1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
use std::fmt::{Debug, Display};
use std::io::{self, Read, Write};
use std::sync::{Arc, Mutex, RwLock};

#[cfg(unix)]
use std::os::unix::io::{AsRawFd, RawFd};
#[cfg(windows)]
use std::os::windows::io::{AsRawHandle, RawHandle};

use crate::{kb::Key, utils::Style};

#[cfg(unix)]
trait TermWrite: Write + Debug + AsRawFd + Send {}
#[cfg(unix)]
impl<T: Write + Debug + AsRawFd + Send> TermWrite for T {}

#[cfg(unix)]
trait TermRead: Read + Debug + AsRawFd + Send {}
#[cfg(unix)]
impl<T: Read + Debug + AsRawFd + Send> TermRead for T {}

#[cfg(unix)]
#[derive(Debug, Clone)]
pub struct ReadWritePair {
    #[allow(unused)]
    read: Arc<Mutex<dyn TermRead>>,
    write: Arc<Mutex<dyn TermWrite>>,
    style: Style,
}

/// Where the term is writing.
#[derive(Debug, Clone)]
pub enum TermTarget {
    Stdout,
    Stderr,
    #[cfg(unix)]
    ReadWritePair(ReadWritePair),
}

#[derive(Debug)]
pub struct TermInner {
    target: TermTarget,
    buffer: Option<Mutex<Vec<u8>>>,
    prompt: RwLock<String>,
    prompt_guard: Mutex<()>,
}

/// The family of the terminal.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum TermFamily {
    /// Redirected to a file or file like thing.
    File,
    /// A standard unix terminal.
    UnixTerm,
    /// A cmd.exe like windows console.
    WindowsConsole,
    /// A dummy terminal (for instance on wasm)
    Dummy,
}

/// Gives access to the terminal features.
#[derive(Debug, Clone)]
pub struct TermFeatures<'a>(&'a Term);

impl<'a> TermFeatures<'a> {
    /// Check if this is a real user attended terminal (`isatty`)
    #[inline]
    pub fn is_attended(&self) -> bool {
        is_a_terminal(self.0)
    }

    /// Check if colors are supported by this terminal.
    ///
    /// This does not check if colors are enabled.  Currently all terminals
    /// are considered to support colors
    #[inline]
    pub fn colors_supported(&self) -> bool {
        is_a_color_terminal(self.0)
    }

    /// Check if this terminal is an msys terminal.
    ///
    /// This is sometimes useful to disable features that are known to not
    /// work on msys terminals or require special handling.
    #[inline]
    pub fn is_msys_tty(&self) -> bool {
        #[cfg(windows)]
        {
            msys_tty_on(self.0)
        }
        #[cfg(not(windows))]
        {
            false
        }
    }

    /// Check if this terminal wants emojis.
    #[inline]
    pub fn wants_emoji(&self) -> bool {
        self.is_attended() && wants_emoji()
    }

    /// Return the family of the terminal.
    #[inline]
    pub fn family(&self) -> TermFamily {
        if !self.is_attended() {
            return TermFamily::File;
        }
        #[cfg(windows)]
        {
            TermFamily::WindowsConsole
        }
        #[cfg(all(unix, not(target_arch = "wasm32")))]
        {
            TermFamily::UnixTerm
        }
        #[cfg(target_arch = "wasm32")]
        {
            TermFamily::Dummy
        }
    }
}

/// Abstraction around a terminal.
///
/// A terminal can be cloned.  If a buffer is used it's shared across all
/// clones which means it largely acts as a handle.
#[derive(Clone, Debug)]
pub struct Term {
    inner: Arc<TermInner>,
    pub(crate) is_msys_tty: bool,
    pub(crate) is_tty: bool,
}

impl Term {
    fn with_inner(inner: TermInner) -> Term {
        let mut term = Term {
            inner: Arc::new(inner),
            is_msys_tty: false,
            is_tty: false,
        };

        term.is_msys_tty = term.features().is_msys_tty();
        term.is_tty = term.features().is_attended();
        term
    }

    /// Return a new unbuffered terminal.
    #[inline]
    pub fn stdout() -> Term {
        Term::with_inner(TermInner {
            target: TermTarget::Stdout,
            buffer: None,
            prompt: RwLock::new(String::new()),
            prompt_guard: Mutex::new(()),
        })
    }

    /// Return a new unbuffered terminal to stderr.
    #[inline]
    pub fn stderr() -> Term {
        Term::with_inner(TermInner {
            target: TermTarget::Stderr,
            buffer: None,
            prompt: RwLock::new(String::new()),
            prompt_guard: Mutex::new(()),
        })
    }

    /// Return a new buffered terminal.
    pub fn buffered_stdout() -> Term {
        Term::with_inner(TermInner {
            target: TermTarget::Stdout,
            buffer: Some(Mutex::new(vec![])),
            prompt: RwLock::new(String::new()),
            prompt_guard: Mutex::new(()),
        })
    }

    /// Return a new buffered terminal to stderr.
    pub fn buffered_stderr() -> Term {
        Term::with_inner(TermInner {
            target: TermTarget::Stderr,
            buffer: Some(Mutex::new(vec![])),
            prompt: RwLock::new(String::new()),
            prompt_guard: Mutex::new(()),
        })
    }

    /// Return a terminal for the given Read/Write pair styled like stderr.
    #[cfg(unix)]
    pub fn read_write_pair<R, W>(read: R, write: W) -> Term
    where
        R: Read + Debug + AsRawFd + Send + 'static,
        W: Write + Debug + AsRawFd + Send + 'static,
    {
        Self::read_write_pair_with_style(read, write, Style::new().for_stderr())
    }

    /// Return a terminal for the given Read/Write pair.
    #[cfg(unix)]
    pub fn read_write_pair_with_style<R, W>(read: R, write: W, style: Style) -> Term
    where
        R: Read + Debug + AsRawFd + Send + 'static,
        W: Write + Debug + AsRawFd + Send + 'static,
    {
        Term::with_inner(TermInner {
            target: TermTarget::ReadWritePair(ReadWritePair {
                read: Arc::new(Mutex::new(read)),
                write: Arc::new(Mutex::new(write)),
                style,
            }),
            buffer: None,
            prompt: RwLock::new(String::new()),
            prompt_guard: Mutex::new(()),
        })
    }

    /// Return the style for this terminal.
    #[inline]
    pub fn style(&self) -> Style {
        match self.inner.target {
            TermTarget::Stderr => Style::new().for_stderr(),
            TermTarget::Stdout => Style::new().for_stdout(),
            #[cfg(unix)]
            TermTarget::ReadWritePair(ReadWritePair { ref style, .. }) => style.clone(),
        }
    }

    /// Return the target of this terminal.
    #[inline]
    pub fn target(&self) -> TermTarget {
        self.inner.target.clone()
    }

    #[doc(hidden)]
    pub fn write_str(&self, s: &str) -> io::Result<()> {
        match self.inner.buffer {
            Some(ref buffer) => buffer.lock().unwrap().write_all(s.as_bytes()),
            None => self.write_through(s.as_bytes()),
        }
    }

    /// Write a string to the terminal and add a newline.
    pub fn write_line(&self, s: &str) -> io::Result<()> {
        let prompt = self.inner.prompt.read().unwrap();
        if !prompt.is_empty() {
            self.clear_line()?;
        }
        match self.inner.buffer {
            Some(ref mutex) => {
                let mut buffer = mutex.lock().unwrap();
                buffer.extend_from_slice(s.as_bytes());
                buffer.push(b'\n');
                buffer.extend_from_slice(prompt.as_bytes());
                Ok(())
            }
            None => self.write_through(format!("{}\n{}", s, prompt.as_str()).as_bytes()),
        }
    }

    /// Read a single character from the terminal.
    ///
    /// This does not echo the character and blocks until a single character
    /// or complete key chord is entered.  If the terminal is not user attended
    /// the return value will be an error.
    pub fn read_char(&self) -> io::Result<char> {
        if !self.is_tty {
            return Err(io::Error::new(
                io::ErrorKind::NotConnected,
                "Not a terminal",
            ));
        }
        loop {
            match self.read_key()? {
                Key::Char(c) => {
                    return Ok(c);
                }
                Key::Enter => {
                    return Ok('\n');
                }
                _ => {}
            }
        }
    }

    /// Read a single key form the terminal.
    ///
    /// This does not echo anything.  If the terminal is not user attended
    /// the return value will always be the unknown key.
    pub fn read_key(&self) -> io::Result<Key> {
        if !self.is_tty {
            Ok(Key::Unknown)
        } else {
            read_single_key(false)
        }
    }

    pub fn read_key_raw(&self) -> io::Result<Key> {
        if !self.is_tty {
            Ok(Key::Unknown)
        } else {
            read_single_key(true)
        }
    }

    /// Read one line of input.
    ///
    /// This does not include the trailing newline.  If the terminal is not
    /// user attended the return value will always be an empty string.
    pub fn read_line(&self) -> io::Result<String> {
        self.read_line_initial_text("")
    }

    /// Read one line of input with initial text.
    ///
    /// This method blocks until no other thread is waiting for this read_line
    /// before reading a line from the terminal.
    /// This does not include the trailing newline.  If the terminal is not
    /// user attended the return value will always be an empty string.
    pub fn read_line_initial_text(&self, initial: &str) -> io::Result<String> {
        if !self.is_tty {
            return Ok("".into());
        }
        *self.inner.prompt.write().unwrap() = initial.to_string();
        // use a guard in order to prevent races with other calls to read_line_initial_text
        let _guard = self.inner.prompt_guard.lock().unwrap();

        self.write_str(initial)?;

        fn read_line_internal(slf: &Term, initial: &str) -> io::Result<String> {
            let prefix_len = initial.len();

            let mut chars: Vec<char> = initial.chars().collect();

            loop {
                match slf.read_key()? {
                    Key::Backspace => {
                        if prefix_len < chars.len() && chars.pop().is_some() {
                            slf.clear_chars(1)?;
                        }
                        slf.flush()?;
                    }
                    Key::Char(chr) => {
                        chars.push(chr);
                        let mut bytes_char = [0; 4];
                        chr.encode_utf8(&mut bytes_char);
                        slf.write_str(chr.encode_utf8(&mut bytes_char))?;
                        slf.flush()?;
                    }
                    Key::Enter => {
                        slf.write_through(format!("\n{}", initial).as_bytes())?;
                        break;
                    }
                    _ => (),
                }
            }
            Ok(chars.iter().skip(prefix_len).collect::<String>())
        }
        let ret = read_line_internal(self, initial);

        *self.inner.prompt.write().unwrap() = String::new();
        ret
    }

    /// Read a line of input securely.
    ///
    /// This is similar to `read_line` but will not echo the output.  This
    /// also switches the terminal into a different mode where not all
    /// characters might be accepted.
    pub fn read_secure_line(&self) -> io::Result<String> {
        if !self.is_tty {
            return Ok("".into());
        }
        match read_secure() {
            Ok(rv) => {
                self.write_line("")?;
                Ok(rv)
            }
            Err(err) => Err(err),
        }
    }

    /// Flush internal buffers.
    ///
    /// This forces the contents of the internal buffer to be written to
    /// the terminal.  This is unnecessary for unbuffered terminals which
    /// will automatically flush.
    pub fn flush(&self) -> io::Result<()> {
        if let Some(ref buffer) = self.inner.buffer {
            let mut buffer = buffer.lock().unwrap();
            if !buffer.is_empty() {
                self.write_through(&buffer[..])?;
                buffer.clear();
            }
        }
        Ok(())
    }

    /// Check if the terminal is indeed a terminal.
    #[inline]
    pub fn is_term(&self) -> bool {
        self.is_tty
    }

    /// Check for common terminal features.
    #[inline]
    pub fn features(&self) -> TermFeatures<'_> {
        TermFeatures(self)
    }

    /// Return the terminal size in rows and columns or gets sensible defaults.
    #[inline]
    pub fn size(&self) -> (u16, u16) {
        self.size_checked().unwrap_or((24, DEFAULT_WIDTH))
    }

    /// Return the terminal size in rows and columns.
    ///
    /// If the size cannot be reliably determined `None` is returned.
    #[inline]
    pub fn size_checked(&self) -> Option<(u16, u16)> {
        terminal_size(self)
    }

    /// Move the cursor to row `x` and column `y`. Values are 0-based.
    #[inline]
    pub fn move_cursor_to(&self, x: usize, y: usize) -> io::Result<()> {
        move_cursor_to(self, x, y)
    }

    /// Move the cursor up by `n` lines, if possible.
    ///
    /// If there are less than `n` lines above the current cursor position,
    /// the cursor is moved to the top line of the terminal (i.e., as far up as possible).
    #[inline]
    pub fn move_cursor_up(&self, n: usize) -> io::Result<()> {
        move_cursor_up(self, n)
    }

    /// Move the cursor down by `n` lines, if possible.
    ///
    /// If there are less than `n` lines below the current cursor position,
    /// the cursor is moved to the bottom line of the terminal (i.e., as far down as possible).
    #[inline]
    pub fn move_cursor_down(&self, n: usize) -> io::Result<()> {
        move_cursor_down(self, n)
    }

    /// Move the cursor `n` characters to the left, if possible.
    ///
    /// If there are fewer than `n` characters to the left of the current cursor position,
    /// the cursor is moved to the beginning of the line (i.e., as far to the left as possible).
    #[inline]
    pub fn move_cursor_left(&self, n: usize) -> io::Result<()> {
        move_cursor_left(self, n)
    }

    /// Move the cursor `n` characters to the right.
    ///
    /// If there are fewer than `n` characters to the right of the current cursor position,
    /// the cursor is moved to the end of the current line (i.e., as far to the right as possible).
    #[inline]
    pub fn move_cursor_right(&self, n: usize) -> io::Result<()> {
        move_cursor_right(self, n)
    }

    /// Clear the current line.
    ///
    /// Position the cursor at the beginning of the current line.
    #[inline]
    pub fn clear_line(&self) -> io::Result<()> {
        clear_line(self)
    }

    /// Clear the last `n` lines before the current line.
    ///
    /// Position the cursor at the beginning of the first line that was cleared.
    pub fn clear_last_lines(&self, n: usize) -> io::Result<()> {
        self.move_cursor_up(n)?;
        for _ in 0..n {
            self.clear_line()?;
            self.move_cursor_down(1)?;
        }
        self.move_cursor_up(n)?;
        Ok(())
    }

    /// Clear the entire screen.
    ///
    /// Move the cursor to the upper left corner of the screen.
    #[inline]
    pub fn clear_screen(&self) -> io::Result<()> {
        clear_screen(self)
    }

    /// Clear everything from the current cursor position to the end of the screen.
    /// The cursor stays in its position.
    #[inline]
    pub fn clear_to_end_of_screen(&self) -> io::Result<()> {
        clear_to_end_of_screen(self)
    }

    /// Clear the last `n` characters of the current line.
    #[inline]
    pub fn clear_chars(&self, n: usize) -> io::Result<()> {
        clear_chars(self, n)
    }

    /// Set the terminal title.
    pub fn set_title<T: Display>(&self, title: T) {
        if !self.is_tty {
            return;
        }
        set_title(title);
    }

    /// Make the cursor visible again.
    #[inline]
    pub fn show_cursor(&self) -> io::Result<()> {
        show_cursor(self)
    }

    /// Hide the cursor.
    #[inline]
    pub fn hide_cursor(&self) -> io::Result<()> {
        hide_cursor(self)
    }

    // helpers

    #[cfg(all(windows, feature = "windows-console-colors"))]
    fn write_through(&self, bytes: &[u8]) -> io::Result<()> {
        if self.is_msys_tty || !self.is_tty {
            self.write_through_common(bytes)
        } else {
            match self.inner.target {
                TermTarget::Stdout => console_colors(self, Console::stdout()?, bytes),
                TermTarget::Stderr => console_colors(self, Console::stderr()?, bytes),
            }
        }
    }

    #[cfg(not(all(windows, feature = "windows-console-colors")))]
    fn write_through(&self, bytes: &[u8]) -> io::Result<()> {
        self.write_through_common(bytes)
    }

    pub(crate) fn write_through_common(&self, bytes: &[u8]) -> io::Result<()> {
        match self.inner.target {
            TermTarget::Stdout => {
                io::stdout().write_all(bytes)?;
                io::stdout().flush()?;
            }
            TermTarget::Stderr => {
                io::stderr().write_all(bytes)?;
                io::stderr().flush()?;
            }
            #[cfg(unix)]
            TermTarget::ReadWritePair(ReadWritePair { ref write, .. }) => {
                let mut write = write.lock().unwrap();
                write.write_all(bytes)?;
                write.flush()?;
            }
        }
        Ok(())
    }
}

/// A fast way to check if the application has a user attended for stdout.
///
/// This means that stdout is connected to a terminal instead of a
/// file or redirected by other means. This is a shortcut for
/// checking the `is_attended` feature on the stdout terminal.
#[inline]
pub fn user_attended() -> bool {
    Term::stdout().features().is_attended()
}

/// A fast way to check if the application has a user attended for stderr.
///
/// This means that stderr is connected to a terminal instead of a
/// file or redirected by other means. This is a shortcut for
/// checking the `is_attended` feature on the stderr terminal.
#[inline]
pub fn user_attended_stderr() -> bool {
    Term::stderr().features().is_attended()
}

#[cfg(unix)]
impl AsRawFd for Term {
    fn as_raw_fd(&self) -> RawFd {
        match self.inner.target {
            TermTarget::Stdout => libc::STDOUT_FILENO,
            TermTarget::Stderr => libc::STDERR_FILENO,
            TermTarget::ReadWritePair(ReadWritePair { ref write, .. }) => {
                write.lock().unwrap().as_raw_fd()
            }
        }
    }
}

#[cfg(windows)]
impl AsRawHandle for Term {
    fn as_raw_handle(&self) -> RawHandle {
        use windows_sys::Win32::System::Console::{
            GetStdHandle, STD_ERROR_HANDLE, STD_OUTPUT_HANDLE,
        };

        unsafe {
            GetStdHandle(match self.inner.target {
                TermTarget::Stdout => STD_OUTPUT_HANDLE,
                TermTarget::Stderr => STD_ERROR_HANDLE,
            }) as RawHandle
        }
    }
}

impl Write for Term {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        match self.inner.buffer {
            Some(ref buffer) => buffer.lock().unwrap().write_all(buf),
            None => self.write_through(buf),
        }?;
        Ok(buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        Term::flush(self)
    }
}

impl<'a> Write for &'a Term {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        match self.inner.buffer {
            Some(ref buffer) => buffer.lock().unwrap().write_all(buf),
            None => self.write_through(buf),
        }?;
        Ok(buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        Term::flush(self)
    }
}

impl Read for Term {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        io::stdin().read(buf)
    }
}

impl<'a> Read for &'a Term {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        io::stdin().read(buf)
    }
}

#[cfg(all(unix, not(target_arch = "wasm32")))]
pub use crate::unix_term::*;
#[cfg(target_arch = "wasm32")]
pub use crate::wasm_term::*;
#[cfg(windows)]
pub use crate::windows_term::*;