1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
// SPDX-License-Identifier: CC0-1.0
//! Helpers for displaying bytes as hex strings.
//!
//! This module provides a trait for displaying things as hex as well as an implementation for
//! `&[u8]`.
use core::borrow::Borrow;
use core::fmt;
use super::buf_encoder::{BufEncoder, OutBytes};
use super::Case;
use crate::hex::buf_encoder::FixedLenBuf;
#[cfg(feature = "alloc")]
use crate::prelude::*;
/// Extension trait for types that can be displayed as hex.
///
/// Types that have a single, obvious text representation being hex should **not** implement this
/// trait and simply implement `Display` instead.
///
/// This trait should be generally implemented for references only. We would prefer to use GAT but
/// that is beyond our MSRV. As a lint we require the `IsRef` trait which is implemented for all
/// references.
pub trait DisplayHex: Copy + sealed::IsRef {
/// The type providing [`fmt::Display`] implementation.
///
/// This is usually a wrapper type holding a reference to `Self`.
type Display: fmt::LowerHex + fmt::UpperHex;
/// Display `Self` as a continuous sequence of ASCII hex chars.
fn as_hex(self) -> Self::Display;
/// Create a lower-hex-encoded string.
///
/// A shorthand for `to_hex_string(Case::Lower)`, so that `Case` doesn't need to be imported.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
fn to_lower_hex_string(self) -> String { self.to_hex_string(Case::Lower) }
/// Create an upper-hex-encoded string.
///
/// A shorthand for `to_hex_string(Case::Upper)`, so that `Case` doesn't need to be imported.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
fn to_upper_hex_string(self) -> String { self.to_hex_string(Case::Upper) }
/// Create a hex-encoded string.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
fn to_hex_string(self, case: Case) -> String {
let mut string = String::new();
self.append_hex_to_string(case, &mut string);
string
}
/// Appends hex-encoded content to an existing `String`.
///
/// This may be faster than `write!(string, "{:x}", self.display_hex())` because it uses
/// `reserve_sugggestion`.
#[cfg(feature = "alloc")]
fn append_hex_to_string(self, case: Case, string: &mut String) {
use fmt::Write;
string.reserve(self.hex_reserve_suggestion());
match case {
Case::Lower => write!(string, "{:x}", self.as_hex()),
Case::Upper => write!(string, "{:X}", self.as_hex()),
}
.unwrap_or_else(|_| {
let name = core::any::type_name::<Self::Display>();
// We don't expect `std` to ever be buggy, so the bug is most likely in the `Display`
// impl of `Self::Display`.
panic!("The implementation of Display for {} returned an error when it shouldn't", name)
})
}
/// Hints how much bytes to reserve when creating a `String`.
///
/// Implementors that know the number of produced bytes upfront should override this.
/// Defaults to 0.
///
// We prefix the name with `hex_` to avoid potential collision with other methods.
fn hex_reserve_suggestion(self) -> usize { 0 }
}
mod sealed {
/// Trait marking a shared reference.
pub trait IsRef: Copy {}
impl<T: ?Sized> IsRef for &'_ T {}
}
impl<'a> DisplayHex for &'a [u8] {
type Display = DisplayByteSlice<'a>;
#[inline]
fn as_hex(self) -> Self::Display { DisplayByteSlice { bytes: self } }
#[inline]
fn hex_reserve_suggestion(self) -> usize {
// Since the string wouldn't fit into address space if this overflows (actually even for
// smaller amounts) it's better to panic right away. It should also give the optimizer
// better opportunities.
self.len().checked_mul(2).expect("the string wouldn't fit into address space")
}
}
#[cfg(feature = "alloc")]
impl<'a> DisplayHex for &'a alloc::vec::Vec<u8> {
type Display = DisplayByteSlice<'a>;
#[inline]
fn as_hex(self) -> Self::Display { DisplayByteSlice { bytes: self } }
#[inline]
fn hex_reserve_suggestion(self) -> usize {
// Since the string wouldn't fit into address space if this overflows (actually even for
// smaller amounts) it's better to panic right away. It should also give the optimizer
// better opportunities.
self.len().checked_mul(2).expect("the string wouldn't fit into address space")
}
}
/// Displays byte slice as hex.
///
/// Created by [`<&[u8] as DisplayHex>::as_hex`](DisplayHex::as_hex).
pub struct DisplayByteSlice<'a> {
// pub because we want to keep lengths in sync
pub(crate) bytes: &'a [u8],
}
impl<'a> DisplayByteSlice<'a> {
fn display(&self, f: &mut fmt::Formatter, case: Case) -> fmt::Result {
let mut buf = [0u8; 1024];
let mut encoder = super::BufEncoder::new(&mut buf);
let mut chunks = self.bytes.chunks_exact(512);
for chunk in &mut chunks {
encoder.put_bytes(chunk, case);
f.write_str(encoder.as_str())?;
encoder.clear();
}
encoder.put_bytes(chunks.remainder(), case);
f.write_str(encoder.as_str())
}
}
impl<'a> fmt::LowerHex for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Lower) }
}
impl<'a> fmt::UpperHex for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Upper) }
}
/// Displays byte array as hex.
///
/// Created by [`<&[u8; LEN] as DisplayHex>::as_hex`](DisplayHex::as_hex).
pub struct DisplayArray<A: Clone + IntoIterator, B: FixedLenBuf>
where
A::Item: Borrow<u8>,
{
array: A,
_buffer_marker: core::marker::PhantomData<B>,
}
impl<A: Clone + IntoIterator, B: FixedLenBuf> DisplayArray<A, B>
where
A::Item: Borrow<u8>,
{
/// Creates the wrapper.
pub fn new(array: A) -> Self { DisplayArray { array, _buffer_marker: Default::default() } }
fn display(&self, f: &mut fmt::Formatter, case: Case) -> fmt::Result {
let mut buf = B::uninit();
let mut encoder = super::BufEncoder::new(&mut buf);
encoder.put_bytes(self.array.clone(), case);
f.pad_integral(true, "0x", encoder.as_str())
}
}
impl<A: Clone + IntoIterator, B: FixedLenBuf> fmt::LowerHex for DisplayArray<A, B>
where
A::Item: Borrow<u8>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Lower) }
}
impl<A: Clone + IntoIterator, B: FixedLenBuf> fmt::UpperHex for DisplayArray<A, B>
where
A::Item: Borrow<u8>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Upper) }
}
/// Format known-length array as hex.
///
/// This supports all formatting options of formatter and may be faster than calling
/// `display_as_hex()` on an arbitrary `&[u8]`. Note that the implementation intentionally keeps
/// leading zeros even when not requested. This is designed to display values such as hashes and
/// keys and removing leading zeros would be confusing.
///
/// ## Parameters
///
/// * `$formatter` - a [`fmt::Formatter`].
/// * `$len` known length of `$bytes`, must be a const expression.
/// * `$bytes` - bytes to be encoded, most likely a reference to an array.
/// * `$case` - value of type [`Case`] determining whether to format as lower or upper case.
///
/// ## Panics
///
/// This macro panics if `$len` is not equal to `$bytes.len()`. It also fails to compile if `$len`
/// is more than half of `usize::MAX`.
#[macro_export]
macro_rules! fmt_hex_exact {
($formatter:expr, $len:expr, $bytes:expr, $case:expr) => {{
// statically check $len
#[allow(deprecated)]
const _: () = [()][($len > usize::MAX / 2) as usize];
assert_eq!($bytes.len(), $len);
let mut buf = [0u8; $len * 2];
let buf = $crate::hex::buf_encoder::AsOutBytes::as_mut_out_bytes(&mut buf);
$crate::hex::display::fmt_hex_exact_fn($formatter, buf, $bytes, $case)
}};
}
pub use fmt_hex_exact;
// Implementation detail of `write_hex_exact` macro to de-duplicate the code
#[doc(hidden)]
#[inline]
pub fn fmt_hex_exact_fn<I>(
f: &mut fmt::Formatter,
buf: &mut OutBytes,
bytes: I,
case: Case,
) -> fmt::Result
where
I: IntoIterator,
I::Item: Borrow<u8>,
{
let mut encoder = BufEncoder::new(buf);
encoder.put_bytes(bytes, case);
f.pad_integral(true, "0x", encoder.as_str())
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use super::*;
#[cfg(feature = "alloc")]
mod alloc {
use super::*;
fn check_encoding(bytes: &[u8]) {
use core::fmt::Write;
let s1 = bytes.to_lower_hex_string();
let mut s2 = String::with_capacity(bytes.len() * 2);
for b in bytes {
write!(s2, "{:02x}", b).unwrap();
}
assert_eq!(s1, s2);
}
#[test]
fn empty() { check_encoding(b""); }
#[test]
fn single() { check_encoding(b"*"); }
#[test]
fn two() { check_encoding(b"*x"); }
#[test]
fn just_below_boundary() { check_encoding(&[42; 512]); }
#[test]
fn just_above_boundary() { check_encoding(&[42; 513]); }
#[test]
fn just_above_double_boundary() { check_encoding(&[42; 1025]); }
#[test]
fn fmt_exact_macro() {
use crate::alloc::string::ToString;
struct Dummy([u8; 32]);
impl fmt::Display for Dummy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt_hex_exact!(f, 32, &self.0, Case::Lower)
}
}
assert_eq!(Dummy([42; 32]).to_string(), "2a".repeat(32));
}
}
}