1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
//! Implementation of the standard x64 ABI.

use crate::ir::{self, types, LibCall, MemFlags, Opcode, Signature, TrapCode, Type};
use crate::ir::{types::*, ExternalName};
use crate::isa;
use crate::isa::{unwind::UnwindInst, x64::inst::*, x64::settings as x64_settings, CallConv};
use crate::machinst::abi::*;
use crate::machinst::*;
use crate::settings;
use crate::{CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use args::*;
use regalloc2::{PRegSet, VReg};
use smallvec::{smallvec, SmallVec};
use std::convert::TryFrom;

/// This is the limit for the size of argument and return-value areas on the
/// stack. We place a reasonable limit here to avoid integer overflow issues
/// with 32-bit arithmetic: for now, 128 MB.
static STACK_ARG_RET_SIZE_LIMIT: u32 = 128 * 1024 * 1024;

/// Support for the x64 ABI from the callee side (within a function body).
pub(crate) type X64Callee = Callee<X64ABIMachineSpec>;

/// Support for the x64 ABI from the caller side (at a callsite).
pub(crate) type X64Caller = Caller<X64ABIMachineSpec>;

/// Implementation of ABI primitives for x64.
pub struct X64ABIMachineSpec;

impl X64ABIMachineSpec {
    fn gen_probestack_unroll(insts: &mut SmallInstVec<Inst>, guard_size: u32, probe_count: u32) {
        insts.reserve(probe_count as usize);
        for i in 0..probe_count {
            let offset = (guard_size * (i + 1)) as i64;

            // TODO: It would be nice if we could store the imm 0, but we don't have insts for those
            // so store the stack pointer. Any register will do, since the stack is undefined at this point
            insts.push(Self::gen_store_stack(
                StackAMode::SPOffset(-offset, I8),
                regs::rsp(),
                I32,
            ));
        }
    }
    fn gen_probestack_loop(insts: &mut SmallInstVec<Inst>, frame_size: u32, guard_size: u32) {
        // We have to use a caller saved register since clobbering only happens
        // after stack probing.
        //
        // R11 is caller saved on both Fastcall and SystemV, and not used for argument
        // passing, so it's pretty much free. It is also not used by the stacklimit mechanism.
        let tmp = regs::r11();
        debug_assert!({
            let real_reg = tmp.to_real_reg().unwrap();
            !is_callee_save_systemv(real_reg, false) && !is_callee_save_fastcall(real_reg, false)
        });

        insts.push(Inst::StackProbeLoop {
            tmp: Writable::from_reg(tmp),
            frame_size,
            guard_size,
        });
    }
}

impl IsaFlags for x64_settings::Flags {}

impl ABIMachineSpec for X64ABIMachineSpec {
    type I = Inst;

    type F = x64_settings::Flags;

    fn word_bits() -> u32 {
        64
    }

    /// Return required stack alignment in bytes.
    fn stack_align(_call_conv: isa::CallConv) -> u32 {
        16
    }

    fn compute_arg_locs<'a, I>(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        params: I,
        args_or_rets: ArgsOrRets,
        add_ret_area_ptr: bool,
        mut args: ArgsAccumulator<'_>,
    ) -> CodegenResult<(u32, Option<usize>)>
    where
        I: IntoIterator<Item = &'a ir::AbiParam>,
    {
        let is_fastcall = call_conv.extends_windows_fastcall();

        let mut next_gpr = 0;
        let mut next_vreg = 0;
        let mut next_stack: u32 = 0;
        let mut next_param_idx = 0; // Fastcall cares about overall param index

        if args_or_rets == ArgsOrRets::Args && is_fastcall {
            // Fastcall always reserves 32 bytes of shadow space corresponding to
            // the four initial in-arg parameters.
            //
            // (See:
            // https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160)
            next_stack = 32;
        }

        for param in params {
            if let ir::ArgumentPurpose::StructArgument(size) = param.purpose {
                let offset = next_stack as i64;
                let size = size;
                assert!(size % 8 == 0, "StructArgument size is not properly aligned");
                next_stack += size;
                args.push(ABIArg::StructArg {
                    pointer: None,
                    offset,
                    size: size as u64,
                    purpose: param.purpose,
                });
                continue;
            }

            // Find regclass(es) of the register(s) used to store a value of this type.
            let (rcs, reg_tys) = Inst::rc_for_type(param.value_type)?;

            // Now assign ABIArgSlots for each register-sized part.
            //
            // Note that the handling of `i128` values is unique here:
            //
            // - If `enable_llvm_abi_extensions` is set in the flags, each
            //   `i128` is split into two `i64`s and assigned exactly as if it
            //   were two consecutive 64-bit args. This is consistent with LLVM's
            //   behavior, and is needed for some uses of Cranelift (e.g., the
            //   rustc backend).
            //
            // - Otherwise, both SysV and Fastcall specify behavior (use of
            //   vector register, a register pair, or passing by reference
            //   depending on the case), but for simplicity, we will just panic if
            //   an i128 type appears in a signature and the LLVM extensions flag
            //   is not set.
            //
            // For examples of how rustc compiles i128 args and return values on
            // both SysV and Fastcall platforms, see:
            // https://godbolt.org/z/PhG3ob

            if param.value_type.bits() > 64
                && !param.value_type.is_vector()
                && !flags.enable_llvm_abi_extensions()
            {
                panic!(
                    "i128 args/return values not supported unless LLVM ABI extensions are enabled"
                );
            }

            let mut slots = ABIArgSlotVec::new();
            for (rc, reg_ty) in rcs.iter().zip(reg_tys.iter()) {
                let intreg = *rc == RegClass::Int;
                let nextreg = if intreg {
                    match args_or_rets {
                        ArgsOrRets::Args => {
                            get_intreg_for_arg(&call_conv, next_gpr, next_param_idx)
                        }
                        ArgsOrRets::Rets => {
                            get_intreg_for_retval(&call_conv, next_gpr, next_param_idx)
                        }
                    }
                } else {
                    match args_or_rets {
                        ArgsOrRets::Args => {
                            get_fltreg_for_arg(&call_conv, next_vreg, next_param_idx)
                        }
                        ArgsOrRets::Rets => {
                            get_fltreg_for_retval(&call_conv, next_vreg, next_param_idx)
                        }
                    }
                };
                next_param_idx += 1;
                if let Some(reg) = nextreg {
                    if intreg {
                        next_gpr += 1;
                    } else {
                        next_vreg += 1;
                    }
                    slots.push(ABIArgSlot::Reg {
                        reg: reg.to_real_reg().unwrap(),
                        ty: *reg_ty,
                        extension: param.extension,
                    });
                } else {
                    // Compute size. For the wasmtime ABI it differs from native
                    // ABIs in how multiple values are returned, so we take a
                    // leaf out of arm64's book by not rounding everything up to
                    // 8 bytes. For all ABI arguments, and other ABI returns,
                    // though, each slot takes a minimum of 8 bytes.
                    //
                    // Note that in all cases 16-byte stack alignment happens
                    // separately after all args.
                    let size = reg_ty.bits() / 8;
                    let size = if args_or_rets == ArgsOrRets::Rets && call_conv.extends_wasmtime() {
                        size
                    } else {
                        std::cmp::max(size, 8)
                    };
                    // Align.
                    debug_assert!(size.is_power_of_two());
                    next_stack = align_to(next_stack, size);
                    slots.push(ABIArgSlot::Stack {
                        offset: next_stack as i64,
                        ty: *reg_ty,
                        extension: param.extension,
                    });
                    next_stack += size;
                }
            }

            args.push(ABIArg::Slots {
                slots,
                purpose: param.purpose,
            });
        }

        let extra_arg = if add_ret_area_ptr {
            debug_assert!(args_or_rets == ArgsOrRets::Args);
            if let Some(reg) = get_intreg_for_arg(&call_conv, next_gpr, next_param_idx) {
                args.push(ABIArg::reg(
                    reg.to_real_reg().unwrap(),
                    types::I64,
                    ir::ArgumentExtension::None,
                    ir::ArgumentPurpose::Normal,
                ));
            } else {
                args.push(ABIArg::stack(
                    next_stack as i64,
                    types::I64,
                    ir::ArgumentExtension::None,
                    ir::ArgumentPurpose::Normal,
                ));
                next_stack += 8;
            }
            Some(args.args().len() - 1)
        } else {
            None
        };

        next_stack = align_to(next_stack, 16);

        // To avoid overflow issues, limit the arg/return size to something reasonable.
        if next_stack > STACK_ARG_RET_SIZE_LIMIT {
            return Err(CodegenError::ImplLimitExceeded);
        }

        Ok((next_stack, extra_arg))
    }

    fn fp_to_arg_offset(_call_conv: isa::CallConv, _flags: &settings::Flags) -> i64 {
        16 // frame pointer + return address.
    }

    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I {
        // For integer-typed values, we always load a full 64 bits (and we always spill a full 64
        // bits as well -- see `Inst::store()`).
        let ty = match ty {
            types::I8 | types::I16 | types::I32 => types::I64,
            _ => ty,
        };
        Inst::load(ty, mem, into_reg, ExtKind::None)
    }

    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I {
        Inst::store(ty, from_reg, mem)
    }

    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I {
        Inst::gen_move(to_reg, from_reg, ty)
    }

    /// Generate an integer-extend operation.
    fn gen_extend(
        to_reg: Writable<Reg>,
        from_reg: Reg,
        is_signed: bool,
        from_bits: u8,
        to_bits: u8,
    ) -> Self::I {
        let ext_mode = ExtMode::new(from_bits as u16, to_bits as u16)
            .unwrap_or_else(|| panic!("invalid extension: {} -> {}", from_bits, to_bits));
        if is_signed {
            Inst::movsx_rm_r(ext_mode, RegMem::reg(from_reg), to_reg)
        } else {
            Inst::movzx_rm_r(ext_mode, RegMem::reg(from_reg), to_reg)
        }
    }

    fn gen_args(_isa_flags: &x64_settings::Flags, args: Vec<ArgPair>) -> Inst {
        Inst::Args { args }
    }

    fn gen_ret(
        _setup_frame: bool,
        _isa_flags: &x64_settings::Flags,
        rets: Vec<RetPair>,
    ) -> Self::I {
        Inst::ret(rets)
    }

    fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I> {
        let mut ret = SmallVec::new();
        if from_reg != into_reg.to_reg() {
            ret.push(Inst::gen_move(into_reg, from_reg, I64));
        }
        ret.push(Inst::alu_rmi_r(
            OperandSize::Size64,
            AluRmiROpcode::Add,
            RegMemImm::imm(imm),
            into_reg,
        ));
        ret
    }

    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I> {
        smallvec![
            Inst::cmp_rmi_r(OperandSize::Size64, RegMemImm::reg(regs::rsp()), limit_reg),
            Inst::TrapIf {
                // NBE == "> unsigned"; args above are reversed; this tests limit_reg > rsp.
                cc: CC::NBE,
                trap_code: TrapCode::StackOverflow,
            },
        ]
    }

    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, _ty: Type) -> Self::I {
        let mem: SyntheticAmode = mem.into();
        Inst::lea(mem, into_reg)
    }

    fn get_stacklimit_reg() -> Reg {
        debug_assert!(!is_callee_save_systemv(
            regs::r10().to_real_reg().unwrap(),
            false
        ));

        // As per comment on trait definition, we must return a caller-save
        // register here.
        regs::r10()
    }

    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I {
        // Only ever used for I64s; if that changes, see if the ExtKind below needs to be changed.
        assert_eq!(ty, I64);
        let simm32 = offset as u32;
        let mem = Amode::imm_reg(simm32, base);
        Inst::load(ty, mem, into_reg, ExtKind::None)
    }

    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I {
        let simm32 = offset as u32;
        let mem = Amode::imm_reg(simm32, base);
        Inst::store(ty, from_reg, mem)
    }

    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I> {
        let (alu_op, amount) = if amount >= 0 {
            (AluRmiROpcode::Add, amount)
        } else {
            (AluRmiROpcode::Sub, -amount)
        };

        let amount = amount as u32;

        smallvec![Inst::alu_rmi_r(
            OperandSize::Size64,
            alu_op,
            RegMemImm::imm(amount),
            Writable::from_reg(regs::rsp()),
        )]
    }

    fn gen_nominal_sp_adj(offset: i32) -> Self::I {
        Inst::VirtualSPOffsetAdj {
            offset: offset as i64,
        }
    }

    fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Self::I> {
        let r_rsp = regs::rsp();
        let r_rbp = regs::rbp();
        let w_rbp = Writable::from_reg(r_rbp);
        let mut insts = SmallVec::new();
        // `push %rbp`
        // RSP before the call will be 0 % 16.  So here, it is 8 % 16.
        insts.push(Inst::push64(RegMemImm::reg(r_rbp)));

        if flags.unwind_info() {
            insts.push(Inst::Unwind {
                inst: UnwindInst::PushFrameRegs {
                    offset_upward_to_caller_sp: 16, // RBP, return address
                },
            });
        }

        // `mov %rsp, %rbp`
        // RSP is now 0 % 16
        insts.push(Inst::mov_r_r(OperandSize::Size64, r_rsp, w_rbp));
        insts
    }

    fn gen_epilogue_frame_restore(_: &settings::Flags) -> SmallInstVec<Self::I> {
        let mut insts = SmallVec::new();
        // `mov %rbp, %rsp`
        insts.push(Inst::mov_r_r(
            OperandSize::Size64,
            regs::rbp(),
            Writable::from_reg(regs::rsp()),
        ));
        // `pop %rbp`
        insts.push(Inst::pop64(Writable::from_reg(regs::rbp())));
        insts
    }

    fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32) {
        insts.push(Inst::imm(
            OperandSize::Size32,
            frame_size as u64,
            Writable::from_reg(regs::rax()),
        ));
        insts.push(Inst::CallKnown {
            dest: ExternalName::LibCall(LibCall::Probestack),
            info: Box::new(CallInfo {
                // No need to include arg here: we are post-regalloc
                // so no constraints will be seen anyway.
                uses: smallvec![],
                defs: smallvec![],
                clobbers: PRegSet::empty(),
                opcode: Opcode::Call,
            }),
        });
    }

    fn gen_inline_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32, guard_size: u32) {
        // Unroll at most n consecutive probes, before falling back to using a loop
        //
        // This was number was picked because the loop version is 38 bytes long. We can fit
        // 5 inline probes in that space, so unroll if its beneficial in terms of code size.
        const PROBE_MAX_UNROLL: u32 = 5;

        // Number of probes that we need to perform
        let probe_count = align_to(frame_size, guard_size) / guard_size;

        if probe_count <= PROBE_MAX_UNROLL {
            Self::gen_probestack_unroll(insts, guard_size, probe_count)
        } else {
            Self::gen_probestack_loop(insts, frame_size, guard_size)
        }
    }

    fn gen_clobber_save(
        _call_conv: isa::CallConv,
        setup_frame: bool,
        flags: &settings::Flags,
        clobbered_callee_saves: &[Writable<RealReg>],
        fixed_frame_storage_size: u32,
        _outgoing_args_size: u32,
    ) -> (u64, SmallVec<[Self::I; 16]>) {
        let mut insts = SmallVec::new();
        let clobbered_size = compute_clobber_size(&clobbered_callee_saves);

        if flags.unwind_info() && setup_frame {
            // Emit unwind info: start the frame. The frame (from unwind
            // consumers' point of view) starts at clobbbers, just below
            // the FP and return address. Spill slots and stack slots are
            // part of our actual frame but do not concern the unwinder.
            insts.push(Inst::Unwind {
                inst: UnwindInst::DefineNewFrame {
                    offset_downward_to_clobbers: clobbered_size,
                    offset_upward_to_caller_sp: 16, // RBP, return address
                },
            });
        }

        // Adjust the stack pointer downward for clobbers and the function fixed
        // frame (spillslots and storage slots).
        let stack_size = fixed_frame_storage_size + clobbered_size;
        if stack_size > 0 {
            insts.push(Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Sub,
                RegMemImm::imm(stack_size),
                Writable::from_reg(regs::rsp()),
            ));
        }
        // Store each clobbered register in order at offsets from RSP,
        // placing them above the fixed frame slots.
        let mut cur_offset = fixed_frame_storage_size;
        for reg in clobbered_callee_saves {
            let r_reg = reg.to_reg();
            let off = cur_offset;
            match r_reg.class() {
                RegClass::Int => {
                    insts.push(Inst::store(
                        types::I64,
                        r_reg.into(),
                        Amode::imm_reg(cur_offset, regs::rsp()),
                    ));
                    cur_offset += 8;
                }
                RegClass::Float => {
                    cur_offset = align_to(cur_offset, 16);
                    insts.push(Inst::store(
                        types::I8X16,
                        r_reg.into(),
                        Amode::imm_reg(cur_offset, regs::rsp()),
                    ));
                    cur_offset += 16;
                }
            };
            if flags.unwind_info() {
                insts.push(Inst::Unwind {
                    inst: UnwindInst::SaveReg {
                        clobber_offset: off - fixed_frame_storage_size,
                        reg: r_reg,
                    },
                });
            }
        }

        (clobbered_size as u64, insts)
    }

    fn gen_clobber_restore(
        call_conv: isa::CallConv,
        sig: &Signature,
        flags: &settings::Flags,
        clobbers: &[Writable<RealReg>],
        fixed_frame_storage_size: u32,
        _outgoing_args_size: u32,
    ) -> SmallVec<[Self::I; 16]> {
        let mut insts = SmallVec::new();

        let clobbered_callee_saves =
            Self::get_clobbered_callee_saves(call_conv, flags, sig, clobbers);
        let stack_size = fixed_frame_storage_size + compute_clobber_size(&clobbered_callee_saves);

        // Restore regs by loading from offsets of RSP. RSP will be
        // returned to nominal-RSP at this point, so we can use the
        // same offsets that we used when saving clobbers above.
        let mut cur_offset = fixed_frame_storage_size;
        for reg in &clobbered_callee_saves {
            let rreg = reg.to_reg();
            match rreg.class() {
                RegClass::Int => {
                    insts.push(Inst::mov64_m_r(
                        Amode::imm_reg(cur_offset, regs::rsp()),
                        Writable::from_reg(rreg.into()),
                    ));
                    cur_offset += 8;
                }
                RegClass::Float => {
                    cur_offset = align_to(cur_offset, 16);
                    insts.push(Inst::load(
                        types::I8X16,
                        Amode::imm_reg(cur_offset, regs::rsp()),
                        Writable::from_reg(rreg.into()),
                        ExtKind::None,
                    ));
                    cur_offset += 16;
                }
            }
        }
        // Adjust RSP back upward.
        if stack_size > 0 {
            insts.push(Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Add,
                RegMemImm::imm(stack_size),
                Writable::from_reg(regs::rsp()),
            ));
        }

        insts
    }

    /// Generate a call instruction/sequence.
    fn gen_call(
        dest: &CallDest,
        uses: CallArgList,
        defs: CallRetList,
        clobbers: PRegSet,
        opcode: ir::Opcode,
        tmp: Writable<Reg>,
        _callee_conv: isa::CallConv,
        _caller_conv: isa::CallConv,
    ) -> SmallVec<[Self::I; 2]> {
        let mut insts = SmallVec::new();
        match dest {
            &CallDest::ExtName(ref name, RelocDistance::Near) => {
                insts.push(Inst::call_known(name.clone(), uses, defs, clobbers, opcode));
            }
            &CallDest::ExtName(ref name, RelocDistance::Far) => {
                insts.push(Inst::LoadExtName {
                    dst: tmp,
                    name: Box::new(name.clone()),
                    offset: 0,
                });
                insts.push(Inst::call_unknown(
                    RegMem::reg(tmp.to_reg()),
                    uses,
                    defs,
                    clobbers,
                    opcode,
                ));
            }
            &CallDest::Reg(reg) => {
                insts.push(Inst::call_unknown(
                    RegMem::reg(reg),
                    uses,
                    defs,
                    clobbers,
                    opcode,
                ));
            }
        }
        insts
    }

    fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
        call_conv: isa::CallConv,
        dst: Reg,
        src: Reg,
        size: usize,
        mut alloc_tmp: F,
    ) -> SmallVec<[Self::I; 8]> {
        let mut insts = SmallVec::new();
        let arg0 = get_intreg_for_arg(&call_conv, 0, 0).unwrap();
        let arg1 = get_intreg_for_arg(&call_conv, 1, 1).unwrap();
        let arg2 = get_intreg_for_arg(&call_conv, 2, 2).unwrap();
        let temp = alloc_tmp(Self::word_type());
        let temp2 = alloc_tmp(Self::word_type());
        insts.push(Inst::imm(OperandSize::Size64, size as u64, temp));
        // We use an indirect call and a full LoadExtName because we do not have
        // information about the libcall `RelocDistance` here, so we
        // conservatively use the more flexible calling sequence.
        insts.push(Inst::LoadExtName {
            dst: temp2,
            name: Box::new(ExternalName::LibCall(LibCall::Memcpy)),
            offset: 0,
        });
        insts.push(Inst::call_unknown(
            RegMem::reg(temp2.to_reg()),
            /* uses = */
            smallvec![
                CallArgPair {
                    vreg: dst,
                    preg: arg0
                },
                CallArgPair {
                    vreg: src,
                    preg: arg1
                },
                CallArgPair {
                    vreg: temp.to_reg(),
                    preg: arg2
                },
            ],
            /* defs = */ smallvec![],
            /* clobbers = */ Self::get_regs_clobbered_by_call(call_conv),
            Opcode::Call,
        ));
        insts
    }

    fn get_number_of_spillslots_for_value(rc: RegClass, vector_scale: u32) -> u32 {
        // We allocate in terms of 8-byte slots.
        match rc {
            RegClass::Int => 1,
            RegClass::Float => vector_scale / 8,
        }
    }

    fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64 {
        s.virtual_sp_offset
    }

    fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64 {
        s.nominal_sp_to_fp
    }

    fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet {
        if call_conv_of_callee.extends_windows_fastcall() {
            WINDOWS_CLOBBERS
        } else {
            SYSV_CLOBBERS
        }
    }

    fn get_ext_mode(
        _call_conv: isa::CallConv,
        _specified: ir::ArgumentExtension,
    ) -> ir::ArgumentExtension {
        ir::ArgumentExtension::None
    }

    fn get_clobbered_callee_saves(
        call_conv: CallConv,
        flags: &settings::Flags,
        _sig: &Signature,
        regs: &[Writable<RealReg>],
    ) -> Vec<Writable<RealReg>> {
        let mut regs: Vec<Writable<RealReg>> = match call_conv {
            CallConv::Tail => unimplemented!(),
            CallConv::Fast | CallConv::Cold | CallConv::SystemV | CallConv::WasmtimeSystemV => regs
                .iter()
                .cloned()
                .filter(|r| is_callee_save_systemv(r.to_reg(), flags.enable_pinned_reg()))
                .collect(),
            CallConv::WindowsFastcall | CallConv::WasmtimeFastcall => regs
                .iter()
                .cloned()
                .filter(|r| is_callee_save_fastcall(r.to_reg(), flags.enable_pinned_reg()))
                .collect(),
            CallConv::Probestack => todo!("probestack?"),
            CallConv::AppleAarch64 | CallConv::WasmtimeAppleAarch64 => unreachable!(),
        };
        // Sort registers for deterministic code output. We can do an unstable sort because the
        // registers will be unique (there are no dups).
        regs.sort_unstable_by_key(|r| VReg::from(r.to_reg()).vreg());
        regs
    }

    fn is_frame_setup_needed(
        _is_leaf: bool,
        _stack_args_size: u32,
        _num_clobbered_callee_saves: usize,
        _frame_storage_size: u32,
    ) -> bool {
        true
    }
}

impl From<StackAMode> for SyntheticAmode {
    fn from(amode: StackAMode) -> Self {
        // We enforce a 128 MB stack-frame size limit above, so these
        // `expect()`s should never fail.
        match amode {
            StackAMode::FPOffset(off, _ty) => {
                let off = i32::try_from(off)
                    .expect("Offset in FPOffset is greater than 2GB; should hit impl limit first");
                let simm32 = off as u32;
                SyntheticAmode::Real(Amode::ImmReg {
                    simm32,
                    base: regs::rbp(),
                    flags: MemFlags::trusted(),
                })
            }
            StackAMode::NominalSPOffset(off, _ty) => {
                let off = i32::try_from(off).expect(
                    "Offset in NominalSPOffset is greater than 2GB; should hit impl limit first",
                );
                let simm32 = off as u32;
                SyntheticAmode::nominal_sp_offset(simm32)
            }
            StackAMode::SPOffset(off, _ty) => {
                let off = i32::try_from(off)
                    .expect("Offset in SPOffset is greater than 2GB; should hit impl limit first");
                let simm32 = off as u32;
                SyntheticAmode::Real(Amode::ImmReg {
                    simm32,
                    base: regs::rsp(),
                    flags: MemFlags::trusted(),
                })
            }
        }
    }
}

fn get_intreg_for_arg(call_conv: &CallConv, idx: usize, arg_idx: usize) -> Option<Reg> {
    let is_fastcall = call_conv.extends_windows_fastcall();

    // Fastcall counts by absolute argument number; SysV counts by argument of
    // this (integer) class.
    let i = if is_fastcall { arg_idx } else { idx };
    match (i, is_fastcall) {
        (0, false) => Some(regs::rdi()),
        (1, false) => Some(regs::rsi()),
        (2, false) => Some(regs::rdx()),
        (3, false) => Some(regs::rcx()),
        (4, false) => Some(regs::r8()),
        (5, false) => Some(regs::r9()),
        (0, true) => Some(regs::rcx()),
        (1, true) => Some(regs::rdx()),
        (2, true) => Some(regs::r8()),
        (3, true) => Some(regs::r9()),
        _ => None,
    }
}

fn get_fltreg_for_arg(call_conv: &CallConv, idx: usize, arg_idx: usize) -> Option<Reg> {
    let is_fastcall = call_conv.extends_windows_fastcall();

    // Fastcall counts by absolute argument number; SysV counts by argument of
    // this (floating-point) class.
    let i = if is_fastcall { arg_idx } else { idx };
    match (i, is_fastcall) {
        (0, false) => Some(regs::xmm0()),
        (1, false) => Some(regs::xmm1()),
        (2, false) => Some(regs::xmm2()),
        (3, false) => Some(regs::xmm3()),
        (4, false) => Some(regs::xmm4()),
        (5, false) => Some(regs::xmm5()),
        (6, false) => Some(regs::xmm6()),
        (7, false) => Some(regs::xmm7()),
        (0, true) => Some(regs::xmm0()),
        (1, true) => Some(regs::xmm1()),
        (2, true) => Some(regs::xmm2()),
        (3, true) => Some(regs::xmm3()),
        _ => None,
    }
}

fn get_intreg_for_retval(
    call_conv: &CallConv,
    intreg_idx: usize,
    retval_idx: usize,
) -> Option<Reg> {
    match call_conv {
        CallConv::Tail => unimplemented!(),
        CallConv::Fast | CallConv::Cold | CallConv::SystemV => match intreg_idx {
            0 => Some(regs::rax()),
            1 => Some(regs::rdx()),
            _ => None,
        },
        CallConv::WasmtimeSystemV | CallConv::WasmtimeFastcall => {
            if intreg_idx == 0 && retval_idx == 0 {
                Some(regs::rax())
            } else {
                None
            }
        }
        CallConv::WindowsFastcall => match intreg_idx {
            0 => Some(regs::rax()),
            1 => Some(regs::rdx()), // The Rust ABI for i128s needs this.
            _ => None,
        },
        CallConv::Probestack => todo!(),
        CallConv::AppleAarch64 | CallConv::WasmtimeAppleAarch64 => unreachable!(),
    }
}

fn get_fltreg_for_retval(
    call_conv: &CallConv,
    fltreg_idx: usize,
    retval_idx: usize,
) -> Option<Reg> {
    match call_conv {
        CallConv::Tail => unimplemented!(),
        CallConv::Fast | CallConv::Cold | CallConv::SystemV => match fltreg_idx {
            0 => Some(regs::xmm0()),
            1 => Some(regs::xmm1()),
            _ => None,
        },
        CallConv::WasmtimeFastcall | CallConv::WasmtimeSystemV => {
            if fltreg_idx == 0 && retval_idx == 0 {
                Some(regs::xmm0())
            } else {
                None
            }
        }
        CallConv::WindowsFastcall => match fltreg_idx {
            0 => Some(regs::xmm0()),
            _ => None,
        },
        CallConv::Probestack => todo!(),
        CallConv::AppleAarch64 | CallConv::WasmtimeAppleAarch64 => unreachable!(),
    }
}

fn is_callee_save_systemv(r: RealReg, enable_pinned_reg: bool) -> bool {
    use regs::*;
    match r.class() {
        RegClass::Int => match r.hw_enc() {
            ENC_RBX | ENC_RBP | ENC_R12 | ENC_R13 | ENC_R14 => true,
            // R15 is the pinned register; if we're using it that way,
            // it is effectively globally-allocated, and is not
            // callee-saved.
            ENC_R15 => !enable_pinned_reg,
            _ => false,
        },
        RegClass::Float => false,
    }
}

fn is_callee_save_fastcall(r: RealReg, enable_pinned_reg: bool) -> bool {
    use regs::*;
    match r.class() {
        RegClass::Int => match r.hw_enc() {
            ENC_RBX | ENC_RBP | ENC_RSI | ENC_RDI | ENC_R12 | ENC_R13 | ENC_R14 => true,
            // See above for SysV: we must treat the pinned reg specially.
            ENC_R15 => !enable_pinned_reg,
            _ => false,
        },
        RegClass::Float => match r.hw_enc() {
            6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 => true,
            _ => false,
        },
    }
}

fn compute_clobber_size(clobbers: &[Writable<RealReg>]) -> u32 {
    let mut clobbered_size = 0;
    for reg in clobbers {
        match reg.to_reg().class() {
            RegClass::Int => {
                clobbered_size += 8;
            }
            RegClass::Float => {
                clobbered_size = align_to(clobbered_size, 16);
                clobbered_size += 16;
            }
        }
    }
    align_to(clobbered_size, 16)
}

const WINDOWS_CLOBBERS: PRegSet = windows_clobbers();
const SYSV_CLOBBERS: PRegSet = sysv_clobbers();

const fn windows_clobbers() -> PRegSet {
    PRegSet::empty()
        .with(regs::gpr_preg(regs::ENC_RAX))
        .with(regs::gpr_preg(regs::ENC_RCX))
        .with(regs::gpr_preg(regs::ENC_RDX))
        .with(regs::gpr_preg(regs::ENC_R8))
        .with(regs::gpr_preg(regs::ENC_R9))
        .with(regs::gpr_preg(regs::ENC_R10))
        .with(regs::gpr_preg(regs::ENC_R11))
        .with(regs::fpr_preg(0))
        .with(regs::fpr_preg(1))
        .with(regs::fpr_preg(2))
        .with(regs::fpr_preg(3))
        .with(regs::fpr_preg(4))
        .with(regs::fpr_preg(5))
}

const fn sysv_clobbers() -> PRegSet {
    PRegSet::empty()
        .with(regs::gpr_preg(regs::ENC_RAX))
        .with(regs::gpr_preg(regs::ENC_RCX))
        .with(regs::gpr_preg(regs::ENC_RDX))
        .with(regs::gpr_preg(regs::ENC_RSI))
        .with(regs::gpr_preg(regs::ENC_RDI))
        .with(regs::gpr_preg(regs::ENC_R8))
        .with(regs::gpr_preg(regs::ENC_R9))
        .with(regs::gpr_preg(regs::ENC_R10))
        .with(regs::gpr_preg(regs::ENC_R11))
        .with(regs::fpr_preg(0))
        .with(regs::fpr_preg(1))
        .with(regs::fpr_preg(2))
        .with(regs::fpr_preg(3))
        .with(regs::fpr_preg(4))
        .with(regs::fpr_preg(5))
        .with(regs::fpr_preg(6))
        .with(regs::fpr_preg(7))
        .with(regs::fpr_preg(8))
        .with(regs::fpr_preg(9))
        .with(regs::fpr_preg(10))
        .with(regs::fpr_preg(11))
        .with(regs::fpr_preg(12))
        .with(regs::fpr_preg(13))
        .with(regs::fpr_preg(14))
        .with(regs::fpr_preg(15))
}