_zeros());
assert_eq!(got, want)
}
#[test]
fn inner_hash_as_ref_array() {
let hash = TestHash::all_zeros();
let r = AsRef::<[u8; 32]>::as_ref(&hash);
assert_eq!(r, hash.as_byte_array());
}
#[test]
fn inner_hash_as_ref_slice() {
let hash = TestHash::all_zeros();
let r = AsRef::<[u8]>::as_ref(&hash);
assert_eq!(r, hash.as_byte_array());
}
}