1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;

use crate::guts::{
    assemble_count, count_high, count_low, final_block, flag_word, input_debug_asserts, Finalize,
    Job, Stride,
};
use crate::{Word, BLOCKBYTES, IV, SIGMA};
use arrayref::{array_refs, mut_array_refs};
use core::cmp;
use core::mem;

pub const DEGREE: usize = 2;

#[inline(always)]
unsafe fn loadu(src: *const [Word; DEGREE]) -> __m128i {
    // This is an unaligned load, so the pointer cast is allowed.
    _mm_loadu_si128(src as *const __m128i)
}

#[inline(always)]
unsafe fn storeu(src: __m128i, dest: *mut [Word; DEGREE]) {
    // This is an unaligned store, so the pointer cast is allowed.
    _mm_storeu_si128(dest as *mut __m128i, src)
}

#[inline(always)]
unsafe fn add(a: __m128i, b: __m128i) -> __m128i {
    _mm_add_epi64(a, b)
}

#[inline(always)]
unsafe fn eq(a: __m128i, b: __m128i) -> __m128i {
    _mm_cmpeq_epi64(a, b)
}

#[inline(always)]
unsafe fn and(a: __m128i, b: __m128i) -> __m128i {
    _mm_and_si128(a, b)
}

#[inline(always)]
unsafe fn negate_and(a: __m128i, b: __m128i) -> __m128i {
    // Note that "and not" implies the reverse of the actual arg order.
    _mm_andnot_si128(a, b)
}

#[inline(always)]
unsafe fn xor(a: __m128i, b: __m128i) -> __m128i {
    _mm_xor_si128(a, b)
}

#[inline(always)]
unsafe fn set1(x: u64) -> __m128i {
    _mm_set1_epi64x(x as i64)
}

#[inline(always)]
unsafe fn set2(a: u64, b: u64) -> __m128i {
    // There's no _mm_setr_epi64x, so note the arg order is backwards.
    _mm_set_epi64x(b as i64, a as i64)
}

// Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
macro_rules! _MM_SHUFFLE {
    ($z:expr, $y:expr, $x:expr, $w:expr) => {
        ($z << 6) | ($y << 4) | ($x << 2) | $w
    };
}

// These rotations are the "simple version". For the "complicated version", see
// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2b-common.h#L43-L46.
// For a discussion of the tradeoffs, see
// https://github.com/sneves/blake2-avx2/pull/5. In short:
// - Due to an LLVM bug (https://bugs.llvm.org/show_bug.cgi?id=44379), this
//   version performs better on recent x86 chips.
// - LLVM is able to optimize this version to AVX-512 rotation instructions
//   when those are enabled.

#[inline(always)]
unsafe fn rot32(x: __m128i) -> __m128i {
    _mm_or_si128(_mm_srli_epi64(x, 32), _mm_slli_epi64(x, 64 - 32))
}

#[inline(always)]
unsafe fn rot24(x: __m128i) -> __m128i {
    _mm_or_si128(_mm_srli_epi64(x, 24), _mm_slli_epi64(x, 64 - 24))
}

#[inline(always)]
unsafe fn rot16(x: __m128i) -> __m128i {
    _mm_or_si128(_mm_srli_epi64(x, 16), _mm_slli_epi64(x, 64 - 16))
}

#[inline(always)]
unsafe fn rot63(x: __m128i) -> __m128i {
    _mm_or_si128(_mm_srli_epi64(x, 63), _mm_slli_epi64(x, 64 - 63))
}

#[inline(always)]
unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) {
    v[0] = add(v[0], m[SIGMA[r][0] as usize]);
    v[1] = add(v[1], m[SIGMA[r][2] as usize]);
    v[2] = add(v[2], m[SIGMA[r][4] as usize]);
    v[3] = add(v[3], m[SIGMA[r][6] as usize]);
    v[0] = add(v[0], v[4]);
    v[1] = add(v[1], v[5]);
    v[2] = add(v[2], v[6]);
    v[3] = add(v[3], v[7]);
    v[12] = xor(v[12], v[0]);
    v[13] = xor(v[13], v[1]);
    v[14] = xor(v[14], v[2]);
    v[15] = xor(v[15], v[3]);
    v[12] = rot32(v[12]);
    v[13] = rot32(v[13]);
    v[14] = rot32(v[14]);
    v[15] = rot32(v[15]);
    v[8] = add(v[8], v[12]);
    v[9] = add(v[9], v[13]);
    v[10] = add(v[10], v[14]);
    v[11] = add(v[11], v[15]);
    v[4] = xor(v[4], v[8]);
    v[5] = xor(v[5], v[9]);
    v[6] = xor(v[6], v[10]);
    v[7] = xor(v[7], v[11]);
    v[4] = rot24(v[4]);
    v[5] = rot24(v[5]);
    v[6] = rot24(v[6]);
    v[7] = rot24(v[7]);
    v[0] = add(v[0], m[SIGMA[r][1] as usize]);
    v[1] = add(v[1], m[SIGMA[r][3] as usize]);
    v[2] = add(v[2], m[SIGMA[r][5] as usize]);
    v[3] = add(v[3], m[SIGMA[r][7] as usize]);
    v[0] = add(v[0], v[4]);
    v[1] = add(v[1], v[5]);
    v[2] = add(v[2], v[6]);
    v[3] = add(v[3], v[7]);
    v[12] = xor(v[12], v[0]);
    v[13] = xor(v[13], v[1]);
    v[14] = xor(v[14], v[2]);
    v[15] = xor(v[15], v[3]);
    v[12] = rot16(v[12]);
    v[13] = rot16(v[13]);
    v[14] = rot16(v[14]);
    v[15] = rot16(v[15]);
    v[8] = add(v[8], v[12]);
    v[9] = add(v[9], v[13]);
    v[10] = add(v[10], v[14]);
    v[11] = add(v[11], v[15]);
    v[4] = xor(v[4], v[8]);
    v[5] = xor(v[5], v[9]);
    v[6] = xor(v[6], v[10]);
    v[7] = xor(v[7], v[11]);
    v[4] = rot63(v[4]);
    v[5] = rot63(v[5]);
    v[6] = rot63(v[6]);
    v[7] = rot63(v[7]);

    v[0] = add(v[0], m[SIGMA[r][8] as usize]);
    v[1] = add(v[1], m[SIGMA[r][10] as usize]);
    v[2] = add(v[2], m[SIGMA[r][12] as usize]);
    v[3] = add(v[3], m[SIGMA[r][14] as usize]);
    v[0] = add(v[0], v[5]);
    v[1] = add(v[1], v[6]);
    v[2] = add(v[2], v[7]);
    v[3] = add(v[3], v[4]);
    v[15] = xor(v[15], v[0]);
    v[12] = xor(v[12], v[1]);
    v[13] = xor(v[13], v[2]);
    v[14] = xor(v[14], v[3]);
    v[15] = rot32(v[15]);
    v[12] = rot32(v[12]);
    v[13] = rot32(v[13]);
    v[14] = rot32(v[14]);
    v[10] = add(v[10], v[15]);
    v[11] = add(v[11], v[12]);
    v[8] = add(v[8], v[13]);
    v[9] = add(v[9], v[14]);
    v[5] = xor(v[5], v[10]);
    v[6] = xor(v[6], v[11]);
    v[7] = xor(v[7], v[8]);
    v[4] = xor(v[4], v[9]);
    v[5] = rot24(v[5]);
    v[6] = rot24(v[6]);
    v[7] = rot24(v[7]);
    v[4] = rot24(v[4]);
    v[0] = add(v[0], m[SIGMA[r][9] as usize]);
    v[1] = add(v[1], m[SIGMA[r][11] as usize]);
    v[2] = add(v[2], m[SIGMA[r][13] as usize]);
    v[3] = add(v[3], m[SIGMA[r][15] as usize]);
    v[0] = add(v[0], v[5]);
    v[1] = add(v[1], v[6]);
    v[2] = add(v[2], v[7]);
    v[3] = add(v[3], v[4]);
    v[15] = xor(v[15], v[0]);
    v[12] = xor(v[12], v[1]);
    v[13] = xor(v[13], v[2]);
    v[14] = xor(v[14], v[3]);
    v[15] = rot16(v[15]);
    v[12] = rot16(v[12]);
    v[13] = rot16(v[13]);
    v[14] = rot16(v[14]);
    v[10] = add(v[10], v[15]);
    v[11] = add(v[11], v[12]);
    v[8] = add(v[8], v[13]);
    v[9] = add(v[9], v[14]);
    v[5] = xor(v[5], v[10]);
    v[6] = xor(v[6], v[11]);
    v[7] = xor(v[7], v[8]);
    v[4] = xor(v[4], v[9]);
    v[5] = rot63(v[5]);
    v[6] = rot63(v[6]);
    v[7] = rot63(v[7]);
    v[4] = rot63(v[4]);
}

// We'd rather make this a regular function with #[inline(always)], but for
// some reason that blows up compile times by about 10 seconds, at least in
// some cases (BLAKE2b avx2.rs). This macro seems to get the same performance
// result, without the compile time issue.
macro_rules! compress2_transposed {
    (
        $h_vecs:expr,
        $msg_vecs:expr,
        $count_low:expr,
        $count_high:expr,
        $lastblock:expr,
        $lastnode:expr,
    ) => {
        let h_vecs: &mut [__m128i; 8] = $h_vecs;
        let msg_vecs: &[__m128i; 16] = $msg_vecs;
        let count_low: __m128i = $count_low;
        let count_high: __m128i = $count_high;
        let lastblock: __m128i = $lastblock;
        let lastnode: __m128i = $lastnode;
        let mut v = [
            h_vecs[0],
            h_vecs[1],
            h_vecs[2],
            h_vecs[3],
            h_vecs[4],
            h_vecs[5],
            h_vecs[6],
            h_vecs[7],
            set1(IV[0]),
            set1(IV[1]),
            set1(IV[2]),
            set1(IV[3]),
            xor(set1(IV[4]), count_low),
            xor(set1(IV[5]), count_high),
            xor(set1(IV[6]), lastblock),
            xor(set1(IV[7]), lastnode),
        ];

        round(&mut v, &msg_vecs, 0);
        round(&mut v, &msg_vecs, 1);
        round(&mut v, &msg_vecs, 2);
        round(&mut v, &msg_vecs, 3);
        round(&mut v, &msg_vecs, 4);
        round(&mut v, &msg_vecs, 5);
        round(&mut v, &msg_vecs, 6);
        round(&mut v, &msg_vecs, 7);
        round(&mut v, &msg_vecs, 8);
        round(&mut v, &msg_vecs, 9);
        round(&mut v, &msg_vecs, 10);
        round(&mut v, &msg_vecs, 11);

        h_vecs[0] = xor(xor(h_vecs[0], v[0]), v[8]);
        h_vecs[1] = xor(xor(h_vecs[1], v[1]), v[9]);
        h_vecs[2] = xor(xor(h_vecs[2], v[2]), v[10]);
        h_vecs[3] = xor(xor(h_vecs[3], v[3]), v[11]);
        h_vecs[4] = xor(xor(h_vecs[4], v[4]), v[12]);
        h_vecs[5] = xor(xor(h_vecs[5], v[5]), v[13]);
        h_vecs[6] = xor(xor(h_vecs[6], v[6]), v[14]);
        h_vecs[7] = xor(xor(h_vecs[7], v[7]), v[15]);
    };
}

#[inline(always)]
unsafe fn transpose_vecs(a: __m128i, b: __m128i) -> [__m128i; DEGREE] {
    let a_words: [Word; DEGREE] = mem::transmute(a);
    let b_words: [Word; DEGREE] = mem::transmute(b);
    [set2(a_words[0], b_words[0]), set2(a_words[1], b_words[1])]
}

#[inline(always)]
unsafe fn transpose_state_vecs(jobs: &[Job; DEGREE]) -> [__m128i; 8] {
    // Load all the state words into transposed vectors, where the first vector
    // has the first word of each state, etc. Transposing once at the beginning
    // and once at the end is more efficient that repeating it for each block.
    let words0 = array_refs!(&jobs[0].words, DEGREE, DEGREE, DEGREE, DEGREE);
    let words1 = array_refs!(&jobs[1].words, DEGREE, DEGREE, DEGREE, DEGREE);
    let [h0, h1] = transpose_vecs(loadu(words0.0), loadu(words1.0));
    let [h2, h3] = transpose_vecs(loadu(words0.1), loadu(words1.1));
    let [h4, h5] = transpose_vecs(loadu(words0.2), loadu(words1.2));
    let [h6, h7] = transpose_vecs(loadu(words0.3), loadu(words1.3));
    [h0, h1, h2, h3, h4, h5, h6, h7]
}

#[inline(always)]
unsafe fn untranspose_state_vecs(h_vecs: &[__m128i; 8], jobs: &mut [Job; DEGREE]) {
    // Un-transpose the updated state vectors back into the caller's arrays.
    let [job0, job1] = jobs;
    let words0 = mut_array_refs!(&mut job0.words, DEGREE, DEGREE, DEGREE, DEGREE);
    let words1 = mut_array_refs!(&mut job1.words, DEGREE, DEGREE, DEGREE, DEGREE);

    let out = transpose_vecs(h_vecs[0], h_vecs[1]);
    storeu(out[0], words0.0);
    storeu(out[1], words1.0);
    let out = transpose_vecs(h_vecs[2], h_vecs[3]);
    storeu(out[0], words0.1);
    storeu(out[1], words1.1);
    let out = transpose_vecs(h_vecs[4], h_vecs[5]);
    storeu(out[0], words0.2);
    storeu(out[1], words1.2);
    let out = transpose_vecs(h_vecs[6], h_vecs[7]);
    storeu(out[0], words0.3);
    storeu(out[1], words1.3);
}

#[inline(always)]
unsafe fn transpose_msg_vecs(blocks: [*const [u8; BLOCKBYTES]; DEGREE]) -> [__m128i; 16] {
    // These input arrays have no particular alignment, so we use unaligned
    // loads to read from them.
    let block0 = blocks[0] as *const [Word; DEGREE];
    let block1 = blocks[1] as *const [Word; DEGREE];
    let [m0, m1] = transpose_vecs(loadu(block0.add(0)), loadu(block1.add(0)));
    let [m2, m3] = transpose_vecs(loadu(block0.add(1)), loadu(block1.add(1)));
    let [m4, m5] = transpose_vecs(loadu(block0.add(2)), loadu(block1.add(2)));
    let [m6, m7] = transpose_vecs(loadu(block0.add(3)), loadu(block1.add(3)));
    let [m8, m9] = transpose_vecs(loadu(block0.add(4)), loadu(block1.add(4)));
    let [m10, m11] = transpose_vecs(loadu(block0.add(5)), loadu(block1.add(5)));
    let [m12, m13] = transpose_vecs(loadu(block0.add(6)), loadu(block1.add(6)));
    let [m14, m15] = transpose_vecs(loadu(block0.add(7)), loadu(block1.add(7)));
    [
        m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15,
    ]
}

#[inline(always)]
unsafe fn load_counts(jobs: &[Job; DEGREE]) -> (__m128i, __m128i) {
    (
        set2(count_low(jobs[0].count), count_low(jobs[1].count)),
        set2(count_high(jobs[0].count), count_high(jobs[1].count)),
    )
}

#[inline(always)]
unsafe fn store_counts(jobs: &mut [Job; DEGREE], low: __m128i, high: __m128i) {
    let low_ints: [Word; DEGREE] = mem::transmute(low);
    let high_ints: [Word; DEGREE] = mem::transmute(high);
    for i in 0..DEGREE {
        jobs[i].count = assemble_count(low_ints[i], high_ints[i]);
    }
}

#[inline(always)]
unsafe fn add_to_counts(lo: &mut __m128i, hi: &mut __m128i, delta: __m128i) {
    // If the low counts reach zero, that means they wrapped, unless the delta
    // was also zero.
    *lo = add(*lo, delta);
    let lo_reached_zero = eq(*lo, set1(0));
    let delta_was_zero = eq(delta, set1(0));
    let hi_inc = and(set1(1), negate_and(delta_was_zero, lo_reached_zero));
    *hi = add(*hi, hi_inc);
}

#[inline(always)]
unsafe fn flags_vec(flags: [bool; DEGREE]) -> __m128i {
    set2(flag_word(flags[0]), flag_word(flags[1]))
}

#[target_feature(enable = "sse4.1")]
pub unsafe fn compress2_loop(jobs: &mut [Job; DEGREE], finalize: Finalize, stride: Stride) {
    // If we're not finalizing, there can't be a partial block at the end.
    for job in jobs.iter() {
        input_debug_asserts(job.input, finalize);
    }

    let msg_ptrs = [jobs[0].input.as_ptr(), jobs[1].input.as_ptr()];
    let mut h_vecs = transpose_state_vecs(&jobs);
    let (mut counts_lo, mut counts_hi) = load_counts(&jobs);

    // Prepare the final blocks (note, which could be empty if the input is
    // empty). Do all this before entering the main loop.
    let min_len = jobs.iter().map(|job| job.input.len()).min().unwrap();
    let mut fin_offset = min_len.saturating_sub(1);
    fin_offset -= fin_offset % stride.padded_blockbytes();
    // Performance note, making these buffers mem::uninitialized() seems to
    // cause problems in the optimizer.
    let mut buf0: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
    let mut buf1: [u8; BLOCKBYTES] = [0; BLOCKBYTES];
    let (block0, len0, finalize0) = final_block(jobs[0].input, fin_offset, &mut buf0, stride);
    let (block1, len1, finalize1) = final_block(jobs[1].input, fin_offset, &mut buf1, stride);
    let fin_blocks: [*const [u8; BLOCKBYTES]; DEGREE] = [block0, block1];
    let fin_counts_delta = set2(len0 as Word, len1 as Word);
    let fin_last_block;
    let fin_last_node;
    if finalize.yes() {
        fin_last_block = flags_vec([finalize0, finalize1]);
        fin_last_node = flags_vec([
            finalize0 && jobs[0].last_node.yes(),
            finalize1 && jobs[1].last_node.yes(),
        ]);
    } else {
        fin_last_block = set1(0);
        fin_last_node = set1(0);
    }

    // The main loop.
    let mut offset = 0;
    loop {
        let blocks;
        let counts_delta;
        let last_block;
        let last_node;
        if offset == fin_offset {
            blocks = fin_blocks;
            counts_delta = fin_counts_delta;
            last_block = fin_last_block;
            last_node = fin_last_node;
        } else {
            blocks = [
                msg_ptrs[0].add(offset) as *const [u8; BLOCKBYTES],
                msg_ptrs[1].add(offset) as *const [u8; BLOCKBYTES],
            ];
            counts_delta = set1(BLOCKBYTES as Word);
            last_block = set1(0);
            last_node = set1(0);
        };

        let m_vecs = transpose_msg_vecs(blocks);
        add_to_counts(&mut counts_lo, &mut counts_hi, counts_delta);
        compress2_transposed!(
            &mut h_vecs,
            &m_vecs,
            counts_lo,
            counts_hi,
            last_block,
            last_node,
        );

        // Check for termination before bumping the offset, to avoid overflow.
        if offset == fin_offset {
            break;
        }

        offset += stride.padded_blockbytes();
    }

    // Write out the results.
    untranspose_state_vecs(&h_vecs, &mut *jobs);
    store_counts(&mut *jobs, counts_lo, counts_hi);
    let max_consumed = offset.saturating_add(stride.padded_blockbytes());
    for job in jobs.iter_mut() {
        let consumed = cmp::min(max_consumed, job.input.len());
        job.input = &job.input[consumed..];
    }
}