1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
use crate::binemit::{Addend, Reloc};
use crate::ir::immediates::{Ieee32, Ieee64};
use crate::ir::TrapCode;
use crate::ir::{KnownSymbol, LibCall};
use crate::isa::x64::encoding::evex::{EvexInstruction, EvexVectorLength};
use crate::isa::x64::encoding::rex::{
    emit_simm, emit_std_enc_enc, emit_std_enc_mem, emit_std_reg_mem, emit_std_reg_reg, int_reg_enc,
    low8_will_sign_extend_to_32, low8_will_sign_extend_to_64, reg_enc, LegacyPrefixes, OpcodeMap,
    RexFlags,
};
use crate::isa::x64::encoding::vex::{RegisterOrAmode, VexInstruction, VexVectorLength};
use crate::isa::x64::inst::args::*;
use crate::isa::x64::inst::*;
use crate::machinst::{inst_common, MachBuffer, MachInstEmit, MachLabel, Reg, Writable};
use core::convert::TryInto;

/// A small helper to generate a signed conversion instruction.
fn emit_signed_cvt(
    sink: &mut MachBuffer<Inst>,
    info: &EmitInfo,
    state: &mut EmitState,
    // Required to be RealRegs.
    src: Reg,
    dst: Writable<Reg>,
    to_f64: bool,
) {
    // Handle an unsigned int, which is the "easy" case: a signed conversion will do the
    // right thing.
    let op = if to_f64 {
        SseOpcode::Cvtsi2sd
    } else {
        SseOpcode::Cvtsi2ss
    };
    let inst = Inst::gpr_to_xmm(op, RegMem::reg(src), OperandSize::Size64, dst);
    inst.emit(&[], sink, info, state);
}

/// Emits a one way conditional jump if CC is set (true).
fn one_way_jmp(sink: &mut MachBuffer<Inst>, cc: CC, label: MachLabel) {
    let cond_start = sink.cur_offset();
    let cond_disp_off = cond_start + 2;
    sink.use_label_at_offset(cond_disp_off, label, LabelUse::JmpRel32);
    sink.put1(0x0F);
    sink.put1(0x80 + cc.get_enc());
    sink.put4(0x0);
}

/// Emits a relocation, attaching the current source location as well.
fn emit_reloc(sink: &mut MachBuffer<Inst>, kind: Reloc, name: &ExternalName, addend: Addend) {
    sink.add_reloc(kind, name, addend);
}

/// The top-level emit function.
///
/// Important!  Do not add improved (shortened) encoding cases to existing
/// instructions without also adding tests for those improved encodings.  That
/// is a dangerous game that leads to hard-to-track-down errors in the emitted
/// code.
///
/// For all instructions, make sure to have test coverage for all of the
/// following situations.  Do this by creating the cross product resulting from
/// applying the following rules to each operand:
///
/// (1) for any insn that mentions a register: one test using a register from
///     the group [rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi] and a second one
///     using a register from the group [r8, r9, r10, r11, r12, r13, r14, r15].
///     This helps detect incorrect REX prefix construction.
///
/// (2) for any insn that mentions a byte register: one test for each of the
///     four encoding groups [al, cl, dl, bl], [spl, bpl, sil, dil],
///     [r8b .. r11b] and [r12b .. r15b].  This checks that
///     apparently-redundant REX prefixes are retained when required.
///
/// (3) for any insn that contains an immediate field, check the following
///     cases: field is zero, field is in simm8 range (-128 .. 127), field is
///     in simm32 range (-0x8000_0000 .. 0x7FFF_FFFF).  This is because some
///     instructions that require a 32-bit immediate have a short-form encoding
///     when the imm is in simm8 range.
///
/// Rules (1), (2) and (3) don't apply for registers within address expressions
/// (`Addr`s).  Those are already pretty well tested, and the registers in them
/// don't have any effect on the containing instruction (apart from possibly
/// require REX prefix bits).
///
/// When choosing registers for a test, avoid using registers with the same
/// offset within a given group.  For example, don't use rax and r8, since they
/// both have the lowest 3 bits as 000, and so the test won't detect errors
/// where those 3-bit register sub-fields are confused by the emitter.  Instead
/// use (eg) rax (lo3 = 000) and r9 (lo3 = 001).  Similarly, don't use (eg) cl
/// and bpl since they have the same offset in their group; use instead (eg) cl
/// and sil.
///
/// For all instructions, also add a test that uses only low-half registers
/// (rax .. rdi, xmm0 .. xmm7) etc, so as to check that any redundant REX
/// prefixes are correctly omitted.  This low-half restriction must apply to
/// _all_ registers in the insn, even those in address expressions.
///
/// Following these rules creates large numbers of test cases, but it's the
/// only way to make the emitter reliable.
///
/// Known possible improvements:
///
/// * there's a shorter encoding for shl/shr/sar by a 1-bit immediate.  (Do we
///   care?)
pub(crate) fn emit(
    inst: &Inst,
    allocs: &mut AllocationConsumer<'_>,
    sink: &mut MachBuffer<Inst>,
    info: &EmitInfo,
    state: &mut EmitState,
) {
    let matches_isa_flags = |iset_requirement: &InstructionSet| -> bool {
        match iset_requirement {
            // Cranelift assumes SSE2 at least.
            InstructionSet::SSE | InstructionSet::SSE2 => true,
            InstructionSet::SSSE3 => info.isa_flags.use_ssse3(),
            InstructionSet::SSE41 => info.isa_flags.use_sse41(),
            InstructionSet::SSE42 => info.isa_flags.use_sse42(),
            InstructionSet::Popcnt => info.isa_flags.use_popcnt(),
            InstructionSet::Lzcnt => info.isa_flags.use_lzcnt(),
            InstructionSet::BMI1 => info.isa_flags.use_bmi1(),
            InstructionSet::BMI2 => info.isa_flags.has_bmi2(),
            InstructionSet::FMA => info.isa_flags.has_fma(),
            InstructionSet::AVX => info.isa_flags.has_avx(),
            InstructionSet::AVX2 => info.isa_flags.has_avx2(),
            InstructionSet::AVX512BITALG => info.isa_flags.has_avx512bitalg(),
            InstructionSet::AVX512DQ => info.isa_flags.has_avx512dq(),
            InstructionSet::AVX512F => info.isa_flags.has_avx512f(),
            InstructionSet::AVX512VBMI => info.isa_flags.has_avx512vbmi(),
            InstructionSet::AVX512VL => info.isa_flags.has_avx512vl(),
        }
    };

    // Certain instructions may be present in more than one ISA feature set; we must at least match
    // one of them in the target CPU.
    let isa_requirements = inst.available_in_any_isa();
    if !isa_requirements.is_empty() && !isa_requirements.iter().all(matches_isa_flags) {
        panic!(
            "Cannot emit inst '{:?}' for target; failed to match ISA requirements: {:?}",
            inst, isa_requirements
        )
    }

    match inst {
        Inst::AluRmiR {
            size,
            op,
            src1,
            src2,
            dst: reg_g,
        } => {
            let src1 = allocs.next(src1.to_reg());
            let reg_g = allocs.next(reg_g.to_reg().to_reg());
            debug_assert_eq!(src1, reg_g);
            let src2 = src2.clone().to_reg_mem_imm().with_allocs(allocs);

            let rex = RexFlags::from(*size);
            if *op == AluRmiROpcode::Mul {
                // We kinda freeloaded Mul into RMI_R_Op, but it doesn't fit the usual pattern, so
                // we have to special-case it.
                match src2 {
                    RegMemImm::Reg { reg: reg_e } => {
                        emit_std_reg_reg(sink, LegacyPrefixes::None, 0x0FAF, 2, reg_g, reg_e, rex);
                    }

                    RegMemImm::Mem { addr } => {
                        let amode = addr.finalize(state, sink);
                        emit_std_reg_mem(
                            sink,
                            LegacyPrefixes::None,
                            0x0FAF,
                            2,
                            reg_g,
                            &amode,
                            rex,
                            0,
                        );
                    }

                    RegMemImm::Imm { simm32 } => {
                        let use_imm8 = low8_will_sign_extend_to_32(simm32);
                        let opcode = if use_imm8 { 0x6B } else { 0x69 };
                        // Yes, really, reg_g twice.
                        emit_std_reg_reg(sink, LegacyPrefixes::None, opcode, 1, reg_g, reg_g, rex);
                        emit_simm(sink, if use_imm8 { 1 } else { 4 }, simm32);
                    }
                }
            } else {
                let (opcode_r, opcode_m, subopcode_i) = match op {
                    AluRmiROpcode::Add => (0x01, 0x03, 0),
                    AluRmiROpcode::Adc => (0x11, 0x03, 0),
                    AluRmiROpcode::Sub => (0x29, 0x2B, 5),
                    AluRmiROpcode::Sbb => (0x19, 0x2B, 5),
                    AluRmiROpcode::And => (0x21, 0x23, 4),
                    AluRmiROpcode::Or => (0x09, 0x0B, 1),
                    AluRmiROpcode::Xor => (0x31, 0x33, 6),
                    AluRmiROpcode::Mul => panic!("unreachable"),
                };

                match src2 {
                    RegMemImm::Reg { reg: reg_e } => {
                        // GCC/llvm use the swapped operand encoding (viz., the R/RM vs RM/R
                        // duality). Do this too, so as to be able to compare generated machine
                        // code easily.
                        emit_std_reg_reg(
                            sink,
                            LegacyPrefixes::None,
                            opcode_r,
                            1,
                            reg_e,
                            reg_g,
                            rex,
                        );
                    }

                    RegMemImm::Mem { addr } => {
                        let amode = addr.finalize(state, sink);
                        // Here we revert to the "normal" G-E ordering.
                        emit_std_reg_mem(
                            sink,
                            LegacyPrefixes::None,
                            opcode_m,
                            1,
                            reg_g,
                            &amode,
                            rex,
                            0,
                        );
                    }

                    RegMemImm::Imm { simm32 } => {
                        let use_imm8 = low8_will_sign_extend_to_32(simm32);
                        let opcode = if use_imm8 { 0x83 } else { 0x81 };
                        // And also here we use the "normal" G-E ordering.
                        let enc_g = int_reg_enc(reg_g);
                        emit_std_enc_enc(
                            sink,
                            LegacyPrefixes::None,
                            opcode,
                            1,
                            subopcode_i,
                            enc_g,
                            rex,
                        );
                        emit_simm(sink, if use_imm8 { 1 } else { 4 }, simm32);
                    }
                }
            }
        }

        Inst::AluConstOp { op, size, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            emit(
                &Inst::AluRmiR {
                    size: *size,
                    op: *op,
                    dst: Writable::from_reg(Gpr::new(dst).unwrap()),
                    src1: Gpr::new(dst).unwrap(),
                    src2: Gpr::new(dst).unwrap().into(),
                },
                allocs,
                sink,
                info,
                state,
            );
        }

        Inst::AluRM {
            size,
            src1_dst,
            src2,
            op,
        } => {
            let src2 = allocs.next(src2.to_reg());
            let src1_dst = src1_dst.finalize(state, sink).with_allocs(allocs);

            assert!(*size == OperandSize::Size32 || *size == OperandSize::Size64);
            let opcode = match op {
                AluRmiROpcode::Add => 0x01,
                AluRmiROpcode::Sub => 0x29,
                AluRmiROpcode::And => 0x21,
                AluRmiROpcode::Or => 0x09,
                AluRmiROpcode::Xor => 0x31,
                _ => panic!("Unsupported read-modify-write ALU opcode"),
            };
            let enc_g = int_reg_enc(src2);
            emit_std_enc_mem(
                sink,
                LegacyPrefixes::None,
                opcode,
                1,
                enc_g,
                &src1_dst,
                RexFlags::from(*size),
                0,
            );
        }

        Inst::AluRmRVex {
            size,
            op,
            dst,
            src1,
            src2,
        } => {
            use AluRmROpcode::*;
            let dst = allocs.next(dst.to_reg().to_reg());
            let src1 = allocs.next(src1.to_reg());
            let src2 = allocs.next(src2.to_reg());

            let w = match size {
                OperandSize::Size32 => false,
                OperandSize::Size64 => true,

                // the other cases would be rejected by isle constructors
                _ => unreachable!(),
            };

            let opcode = match op {
                Andn => 0xf2,
            };

            VexInstruction::new()
                .map(OpcodeMap::_0F38)
                .w(w)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .vvvv(src1.to_real_reg().unwrap().hw_enc())
                .rm(src2.to_real_reg().unwrap().hw_enc())
                .opcode(opcode)
                .encode(sink);
        }

        Inst::UnaryRmR { size, op, src, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let rex_flags = RexFlags::from(*size);
            use UnaryRmROpcode::*;
            let prefix = match size {
                OperandSize::Size16 => match op {
                    Bsr | Bsf => LegacyPrefixes::_66,
                    Lzcnt | Tzcnt | Popcnt => LegacyPrefixes::_66F3,
                },
                OperandSize::Size32 | OperandSize::Size64 => match op {
                    Bsr | Bsf => LegacyPrefixes::None,
                    Lzcnt | Tzcnt | Popcnt => LegacyPrefixes::_F3,
                },
                _ => unreachable!(),
            };

            let (opcode, num_opcodes) = match op {
                Bsr => (0x0fbd, 2),
                Bsf => (0x0fbc, 2),
                Lzcnt => (0x0fbd, 2),
                Tzcnt => (0x0fbc, 2),
                Popcnt => (0x0fb8, 2),
            };

            match src.clone().into() {
                RegMem::Reg { reg: src } => {
                    let src = allocs.next(src);
                    emit_std_reg_reg(sink, prefix, opcode, num_opcodes, dst, src, rex_flags);
                }
                RegMem::Mem { addr: src } => {
                    let amode = src.finalize(state, sink).with_allocs(allocs);
                    emit_std_reg_mem(sink, prefix, opcode, num_opcodes, dst, &amode, rex_flags, 0);
                }
            }
        }

        Inst::Not { size, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src, dst);
            let rex_flags = RexFlags::from((*size, dst));
            let (opcode, prefix) = match size {
                OperandSize::Size8 => (0xF6, LegacyPrefixes::None),
                OperandSize::Size16 => (0xF7, LegacyPrefixes::_66),
                OperandSize::Size32 => (0xF7, LegacyPrefixes::None),
                OperandSize::Size64 => (0xF7, LegacyPrefixes::None),
            };

            let subopcode = 2;
            let enc_src = int_reg_enc(dst);
            emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_src, rex_flags)
        }

        Inst::Neg { size, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src, dst);
            let rex_flags = RexFlags::from((*size, dst));
            let (opcode, prefix) = match size {
                OperandSize::Size8 => (0xF6, LegacyPrefixes::None),
                OperandSize::Size16 => (0xF7, LegacyPrefixes::_66),
                OperandSize::Size32 => (0xF7, LegacyPrefixes::None),
                OperandSize::Size64 => (0xF7, LegacyPrefixes::None),
            };

            let subopcode = 3;
            let enc_src = int_reg_enc(dst);
            emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_src, rex_flags)
        }

        Inst::Div {
            sign,
            trap,
            divisor,
            ..
        }
        | Inst::Div8 {
            sign,
            trap,
            divisor,
            ..
        } => {
            let divisor = divisor.clone().to_reg_mem().with_allocs(allocs);
            let size = match inst {
                Inst::Div {
                    size,
                    dividend_lo,
                    dividend_hi,
                    dst_quotient,
                    dst_remainder,
                    ..
                } => {
                    let dividend_lo = allocs.next(dividend_lo.to_reg());
                    let dividend_hi = allocs.next(dividend_hi.to_reg());
                    let dst_quotient = allocs.next(dst_quotient.to_reg().to_reg());
                    let dst_remainder = allocs.next(dst_remainder.to_reg().to_reg());
                    debug_assert_eq!(dividend_lo, regs::rax());
                    debug_assert_eq!(dividend_hi, regs::rdx());
                    debug_assert_eq!(dst_quotient, regs::rax());
                    debug_assert_eq!(dst_remainder, regs::rdx());
                    *size
                }
                Inst::Div8 { dividend, dst, .. } => {
                    let dividend = allocs.next(dividend.to_reg());
                    let dst = allocs.next(dst.to_reg().to_reg());
                    debug_assert_eq!(dividend, regs::rax());
                    debug_assert_eq!(dst, regs::rax());
                    OperandSize::Size8
                }
                _ => unreachable!(),
            };

            let (opcode, prefix) = match size {
                OperandSize::Size8 => (0xF6, LegacyPrefixes::None),
                OperandSize::Size16 => (0xF7, LegacyPrefixes::_66),
                OperandSize::Size32 => (0xF7, LegacyPrefixes::None),
                OperandSize::Size64 => (0xF7, LegacyPrefixes::None),
            };

            sink.add_trap(*trap);

            let subopcode = match sign {
                DivSignedness::Signed => 7,
                DivSignedness::Unsigned => 6,
            };
            match divisor {
                RegMem::Reg { reg } => {
                    let src = int_reg_enc(reg);
                    emit_std_enc_enc(
                        sink,
                        prefix,
                        opcode,
                        1,
                        subopcode,
                        src,
                        RexFlags::from((size, reg)),
                    )
                }
                RegMem::Mem { addr: src } => {
                    let amode = src.finalize(state, sink);
                    emit_std_enc_mem(
                        sink,
                        prefix,
                        opcode,
                        1,
                        subopcode,
                        &amode,
                        RexFlags::from(size),
                        0,
                    );
                }
            }
        }

        Inst::MulHi {
            size,
            signed,
            src1,
            src2,
            dst_lo,
            dst_hi,
        } => {
            let src1 = allocs.next(src1.to_reg());
            let dst_lo = allocs.next(dst_lo.to_reg().to_reg());
            let dst_hi = allocs.next(dst_hi.to_reg().to_reg());
            debug_assert_eq!(src1, regs::rax());
            debug_assert_eq!(dst_lo, regs::rax());
            debug_assert_eq!(dst_hi, regs::rdx());

            let rex_flags = RexFlags::from(*size);
            let prefix = match size {
                OperandSize::Size16 => LegacyPrefixes::_66,
                OperandSize::Size32 => LegacyPrefixes::None,
                OperandSize::Size64 => LegacyPrefixes::None,
                _ => unreachable!(),
            };

            let subopcode = if *signed { 5 } else { 4 };
            match src2.clone().to_reg_mem() {
                RegMem::Reg { reg } => {
                    let reg = allocs.next(reg);
                    let src = int_reg_enc(reg);
                    emit_std_enc_enc(sink, prefix, 0xF7, 1, subopcode, src, rex_flags)
                }
                RegMem::Mem { addr: src } => {
                    let amode = src.finalize(state, sink).with_allocs(allocs);
                    emit_std_enc_mem(sink, prefix, 0xF7, 1, subopcode, &amode, rex_flags, 0);
                }
            }
        }

        Inst::SignExtendData { size, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src, regs::rax());
            if *size == OperandSize::Size8 {
                debug_assert_eq!(dst, regs::rax());
            } else {
                debug_assert_eq!(dst, regs::rdx());
            }
            match size {
                OperandSize::Size8 => {
                    sink.put1(0x66);
                    sink.put1(0x98);
                }
                OperandSize::Size16 => {
                    sink.put1(0x66);
                    sink.put1(0x99);
                }
                OperandSize::Size32 => sink.put1(0x99),
                OperandSize::Size64 => {
                    sink.put1(0x48);
                    sink.put1(0x99);
                }
            }
        }

        Inst::CheckedSRemSeq { divisor, .. } | Inst::CheckedSRemSeq8 { divisor, .. } => {
            let divisor = allocs.next(divisor.to_reg());

            // Validate that the register constraints of the dividend and the
            // destination are all as expected.
            let (dst, size) = match inst {
                Inst::CheckedSRemSeq {
                    dividend_lo,
                    dividend_hi,
                    dst_quotient,
                    dst_remainder,
                    size,
                    ..
                } => {
                    let dividend_lo = allocs.next(dividend_lo.to_reg());
                    let dividend_hi = allocs.next(dividend_hi.to_reg());
                    let dst_quotient = allocs.next(dst_quotient.to_reg().to_reg());
                    let dst_remainder = allocs.next(dst_remainder.to_reg().to_reg());
                    debug_assert_eq!(dividend_lo, regs::rax());
                    debug_assert_eq!(dividend_hi, regs::rdx());
                    debug_assert_eq!(dst_quotient, regs::rax());
                    debug_assert_eq!(dst_remainder, regs::rdx());
                    (regs::rdx(), *size)
                }
                Inst::CheckedSRemSeq8 { dividend, dst, .. } => {
                    let dividend = allocs.next(dividend.to_reg());
                    let dst = allocs.next(dst.to_reg().to_reg());
                    debug_assert_eq!(dividend, regs::rax());
                    debug_assert_eq!(dst, regs::rax());
                    (regs::rax(), OperandSize::Size8)
                }
                _ => unreachable!(),
            };

            // Generates the following code sequence:
            //
            // cmp -1 %divisor
            // jnz $do_op
            //
            // ;; for srem, result is 0
            // mov #0, %dst
            // j $done
            //
            // $do_op:
            // idiv %divisor
            //
            // $done:

            let do_op = sink.get_label();
            let done_label = sink.get_label();

            // Check if the divisor is -1, and if it isn't then immediately
            // go to the `idiv`.
            let inst = Inst::cmp_rmi_r(size, RegMemImm::imm(0xffffffff), divisor);
            inst.emit(&[], sink, info, state);
            one_way_jmp(sink, CC::NZ, do_op);

            // ... otherwise the divisor is -1 and the result is always 0. This
            // is written to the destination register which will be %rax for
            // 8-bit srem and %rdx otherwise.
            //
            // Note that for 16-to-64-bit srem operations this leaves the
            // second destination, %rax, unchanged. This isn't semantically
            // correct if a lowering actually tries to use the `dst_quotient`
            // output but for srem only the `dst_remainder` output is used for
            // now.
            let inst = Inst::imm(OperandSize::Size64, 0, Writable::from_reg(dst));
            inst.emit(&[], sink, info, state);
            let inst = Inst::jmp_known(done_label);
            inst.emit(&[], sink, info, state);

            // Here the `idiv` is executed, which is different depending on the
            // size
            sink.bind_label(do_op);
            let inst = match size {
                OperandSize::Size8 => Inst::div8(
                    DivSignedness::Signed,
                    TrapCode::IntegerDivisionByZero,
                    RegMem::reg(divisor),
                    Gpr::new(regs::rax()).unwrap(),
                    Writable::from_reg(Gpr::new(regs::rax()).unwrap()),
                ),
                _ => Inst::div(
                    size,
                    DivSignedness::Signed,
                    TrapCode::IntegerDivisionByZero,
                    RegMem::reg(divisor),
                    Gpr::new(regs::rax()).unwrap(),
                    Gpr::new(regs::rdx()).unwrap(),
                    Writable::from_reg(Gpr::new(regs::rax()).unwrap()),
                    Writable::from_reg(Gpr::new(regs::rdx()).unwrap()),
                ),
            };
            inst.emit(&[], sink, info, state);

            sink.bind_label(done_label);
        }

        Inst::Imm {
            dst_size,
            simm64,
            dst,
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let enc_dst = int_reg_enc(dst);
            if *dst_size == OperandSize::Size64 {
                if low32_will_sign_extend_to_64(*simm64) {
                    // Sign-extended move imm32.
                    emit_std_enc_enc(
                        sink,
                        LegacyPrefixes::None,
                        0xC7,
                        1,
                        /* subopcode */ 0,
                        enc_dst,
                        RexFlags::set_w(),
                    );
                    sink.put4(*simm64 as u32);
                } else {
                    sink.put1(0x48 | ((enc_dst >> 3) & 1));
                    sink.put1(0xB8 | (enc_dst & 7));
                    sink.put8(*simm64);
                }
            } else {
                if ((enc_dst >> 3) & 1) == 1 {
                    sink.put1(0x41);
                }
                sink.put1(0xB8 | (enc_dst & 7));
                sink.put4(*simm64 as u32);
            }
        }

        Inst::MovImmM { size, simm64, dst } => {
            let dst = &dst.finalize(state, sink).with_allocs(allocs);
            let default_rex = RexFlags::clear_w();
            let default_opcode = 0xC7;
            let bytes = size.to_bytes();
            let prefix = LegacyPrefixes::None;

            let (opcode, rex, size, prefix) = match *size {
                // In the 8-bit case, we don't need to enforce REX flags via
                // `always_emit_if_8bit_needed()` since the destination
                // operand is a memory operand, not a possibly 8-bit register.
                OperandSize::Size8 => (0xC6, default_rex, bytes, prefix),
                OperandSize::Size16 => (0xC7, default_rex, bytes, LegacyPrefixes::_66),
                OperandSize::Size64 => {
                    if !low32_will_sign_extend_to_64(*simm64) {
                        panic!("Immediate-to-memory moves require immediate operand to sign-extend to 64 bits.");
                    }

                    (default_opcode, RexFlags::from(*size), bytes, prefix)
                }

                _ => (default_opcode, default_rex, bytes, prefix),
            };

            // 8-bit C6 /0 ib
            // 16-bit 0x66 C7 /0 iw
            // 32-bit C7 /0 id
            // 64-bit REX.W C7 /0 id
            emit_std_enc_mem(sink, prefix, opcode, 1, /*subopcode*/ 0, dst, rex, 0);
            emit_simm(sink, size, *simm64 as u32);
        }

        Inst::MovRR { size, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            emit_std_reg_reg(
                sink,
                LegacyPrefixes::None,
                0x89,
                1,
                src,
                dst,
                RexFlags::from(*size),
            );
        }

        Inst::MovFromPReg { src, dst } => {
            allocs.next_fixed_nonallocatable(*src);
            let src: Reg = (*src).into();
            debug_assert!([regs::rsp(), regs::rbp(), regs::pinned_reg()].contains(&src));
            let src = Gpr::new(src).unwrap();
            let size = OperandSize::Size64;
            let dst = allocs.next(dst.to_reg().to_reg());
            let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst)).unwrap();
            Inst::MovRR { size, src, dst }.emit(&[], sink, info, state);
        }

        Inst::MovToPReg { src, dst } => {
            let src = allocs.next(src.to_reg());
            let src = Gpr::new(src).unwrap();
            allocs.next_fixed_nonallocatable(*dst);
            let dst: Reg = (*dst).into();
            debug_assert!([regs::rsp(), regs::rbp(), regs::pinned_reg()].contains(&dst));
            let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst)).unwrap();
            let size = OperandSize::Size64;
            Inst::MovRR { size, src, dst }.emit(&[], sink, info, state);
        }

        Inst::MovzxRmR { ext_mode, src, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let (opcodes, num_opcodes, mut rex_flags) = match ext_mode {
                ExtMode::BL => {
                    // MOVZBL is (REX.W==0) 0F B6 /r
                    (0x0FB6, 2, RexFlags::clear_w())
                }
                ExtMode::BQ => {
                    // MOVZBQ is (REX.W==1) 0F B6 /r
                    // I'm not sure why the Intel manual offers different
                    // encodings for MOVZBQ than for MOVZBL.  AIUI they should
                    // achieve the same, since MOVZBL is just going to zero out
                    // the upper half of the destination anyway.
                    (0x0FB6, 2, RexFlags::set_w())
                }
                ExtMode::WL => {
                    // MOVZWL is (REX.W==0) 0F B7 /r
                    (0x0FB7, 2, RexFlags::clear_w())
                }
                ExtMode::WQ => {
                    // MOVZWQ is (REX.W==1) 0F B7 /r
                    (0x0FB7, 2, RexFlags::set_w())
                }
                ExtMode::LQ => {
                    // This is just a standard 32 bit load, and we rely on the
                    // default zero-extension rule to perform the extension.
                    // Note that in reg/reg mode, gcc seems to use the swapped form R/RM, which we
                    // don't do here, since it's the same encoding size.
                    // MOV r/m32, r32 is (REX.W==0) 8B /r
                    (0x8B, 1, RexFlags::clear_w())
                }
            };

            match src.clone().to_reg_mem() {
                RegMem::Reg { reg: src } => {
                    let src = allocs.next(src);
                    match ext_mode {
                        ExtMode::BL | ExtMode::BQ => {
                            // A redundant REX prefix must be emitted for certain register inputs.
                            rex_flags.always_emit_if_8bit_needed(src);
                        }
                        _ => {}
                    }
                    emit_std_reg_reg(
                        sink,
                        LegacyPrefixes::None,
                        opcodes,
                        num_opcodes,
                        dst,
                        src,
                        rex_flags,
                    )
                }

                RegMem::Mem { addr: src } => {
                    let src = &src.finalize(state, sink).with_allocs(allocs);

                    emit_std_reg_mem(
                        sink,
                        LegacyPrefixes::None,
                        opcodes,
                        num_opcodes,
                        dst,
                        src,
                        rex_flags,
                        0,
                    )
                }
            }
        }

        Inst::Mov64MR { src, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src = &src.finalize(state, sink).with_allocs(allocs);

            emit_std_reg_mem(
                sink,
                LegacyPrefixes::None,
                0x8B,
                1,
                dst,
                src,
                RexFlags::set_w(),
                0,
            )
        }

        Inst::LoadEffectiveAddress { addr, dst, size } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let amode = addr.finalize(state, sink).with_allocs(allocs);

            // If this `lea` can actually get encoded as an `add` then do that
            // instead. Currently all candidate `iadd`s become an `lea`
            // pseudo-instruction here but maximizing the sue of `lea` is not
            // necessarily optimal. The `lea` instruction goes through dedicated
            // address units on cores which are finite and disjoint from the
            // general ALU, so if everything uses `lea` then those units can get
            // saturated while leaving the ALU idle.
            //
            // To help make use of more parts of a cpu, this attempts to use
            // `add` when it's semantically equivalent to `lea`, or otherwise
            // when the `dst` register is the same as the `base` or `index`
            // register.
            //
            // FIXME: ideally regalloc is informed of this constraint. Register
            // allocation of `lea` should "attempt" to put the `base` in the
            // same register as `dst` but not at the expense of generating a
            // `mov` instruction. Currently that's not possible but perhaps one
            // day it may be worth it.
            match amode {
                // If `base == dst` then this is `add $imm, %dst`, so encode
                // that instead.
                Amode::ImmReg {
                    simm32,
                    base,
                    flags: _,
                } if base == dst => {
                    let inst = Inst::alu_rmi_r(
                        *size,
                        AluRmiROpcode::Add,
                        RegMemImm::imm(simm32),
                        Writable::from_reg(dst),
                    );
                    inst.emit(&[], sink, info, state);
                }
                // If the offset is 0 and the shift is 0 (meaning multiplication
                // by 1) then:
                //
                // * If `base == dst`, then this is `add %index, %base`
                // * If `index == dst`, then this is `add %base, %index`
                //
                // Encode the appropriate instruction here in that case.
                Amode::ImmRegRegShift {
                    simm32: 0,
                    base,
                    index,
                    shift: 0,
                    flags: _,
                } if base == dst || index == dst => {
                    let (dst, operand) = if base == dst {
                        (base, index)
                    } else {
                        (index, base)
                    };
                    let inst = Inst::alu_rmi_r(
                        *size,
                        AluRmiROpcode::Add,
                        RegMemImm::reg(operand.to_reg()),
                        Writable::from_reg(dst.to_reg()),
                    );
                    inst.emit(&[], sink, info, state);
                }

                // If `lea`'s 3-operand mode is leveraged by regalloc, or if
                // it's fancy like imm-plus-shift-plus-base, then `lea` is
                // actually emitted.
                _ => {
                    let flags = match size {
                        OperandSize::Size32 => RexFlags::clear_w(),
                        OperandSize::Size64 => RexFlags::set_w(),
                        _ => unreachable!(),
                    };
                    emit_std_reg_mem(sink, LegacyPrefixes::None, 0x8D, 1, dst, &amode, flags, 0);
                }
            };
        }

        Inst::MovsxRmR { ext_mode, src, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let (opcodes, num_opcodes, mut rex_flags) = match ext_mode {
                ExtMode::BL => {
                    // MOVSBL is (REX.W==0) 0F BE /r
                    (0x0FBE, 2, RexFlags::clear_w())
                }
                ExtMode::BQ => {
                    // MOVSBQ is (REX.W==1) 0F BE /r
                    (0x0FBE, 2, RexFlags::set_w())
                }
                ExtMode::WL => {
                    // MOVSWL is (REX.W==0) 0F BF /r
                    (0x0FBF, 2, RexFlags::clear_w())
                }
                ExtMode::WQ => {
                    // MOVSWQ is (REX.W==1) 0F BF /r
                    (0x0FBF, 2, RexFlags::set_w())
                }
                ExtMode::LQ => {
                    // MOVSLQ is (REX.W==1) 63 /r
                    (0x63, 1, RexFlags::set_w())
                }
            };

            match src.clone().to_reg_mem() {
                RegMem::Reg { reg: src } => {
                    let src = allocs.next(src);
                    match ext_mode {
                        ExtMode::BL | ExtMode::BQ => {
                            // A redundant REX prefix must be emitted for certain register inputs.
                            rex_flags.always_emit_if_8bit_needed(src);
                        }
                        _ => {}
                    }
                    emit_std_reg_reg(
                        sink,
                        LegacyPrefixes::None,
                        opcodes,
                        num_opcodes,
                        dst,
                        src,
                        rex_flags,
                    )
                }

                RegMem::Mem { addr: src } => {
                    let src = &src.finalize(state, sink).with_allocs(allocs);

                    emit_std_reg_mem(
                        sink,
                        LegacyPrefixes::None,
                        opcodes,
                        num_opcodes,
                        dst,
                        src,
                        rex_flags,
                        0,
                    )
                }
            }
        }

        Inst::MovRM { size, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = &dst.finalize(state, sink).with_allocs(allocs);

            let prefix = match size {
                OperandSize::Size16 => LegacyPrefixes::_66,
                _ => LegacyPrefixes::None,
            };

            let opcode = match size {
                OperandSize::Size8 => 0x88,
                _ => 0x89,
            };

            // This is one of the few places where the presence of a
            // redundant REX prefix changes the meaning of the
            // instruction.
            let rex = RexFlags::from((*size, src));

            //  8-bit: MOV r8, r/m8 is (REX.W==0) 88 /r
            // 16-bit: MOV r16, r/m16 is 66 (REX.W==0) 89 /r
            // 32-bit: MOV r32, r/m32 is (REX.W==0) 89 /r
            // 64-bit: MOV r64, r/m64 is (REX.W==1) 89 /r
            emit_std_reg_mem(sink, prefix, opcode, 1, src, dst, rex, 0);
        }

        Inst::ShiftR {
            size,
            kind,
            src,
            num_bits,
            dst,
        } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src, dst);
            let subopcode = match kind {
                ShiftKind::RotateLeft => 0,
                ShiftKind::RotateRight => 1,
                ShiftKind::ShiftLeft => 4,
                ShiftKind::ShiftRightLogical => 5,
                ShiftKind::ShiftRightArithmetic => 7,
            };
            let enc_dst = int_reg_enc(dst);
            let rex_flags = RexFlags::from((*size, dst));
            match num_bits.clone().to_imm8_reg() {
                Imm8Reg::Reg { reg } => {
                    let reg = allocs.next(reg);
                    debug_assert_eq!(reg, regs::rcx());
                    let (opcode, prefix) = match size {
                        OperandSize::Size8 => (0xD2, LegacyPrefixes::None),
                        OperandSize::Size16 => (0xD3, LegacyPrefixes::_66),
                        OperandSize::Size32 => (0xD3, LegacyPrefixes::None),
                        OperandSize::Size64 => (0xD3, LegacyPrefixes::None),
                    };

                    // SHL/SHR/SAR %cl, reg8 is (REX.W==0) D2 /subopcode
                    // SHL/SHR/SAR %cl, reg16 is 66 (REX.W==0) D3 /subopcode
                    // SHL/SHR/SAR %cl, reg32 is (REX.W==0) D3 /subopcode
                    // SHL/SHR/SAR %cl, reg64 is (REX.W==1) D3 /subopcode
                    emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_dst, rex_flags);
                }

                Imm8Reg::Imm8 { imm: num_bits } => {
                    let (opcode, prefix) = match size {
                        OperandSize::Size8 => (0xC0, LegacyPrefixes::None),
                        OperandSize::Size16 => (0xC1, LegacyPrefixes::_66),
                        OperandSize::Size32 => (0xC1, LegacyPrefixes::None),
                        OperandSize::Size64 => (0xC1, LegacyPrefixes::None),
                    };

                    // SHL/SHR/SAR $ib, reg8 is (REX.W==0) C0 /subopcode
                    // SHL/SHR/SAR $ib, reg16 is 66 (REX.W==0) C1 /subopcode
                    // SHL/SHR/SAR $ib, reg32 is (REX.W==0) C1 /subopcode ib
                    // SHL/SHR/SAR $ib, reg64 is (REX.W==1) C1 /subopcode ib
                    // When the shift amount is 1, there's an even shorter encoding, but we don't
                    // bother with that nicety here.
                    emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_dst, rex_flags);
                    sink.put1(num_bits);
                }
            }
        }

        Inst::XmmRmiReg {
            opcode,
            src1,
            src2,
            dst,
        } => {
            let src1 = allocs.next(src1.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src1, dst);
            let rex = RexFlags::clear_w();
            let prefix = LegacyPrefixes::_66;
            let src2 = src2.clone().to_reg_mem_imm();
            if let RegMemImm::Imm { simm32 } = src2 {
                let (opcode_bytes, reg_digit) = match opcode {
                    SseOpcode::Psllw => (0x0F71, 6),
                    SseOpcode::Pslld => (0x0F72, 6),
                    SseOpcode::Psllq => (0x0F73, 6),
                    SseOpcode::Psraw => (0x0F71, 4),
                    SseOpcode::Psrad => (0x0F72, 4),
                    SseOpcode::Psrlw => (0x0F71, 2),
                    SseOpcode::Psrld => (0x0F72, 2),
                    SseOpcode::Psrlq => (0x0F73, 2),
                    _ => panic!("invalid opcode: {}", opcode),
                };
                let dst_enc = reg_enc(dst);
                emit_std_enc_enc(sink, prefix, opcode_bytes, 2, reg_digit, dst_enc, rex);
                let imm = (simm32)
                    .try_into()
                    .expect("the immediate must be convertible to a u8");
                sink.put1(imm);
            } else {
                let opcode_bytes = match opcode {
                    SseOpcode::Psllw => 0x0FF1,
                    SseOpcode::Pslld => 0x0FF2,
                    SseOpcode::Psllq => 0x0FF3,
                    SseOpcode::Psraw => 0x0FE1,
                    SseOpcode::Psrad => 0x0FE2,
                    SseOpcode::Psrlw => 0x0FD1,
                    SseOpcode::Psrld => 0x0FD2,
                    SseOpcode::Psrlq => 0x0FD3,
                    _ => panic!("invalid opcode: {}", opcode),
                };

                match src2 {
                    RegMemImm::Reg { reg } => {
                        let reg = allocs.next(reg);
                        emit_std_reg_reg(sink, prefix, opcode_bytes, 2, dst, reg, rex);
                    }
                    RegMemImm::Mem { addr } => {
                        let addr = &addr.finalize(state, sink).with_allocs(allocs);
                        emit_std_reg_mem(sink, prefix, opcode_bytes, 2, dst, addr, rex, 0);
                    }
                    RegMemImm::Imm { .. } => unreachable!(),
                }
            };
        }

        Inst::CmpRmiR {
            size,
            src: src_e,
            dst: reg_g,
            opcode,
        } => {
            let reg_g = allocs.next(reg_g.to_reg());

            let is_cmp = match opcode {
                CmpOpcode::Cmp => true,
                CmpOpcode::Test => false,
            };

            let mut prefix = LegacyPrefixes::None;
            if *size == OperandSize::Size16 {
                prefix = LegacyPrefixes::_66;
            }
            // A redundant REX prefix can change the meaning of this instruction.
            let mut rex = RexFlags::from((*size, reg_g));

            match src_e.clone().to_reg_mem_imm() {
                RegMemImm::Reg { reg: reg_e } => {
                    let reg_e = allocs.next(reg_e);
                    if *size == OperandSize::Size8 {
                        // Check whether the E register forces the use of a redundant REX.
                        rex.always_emit_if_8bit_needed(reg_e);
                    }

                    // Use the swapped operands encoding for CMP, to stay consistent with the output of
                    // gcc/llvm.
                    let opcode = match (*size, is_cmp) {
                        (OperandSize::Size8, true) => 0x38,
                        (_, true) => 0x39,
                        (OperandSize::Size8, false) => 0x84,
                        (_, false) => 0x85,
                    };
                    emit_std_reg_reg(sink, prefix, opcode, 1, reg_e, reg_g, rex);
                }

                RegMemImm::Mem { addr } => {
                    let addr = &addr.finalize(state, sink).with_allocs(allocs);
                    // Whereas here we revert to the "normal" G-E ordering for CMP.
                    let opcode = match (*size, is_cmp) {
                        (OperandSize::Size8, true) => 0x3A,
                        (_, true) => 0x3B,
                        (OperandSize::Size8, false) => 0x84,
                        (_, false) => 0x85,
                    };
                    emit_std_reg_mem(sink, prefix, opcode, 1, reg_g, addr, rex, 0);
                }

                RegMemImm::Imm { simm32 } => {
                    // FIXME JRS 2020Feb11: there are shorter encodings for
                    // cmp $imm, rax/eax/ax/al.
                    let use_imm8 = is_cmp && low8_will_sign_extend_to_32(simm32);

                    // And also here we use the "normal" G-E ordering.
                    let opcode = if is_cmp {
                        if *size == OperandSize::Size8 {
                            0x80
                        } else if use_imm8 {
                            0x83
                        } else {
                            0x81
                        }
                    } else {
                        if *size == OperandSize::Size8 {
                            0xF6
                        } else {
                            0xF7
                        }
                    };
                    let subopcode = if is_cmp { 7 } else { 0 };

                    let enc_g = int_reg_enc(reg_g);
                    emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_g, rex);
                    emit_simm(sink, if use_imm8 { 1 } else { size.to_bytes() }, simm32);
                }
            }
        }

        Inst::Setcc { cc, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let opcode = 0x0f90 + cc.get_enc() as u32;
            let mut rex_flags = RexFlags::clear_w();
            rex_flags.always_emit();
            emit_std_enc_enc(
                sink,
                LegacyPrefixes::None,
                opcode,
                2,
                0,
                reg_enc(dst),
                rex_flags,
            );
        }

        Inst::Bswap { size, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src, dst);
            let enc_reg = int_reg_enc(dst);

            // BSWAP reg32 is (REX.W==0) 0F C8
            // BSWAP reg64 is (REX.W==1) 0F C8
            let rex_flags = RexFlags::from(*size);
            rex_flags.emit_one_op(sink, enc_reg);

            sink.put1(0x0F);
            sink.put1(0xC8 | (enc_reg & 7));
        }

        Inst::Cmove {
            size,
            cc,
            consequent,
            alternative,
            dst,
        } => {
            let alternative = allocs.next(alternative.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(alternative, dst);
            let rex_flags = RexFlags::from(*size);
            let prefix = match size {
                OperandSize::Size16 => LegacyPrefixes::_66,
                OperandSize::Size32 => LegacyPrefixes::None,
                OperandSize::Size64 => LegacyPrefixes::None,
                _ => unreachable!("invalid size spec for cmove"),
            };
            let opcode = 0x0F40 + cc.get_enc() as u32;
            match consequent.clone().to_reg_mem() {
                RegMem::Reg { reg } => {
                    let reg = allocs.next(reg);
                    emit_std_reg_reg(sink, prefix, opcode, 2, dst, reg, rex_flags);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink).with_allocs(allocs);
                    emit_std_reg_mem(sink, prefix, opcode, 2, dst, addr, rex_flags, 0);
                }
            }
        }

        Inst::XmmCmove {
            ty,
            cc,
            consequent,
            alternative,
            dst,
        } => {
            let alternative = allocs.next(alternative.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(alternative, dst);
            let consequent = consequent.clone().to_reg_mem().with_allocs(allocs);

            // Lowering of the Select IR opcode when the input is an fcmp relies on the fact that
            // this doesn't clobber flags. Make sure to not do so here.
            let next = sink.get_label();

            // Jump if cc is *not* set.
            one_way_jmp(sink, cc.invert(), next);

            let op = match *ty {
                types::F64 => SseOpcode::Movsd,
                types::F32 => SseOpcode::Movsd,
                types::F32X4 => SseOpcode::Movaps,
                types::F64X2 => SseOpcode::Movapd,
                ty => {
                    debug_assert!(ty.is_vector() && ty.bytes() == 16);
                    SseOpcode::Movdqa
                }
            };
            let inst = Inst::xmm_unary_rm_r(op, consequent, Writable::from_reg(dst));
            inst.emit(&[], sink, info, state);

            sink.bind_label(next);
        }

        Inst::Push64 { src } => {
            let src = src.clone().to_reg_mem_imm().with_allocs(allocs);

            match src {
                RegMemImm::Reg { reg } => {
                    let enc_reg = int_reg_enc(reg);
                    let rex = 0x40 | ((enc_reg >> 3) & 1);
                    if rex != 0x40 {
                        sink.put1(rex);
                    }
                    sink.put1(0x50 | (enc_reg & 7));
                }

                RegMemImm::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_enc_mem(
                        sink,
                        LegacyPrefixes::None,
                        0xFF,
                        1,
                        6, /*subopcode*/
                        addr,
                        RexFlags::clear_w(),
                        0,
                    );
                }

                RegMemImm::Imm { simm32 } => {
                    if low8_will_sign_extend_to_64(simm32) {
                        sink.put1(0x6A);
                        sink.put1(simm32 as u8);
                    } else {
                        sink.put1(0x68);
                        sink.put4(simm32);
                    }
                }
            }
        }

        Inst::Pop64 { dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let enc_dst = int_reg_enc(dst);
            if enc_dst >= 8 {
                // 0x41 == REX.{W=0, B=1}.  It seems that REX.W is irrelevant here.
                sink.put1(0x41);
            }
            sink.put1(0x58 + (enc_dst & 7));
        }

        Inst::StackProbeLoop {
            tmp,
            frame_size,
            guard_size,
        } => {
            assert!(info.flags.enable_probestack());
            assert!(guard_size.is_power_of_two());

            let tmp = allocs.next_writable(*tmp);

            // Number of probes that we need to perform
            let probe_count = align_to(*frame_size, *guard_size) / guard_size;

            // The inline stack probe loop has 3 phases:
            //
            // We generate the "guard area" register which is essentially the frame_size aligned to
            // guard_size. We copy the stack pointer and subtract the guard area from it. This
            // gets us a register that we can use to compare when looping.
            //
            // After that we emit the loop. Essentially we just adjust the stack pointer one guard_size'd
            // distance at a time and then touch the stack by writing anything to it. We use the previously
            // created "guard area" register to know when to stop looping.
            //
            // When we have touched all the pages that we need, we have to restore the stack pointer
            // to where it was before.
            //
            // Generate the following code:
            //         mov  tmp_reg, rsp
            //         sub  tmp_reg, guard_size * probe_count
            // .loop_start:
            //         sub  rsp, guard_size
            //         mov  [rsp], rsp
            //         cmp  rsp, tmp_reg
            //         jne  .loop_start
            //         add  rsp, guard_size * probe_count

            // Create the guard bound register
            // mov  tmp_reg, rsp
            let inst = Inst::gen_move(tmp, regs::rsp(), types::I64);
            inst.emit(&[], sink, info, state);

            // sub  tmp_reg, GUARD_SIZE * probe_count
            let inst = Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Sub,
                RegMemImm::imm(guard_size * probe_count),
                tmp,
            );
            inst.emit(&[], sink, info, state);

            // Emit the main loop!
            let loop_start = sink.get_label();
            sink.bind_label(loop_start);

            // sub  rsp, GUARD_SIZE
            let inst = Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Sub,
                RegMemImm::imm(*guard_size),
                Writable::from_reg(regs::rsp()),
            );
            inst.emit(&[], sink, info, state);

            // TODO: `mov [rsp], 0` would be better, but we don't have that instruction
            // Probe the stack! We don't use Inst::gen_store_stack here because we need a predictable
            // instruction size.
            // mov  [rsp], rsp
            let inst = Inst::mov_r_m(
                OperandSize::Size32, // Use Size32 since it saves us one byte
                regs::rsp(),
                SyntheticAmode::Real(Amode::imm_reg(0, regs::rsp())),
            );
            inst.emit(&[], sink, info, state);

            // Compare and jump if we are not done yet
            // cmp  rsp, tmp_reg
            let inst = Inst::cmp_rmi_r(
                OperandSize::Size64,
                RegMemImm::reg(regs::rsp()),
                tmp.to_reg(),
            );
            inst.emit(&[], sink, info, state);

            // jne  .loop_start
            // TODO: Encoding the JmpIf as a short jump saves us 4 bytes here.
            one_way_jmp(sink, CC::NZ, loop_start);

            // The regular prologue code is going to emit a `sub` after this, so we need to
            // reset the stack pointer
            //
            // TODO: It would be better if we could avoid the `add` + `sub` that is generated here
            // and in the stack adj portion of the prologue
            //
            // add rsp, GUARD_SIZE * probe_count
            let inst = Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Add,
                RegMemImm::imm(guard_size * probe_count),
                Writable::from_reg(regs::rsp()),
            );
            inst.emit(&[], sink, info, state);
        }

        Inst::CallKnown {
            dest,
            info: call_info,
            ..
        } => {
            if let Some(s) = state.take_stack_map() {
                sink.add_stack_map(StackMapExtent::UpcomingBytes(5), s);
            }
            sink.put1(0xE8);
            // The addend adjusts for the difference between the end of the instruction and the
            // beginning of the immediate field.
            emit_reloc(sink, Reloc::X86CallPCRel4, &dest, -4);
            sink.put4(0);
            if call_info.opcode.is_call() {
                sink.add_call_site(call_info.opcode);
            }
        }

        Inst::CallUnknown {
            dest,
            info: call_info,
            ..
        } => {
            let dest = dest.with_allocs(allocs);

            let start_offset = sink.cur_offset();
            match dest {
                RegMem::Reg { reg } => {
                    let reg_enc = int_reg_enc(reg);
                    emit_std_enc_enc(
                        sink,
                        LegacyPrefixes::None,
                        0xFF,
                        1,
                        2, /*subopcode*/
                        reg_enc,
                        RexFlags::clear_w(),
                    );
                }

                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_enc_mem(
                        sink,
                        LegacyPrefixes::None,
                        0xFF,
                        1,
                        2, /*subopcode*/
                        addr,
                        RexFlags::clear_w(),
                        0,
                    );
                }
            }
            if let Some(s) = state.take_stack_map() {
                sink.add_stack_map(StackMapExtent::StartedAtOffset(start_offset), s);
            }
            if call_info.opcode.is_call() {
                sink.add_call_site(call_info.opcode);
            }
        }

        Inst::Args { .. } => {}

        Inst::Ret { .. } => sink.put1(0xC3),

        Inst::JmpKnown { dst } => {
            let br_start = sink.cur_offset();
            let br_disp_off = br_start + 1;
            let br_end = br_start + 5;

            sink.use_label_at_offset(br_disp_off, *dst, LabelUse::JmpRel32);
            sink.add_uncond_branch(br_start, br_end, *dst);

            sink.put1(0xE9);
            // Placeholder for the label value.
            sink.put4(0x0);
        }

        Inst::JmpIf { cc, taken } => {
            let cond_start = sink.cur_offset();
            let cond_disp_off = cond_start + 2;

            sink.use_label_at_offset(cond_disp_off, *taken, LabelUse::JmpRel32);
            // Since this is not a terminator, don't enroll in the branch inversion mechanism.

            sink.put1(0x0F);
            sink.put1(0x80 + cc.get_enc());
            // Placeholder for the label value.
            sink.put4(0x0);
        }

        Inst::JmpCond {
            cc,
            taken,
            not_taken,
        } => {
            // If taken.
            let cond_start = sink.cur_offset();
            let cond_disp_off = cond_start + 2;
            let cond_end = cond_start + 6;

            sink.use_label_at_offset(cond_disp_off, *taken, LabelUse::JmpRel32);
            let inverted: [u8; 6] = [0x0F, 0x80 + (cc.invert().get_enc()), 0x00, 0x00, 0x00, 0x00];
            sink.add_cond_branch(cond_start, cond_end, *taken, &inverted[..]);

            sink.put1(0x0F);
            sink.put1(0x80 + cc.get_enc());
            // Placeholder for the label value.
            sink.put4(0x0);

            // If not taken.
            let uncond_start = sink.cur_offset();
            let uncond_disp_off = uncond_start + 1;
            let uncond_end = uncond_start + 5;

            sink.use_label_at_offset(uncond_disp_off, *not_taken, LabelUse::JmpRel32);
            sink.add_uncond_branch(uncond_start, uncond_end, *not_taken);

            sink.put1(0xE9);
            // Placeholder for the label value.
            sink.put4(0x0);
        }

        Inst::JmpUnknown { target } => {
            let target = target.with_allocs(allocs);

            match target {
                RegMem::Reg { reg } => {
                    let reg_enc = int_reg_enc(reg);
                    emit_std_enc_enc(
                        sink,
                        LegacyPrefixes::None,
                        0xFF,
                        1,
                        4, /*subopcode*/
                        reg_enc,
                        RexFlags::clear_w(),
                    );
                }

                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_enc_mem(
                        sink,
                        LegacyPrefixes::None,
                        0xFF,
                        1,
                        4, /*subopcode*/
                        addr,
                        RexFlags::clear_w(),
                        0,
                    );
                }
            }
        }

        Inst::JmpTableSeq {
            idx,
            tmp1,
            tmp2,
            ref targets,
            default_target,
            ..
        } => {
            let idx = allocs.next(*idx);
            let tmp1 = Writable::from_reg(allocs.next(tmp1.to_reg()));
            let tmp2 = Writable::from_reg(allocs.next(tmp2.to_reg()));

            // This sequence is *one* instruction in the vcode, and is expanded only here at
            // emission time, because we cannot allow the regalloc to insert spills/reloads in
            // the middle; we depend on hardcoded PC-rel addressing below.
            //
            // We don't have to worry about emitting islands, because the only label-use type has a
            // maximum range of 2 GB. If we later consider using shorter-range label references,
            // this will need to be revisited.

            // We generate the following sequence. Note that the only read of %idx is before the
            // write to %tmp2, so regalloc may use the same register for both; fix x64/inst/mod.rs
            // if you change this.
            // lea start_of_jump_table_offset(%rip), %tmp1
            // movslq [%tmp1, %idx, 4], %tmp2 ;; shift of 2, viz. multiply index by 4
            // addq %tmp2, %tmp1
            // j *%tmp1
            // $start_of_jump_table:
            // -- jump table entries

            // Load base address of jump table.
            let start_of_jumptable = sink.get_label();
            let inst = Inst::lea(Amode::rip_relative(start_of_jumptable), tmp1);
            inst.emit(&[], sink, info, state);

            // Load value out of the jump table. It's a relative offset to the target block, so it
            // might be negative; use a sign-extension.
            let inst = Inst::movsx_rm_r(
                ExtMode::LQ,
                RegMem::mem(Amode::imm_reg_reg_shift(
                    0,
                    Gpr::new(tmp1.to_reg()).unwrap(),
                    Gpr::new(idx).unwrap(),
                    2,
                )),
                tmp2,
            );
            inst.emit(&[], sink, info, state);

            // Add base of jump table to jump-table-sourced block offset.
            let inst = Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Add,
                RegMemImm::reg(tmp2.to_reg()),
                tmp1,
            );
            inst.emit(&[], sink, info, state);

            // Branch to computed address.
            let inst = Inst::jmp_unknown(RegMem::reg(tmp1.to_reg()));
            inst.emit(&[], sink, info, state);

            // Emit jump table (table of 32-bit offsets).
            sink.bind_label(start_of_jumptable);
            let jt_off = sink.cur_offset();
            for &target in targets.iter().chain(std::iter::once(default_target)) {
                let word_off = sink.cur_offset();
                // off_into_table is an addend here embedded in the label to be later patched at
                // the end of codegen. The offset is initially relative to this jump table entry;
                // with the extra addend, it'll be relative to the jump table's start, after
                // patching.
                let off_into_table = word_off - jt_off;
                sink.use_label_at_offset(word_off, target, LabelUse::PCRel32);
                sink.put4(off_into_table);
            }
        }

        Inst::TrapIf { cc, trap_code } => {
            let trap_label = sink.defer_trap(*trap_code, state.take_stack_map());
            one_way_jmp(sink, *cc, trap_label);
        }

        Inst::TrapIfAnd {
            cc1,
            cc2,
            trap_code,
        } => {
            let trap_label = sink.defer_trap(*trap_code, state.take_stack_map());
            let else_label = sink.get_label();

            // Jump to the end if the first condition isn't true, and then if
            // the second condition is true go to the trap.
            one_way_jmp(sink, cc1.invert(), else_label);
            one_way_jmp(sink, *cc2, trap_label);

            sink.bind_label(else_label);
        }

        Inst::TrapIfOr {
            cc1,
            cc2,
            trap_code,
        } => {
            let trap_label = sink.defer_trap(*trap_code, state.take_stack_map());

            // Emit two jumps to the same trap if either condition code is true.
            one_way_jmp(sink, *cc1, trap_label);
            one_way_jmp(sink, *cc2, trap_label);
        }

        Inst::XmmUnaryRmR { op, src, dst } => {
            emit(
                &Inst::XmmUnaryRmRUnaligned {
                    op: *op,
                    src: XmmMem::new(src.clone().into()).unwrap(),
                    dst: *dst,
                },
                allocs,
                sink,
                info,
                state,
            );
        }

        Inst::XmmUnaryRmRUnaligned {
            op,
            src: src_e,
            dst: reg_g,
        } => {
            let reg_g = allocs.next(reg_g.to_reg().to_reg());
            let src_e = src_e.clone().to_reg_mem().with_allocs(allocs);

            let rex = RexFlags::clear_w();

            let (prefix, opcode, num_opcodes) = match op {
                SseOpcode::Cvtdq2pd => (LegacyPrefixes::_F3, 0x0FE6, 2),
                SseOpcode::Cvtpd2ps => (LegacyPrefixes::_66, 0x0F5A, 2),
                SseOpcode::Cvtps2pd => (LegacyPrefixes::None, 0x0F5A, 2),
                SseOpcode::Cvtdq2ps => (LegacyPrefixes::None, 0x0F5B, 2),
                SseOpcode::Cvtss2sd => (LegacyPrefixes::_F3, 0x0F5A, 2),
                SseOpcode::Cvtsd2ss => (LegacyPrefixes::_F2, 0x0F5A, 2),
                SseOpcode::Cvttpd2dq => (LegacyPrefixes::_66, 0x0FE6, 2),
                SseOpcode::Cvttps2dq => (LegacyPrefixes::_F3, 0x0F5B, 2),
                SseOpcode::Movaps => (LegacyPrefixes::None, 0x0F28, 2),
                SseOpcode::Movapd => (LegacyPrefixes::_66, 0x0F28, 2),
                SseOpcode::Movdqa => (LegacyPrefixes::_66, 0x0F6F, 2),
                SseOpcode::Movdqu => (LegacyPrefixes::_F3, 0x0F6F, 2),
                SseOpcode::Movsd => (LegacyPrefixes::_F2, 0x0F10, 2),
                SseOpcode::Movss => (LegacyPrefixes::_F3, 0x0F10, 2),
                SseOpcode::Movups => (LegacyPrefixes::None, 0x0F10, 2),
                SseOpcode::Movupd => (LegacyPrefixes::_66, 0x0F10, 2),
                SseOpcode::Pabsb => (LegacyPrefixes::_66, 0x0F381C, 3),
                SseOpcode::Pabsw => (LegacyPrefixes::_66, 0x0F381D, 3),
                SseOpcode::Pabsd => (LegacyPrefixes::_66, 0x0F381E, 3),
                SseOpcode::Pmovsxbd => (LegacyPrefixes::_66, 0x0F3821, 3),
                SseOpcode::Pmovsxbw => (LegacyPrefixes::_66, 0x0F3820, 3),
                SseOpcode::Pmovsxbq => (LegacyPrefixes::_66, 0x0F3822, 3),
                SseOpcode::Pmovsxwd => (LegacyPrefixes::_66, 0x0F3823, 3),
                SseOpcode::Pmovsxwq => (LegacyPrefixes::_66, 0x0F3824, 3),
                SseOpcode::Pmovsxdq => (LegacyPrefixes::_66, 0x0F3825, 3),
                SseOpcode::Pmovzxbd => (LegacyPrefixes::_66, 0x0F3831, 3),
                SseOpcode::Pmovzxbw => (LegacyPrefixes::_66, 0x0F3830, 3),
                SseOpcode::Pmovzxbq => (LegacyPrefixes::_66, 0x0F3832, 3),
                SseOpcode::Pmovzxwd => (LegacyPrefixes::_66, 0x0F3833, 3),
                SseOpcode::Pmovzxwq => (LegacyPrefixes::_66, 0x0F3834, 3),
                SseOpcode::Pmovzxdq => (LegacyPrefixes::_66, 0x0F3835, 3),
                SseOpcode::Sqrtps => (LegacyPrefixes::None, 0x0F51, 2),
                SseOpcode::Sqrtpd => (LegacyPrefixes::_66, 0x0F51, 2),
                SseOpcode::Sqrtss => (LegacyPrefixes::_F3, 0x0F51, 2),
                SseOpcode::Sqrtsd => (LegacyPrefixes::_F2, 0x0F51, 2),
                SseOpcode::Movddup => (LegacyPrefixes::_F2, 0x0F12, 2),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };

            match src_e {
                RegMem::Reg { reg: reg_e } => {
                    emit_std_reg_reg(sink, prefix, opcode, num_opcodes, reg_g, reg_e, rex);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_reg_mem(sink, prefix, opcode, num_opcodes, reg_g, addr, rex, 0);
                }
            };
        }

        Inst::XmmUnaryRmRImm { op, src, dst, imm } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src = src.clone().to_reg_mem().with_allocs(allocs);
            let rex = RexFlags::clear_w();

            let (prefix, opcode, len) = match op {
                SseOpcode::Roundps => (LegacyPrefixes::_66, 0x0F3A08, 3),
                SseOpcode::Roundss => (LegacyPrefixes::_66, 0x0F3A0A, 3),
                SseOpcode::Roundpd => (LegacyPrefixes::_66, 0x0F3A09, 3),
                SseOpcode::Roundsd => (LegacyPrefixes::_66, 0x0F3A0B, 3),
                SseOpcode::Pshufd => (LegacyPrefixes::_66, 0x0F70, 2),
                SseOpcode::Pshuflw => (LegacyPrefixes::_F2, 0x0F70, 2),
                SseOpcode::Pshufhw => (LegacyPrefixes::_F3, 0x0F70, 2),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            match src {
                RegMem::Reg { reg } => {
                    emit_std_reg_reg(sink, prefix, opcode, len, dst, reg, rex);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    // N.B.: bytes_at_end == 1, because of the `imm` byte below.
                    emit_std_reg_mem(sink, prefix, opcode, len, dst, addr, rex, 1);
                }
            }
            sink.put1(*imm);
        }

        Inst::XmmUnaryRmREvex { op, src, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src = src.clone().to_reg_mem().with_allocs(allocs);

            let (prefix, map, w, opcode) = match op {
                Avx512Opcode::Vcvtudq2ps => (LegacyPrefixes::_F2, OpcodeMap::_0F, false, 0x7a),
                Avx512Opcode::Vpabsq => (LegacyPrefixes::_66, OpcodeMap::_0F38, true, 0x1f),
                Avx512Opcode::Vpopcntb => (LegacyPrefixes::_66, OpcodeMap::_0F38, false, 0x54),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            match src {
                RegMem::Reg { reg: src } => EvexInstruction::new()
                    .length(EvexVectorLength::V128)
                    .prefix(prefix)
                    .map(map)
                    .w(w)
                    .opcode(opcode)
                    .reg(dst.to_real_reg().unwrap().hw_enc())
                    .rm(src.to_real_reg().unwrap().hw_enc())
                    .encode(sink),
                _ => todo!(),
            };
        }

        Inst::XmmRmR {
            op,
            src1,
            src2,
            dst,
        } => emit(
            &Inst::XmmRmRUnaligned {
                op: *op,
                dst: *dst,
                src1: *src1,
                src2: XmmMem::new(src2.clone().to_reg_mem()).unwrap(),
            },
            allocs,
            sink,
            info,
            state,
        ),

        Inst::XmmRmRUnaligned {
            op,
            src1,
            src2: src_e,
            dst: reg_g,
        } => {
            let src1 = allocs.next(src1.to_reg());
            let reg_g = allocs.next(reg_g.to_reg().to_reg());
            let src_e = src_e.clone().to_reg_mem().with_allocs(allocs);
            debug_assert_eq!(src1, reg_g);

            let rex = RexFlags::clear_w();
            let (prefix, opcode, length) = match op {
                SseOpcode::Addps => (LegacyPrefixes::None, 0x0F58, 2),
                SseOpcode::Addpd => (LegacyPrefixes::_66, 0x0F58, 2),
                SseOpcode::Addss => (LegacyPrefixes::_F3, 0x0F58, 2),
                SseOpcode::Addsd => (LegacyPrefixes::_F2, 0x0F58, 2),
                SseOpcode::Andps => (LegacyPrefixes::None, 0x0F54, 2),
                SseOpcode::Andpd => (LegacyPrefixes::_66, 0x0F54, 2),
                SseOpcode::Andnps => (LegacyPrefixes::None, 0x0F55, 2),
                SseOpcode::Andnpd => (LegacyPrefixes::_66, 0x0F55, 2),
                SseOpcode::Divps => (LegacyPrefixes::None, 0x0F5E, 2),
                SseOpcode::Divpd => (LegacyPrefixes::_66, 0x0F5E, 2),
                SseOpcode::Divss => (LegacyPrefixes::_F3, 0x0F5E, 2),
                SseOpcode::Divsd => (LegacyPrefixes::_F2, 0x0F5E, 2),
                SseOpcode::Maxps => (LegacyPrefixes::None, 0x0F5F, 2),
                SseOpcode::Maxpd => (LegacyPrefixes::_66, 0x0F5F, 2),
                SseOpcode::Maxss => (LegacyPrefixes::_F3, 0x0F5F, 2),
                SseOpcode::Maxsd => (LegacyPrefixes::_F2, 0x0F5F, 2),
                SseOpcode::Minps => (LegacyPrefixes::None, 0x0F5D, 2),
                SseOpcode::Minpd => (LegacyPrefixes::_66, 0x0F5D, 2),
                SseOpcode::Minss => (LegacyPrefixes::_F3, 0x0F5D, 2),
                SseOpcode::Minsd => (LegacyPrefixes::_F2, 0x0F5D, 2),
                SseOpcode::Movlhps => (LegacyPrefixes::None, 0x0F16, 2),
                SseOpcode::Movsd => (LegacyPrefixes::_F2, 0x0F10, 2),
                SseOpcode::Mulps => (LegacyPrefixes::None, 0x0F59, 2),
                SseOpcode::Mulpd => (LegacyPrefixes::_66, 0x0F59, 2),
                SseOpcode::Mulss => (LegacyPrefixes::_F3, 0x0F59, 2),
                SseOpcode::Mulsd => (LegacyPrefixes::_F2, 0x0F59, 2),
                SseOpcode::Orpd => (LegacyPrefixes::_66, 0x0F56, 2),
                SseOpcode::Orps => (LegacyPrefixes::None, 0x0F56, 2),
                SseOpcode::Packssdw => (LegacyPrefixes::_66, 0x0F6B, 2),
                SseOpcode::Packsswb => (LegacyPrefixes::_66, 0x0F63, 2),
                SseOpcode::Packusdw => (LegacyPrefixes::_66, 0x0F382B, 3),
                SseOpcode::Packuswb => (LegacyPrefixes::_66, 0x0F67, 2),
                SseOpcode::Paddb => (LegacyPrefixes::_66, 0x0FFC, 2),
                SseOpcode::Paddd => (LegacyPrefixes::_66, 0x0FFE, 2),
                SseOpcode::Paddq => (LegacyPrefixes::_66, 0x0FD4, 2),
                SseOpcode::Paddw => (LegacyPrefixes::_66, 0x0FFD, 2),
                SseOpcode::Paddsb => (LegacyPrefixes::_66, 0x0FEC, 2),
                SseOpcode::Paddsw => (LegacyPrefixes::_66, 0x0FED, 2),
                SseOpcode::Paddusb => (LegacyPrefixes::_66, 0x0FDC, 2),
                SseOpcode::Paddusw => (LegacyPrefixes::_66, 0x0FDD, 2),
                SseOpcode::Pmaddubsw => (LegacyPrefixes::_66, 0x0F3804, 3),
                SseOpcode::Pand => (LegacyPrefixes::_66, 0x0FDB, 2),
                SseOpcode::Pandn => (LegacyPrefixes::_66, 0x0FDF, 2),
                SseOpcode::Pavgb => (LegacyPrefixes::_66, 0x0FE0, 2),
                SseOpcode::Pavgw => (LegacyPrefixes::_66, 0x0FE3, 2),
                SseOpcode::Pcmpeqb => (LegacyPrefixes::_66, 0x0F74, 2),
                SseOpcode::Pcmpeqw => (LegacyPrefixes::_66, 0x0F75, 2),
                SseOpcode::Pcmpeqd => (LegacyPrefixes::_66, 0x0F76, 2),
                SseOpcode::Pcmpeqq => (LegacyPrefixes::_66, 0x0F3829, 3),
                SseOpcode::Pcmpgtb => (LegacyPrefixes::_66, 0x0F64, 2),
                SseOpcode::Pcmpgtw => (LegacyPrefixes::_66, 0x0F65, 2),
                SseOpcode::Pcmpgtd => (LegacyPrefixes::_66, 0x0F66, 2),
                SseOpcode::Pcmpgtq => (LegacyPrefixes::_66, 0x0F3837, 3),
                SseOpcode::Pmaddwd => (LegacyPrefixes::_66, 0x0FF5, 2),
                SseOpcode::Pmaxsb => (LegacyPrefixes::_66, 0x0F383C, 3),
                SseOpcode::Pmaxsw => (LegacyPrefixes::_66, 0x0FEE, 2),
                SseOpcode::Pmaxsd => (LegacyPrefixes::_66, 0x0F383D, 3),
                SseOpcode::Pmaxub => (LegacyPrefixes::_66, 0x0FDE, 2),
                SseOpcode::Pmaxuw => (LegacyPrefixes::_66, 0x0F383E, 3),
                SseOpcode::Pmaxud => (LegacyPrefixes::_66, 0x0F383F, 3),
                SseOpcode::Pminsb => (LegacyPrefixes::_66, 0x0F3838, 3),
                SseOpcode::Pminsw => (LegacyPrefixes::_66, 0x0FEA, 2),
                SseOpcode::Pminsd => (LegacyPrefixes::_66, 0x0F3839, 3),
                SseOpcode::Pminub => (LegacyPrefixes::_66, 0x0FDA, 2),
                SseOpcode::Pminuw => (LegacyPrefixes::_66, 0x0F383A, 3),
                SseOpcode::Pminud => (LegacyPrefixes::_66, 0x0F383B, 3),
                SseOpcode::Pmuldq => (LegacyPrefixes::_66, 0x0F3828, 3),
                SseOpcode::Pmulhw => (LegacyPrefixes::_66, 0x0FE5, 2),
                SseOpcode::Pmulhrsw => (LegacyPrefixes::_66, 0x0F380B, 3),
                SseOpcode::Pmulhuw => (LegacyPrefixes::_66, 0x0FE4, 2),
                SseOpcode::Pmulld => (LegacyPrefixes::_66, 0x0F3840, 3),
                SseOpcode::Pmullw => (LegacyPrefixes::_66, 0x0FD5, 2),
                SseOpcode::Pmuludq => (LegacyPrefixes::_66, 0x0FF4, 2),
                SseOpcode::Por => (LegacyPrefixes::_66, 0x0FEB, 2),
                SseOpcode::Pshufb => (LegacyPrefixes::_66, 0x0F3800, 3),
                SseOpcode::Psubb => (LegacyPrefixes::_66, 0x0FF8, 2),
                SseOpcode::Psubd => (LegacyPrefixes::_66, 0x0FFA, 2),
                SseOpcode::Psubq => (LegacyPrefixes::_66, 0x0FFB, 2),
                SseOpcode::Psubw => (LegacyPrefixes::_66, 0x0FF9, 2),
                SseOpcode::Psubsb => (LegacyPrefixes::_66, 0x0FE8, 2),
                SseOpcode::Psubsw => (LegacyPrefixes::_66, 0x0FE9, 2),
                SseOpcode::Psubusb => (LegacyPrefixes::_66, 0x0FD8, 2),
                SseOpcode::Psubusw => (LegacyPrefixes::_66, 0x0FD9, 2),
                SseOpcode::Punpckhbw => (LegacyPrefixes::_66, 0x0F68, 2),
                SseOpcode::Punpckhwd => (LegacyPrefixes::_66, 0x0F69, 2),
                SseOpcode::Punpcklbw => (LegacyPrefixes::_66, 0x0F60, 2),
                SseOpcode::Punpcklwd => (LegacyPrefixes::_66, 0x0F61, 2),
                SseOpcode::Punpckldq => (LegacyPrefixes::_66, 0x0F62, 2),
                SseOpcode::Punpcklqdq => (LegacyPrefixes::_66, 0x0F6C, 2),
                SseOpcode::Punpckhdq => (LegacyPrefixes::_66, 0x0F6A, 2),
                SseOpcode::Punpckhqdq => (LegacyPrefixes::_66, 0x0F6D, 2),
                SseOpcode::Pxor => (LegacyPrefixes::_66, 0x0FEF, 2),
                SseOpcode::Subps => (LegacyPrefixes::None, 0x0F5C, 2),
                SseOpcode::Subpd => (LegacyPrefixes::_66, 0x0F5C, 2),
                SseOpcode::Subss => (LegacyPrefixes::_F3, 0x0F5C, 2),
                SseOpcode::Subsd => (LegacyPrefixes::_F2, 0x0F5C, 2),
                SseOpcode::Unpcklps => (LegacyPrefixes::None, 0x0F14, 2),
                SseOpcode::Xorps => (LegacyPrefixes::None, 0x0F57, 2),
                SseOpcode::Xorpd => (LegacyPrefixes::_66, 0x0F57, 2),
                SseOpcode::Phaddw => (LegacyPrefixes::_66, 0x0F3801, 3),
                SseOpcode::Phaddd => (LegacyPrefixes::_66, 0x0F3802, 3),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };

            match src_e {
                RegMem::Reg { reg: reg_e } => {
                    emit_std_reg_reg(sink, prefix, opcode, length, reg_g, reg_e, rex);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_reg_mem(sink, prefix, opcode, length, reg_g, addr, rex, 0);
                }
            }
        }

        Inst::XmmRmRBlend {
            op,
            src1,
            src2,
            dst,
            mask,
        } => {
            let src1 = allocs.next(src1.to_reg());
            let mask = allocs.next(mask.to_reg());
            debug_assert_eq!(mask, regs::xmm0());
            let reg_g = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src1, reg_g);
            let src_e = src2.clone().to_reg_mem().with_allocs(allocs);

            let rex = RexFlags::clear_w();
            let (prefix, opcode, length) = match op {
                SseOpcode::Blendvps => (LegacyPrefixes::_66, 0x0F3814, 3),
                SseOpcode::Blendvpd => (LegacyPrefixes::_66, 0x0F3815, 3),
                SseOpcode::Pblendvb => (LegacyPrefixes::_66, 0x0F3810, 3),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };

            match src_e {
                RegMem::Reg { reg: reg_e } => {
                    emit_std_reg_reg(sink, prefix, opcode, length, reg_g, reg_e, rex);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_reg_mem(sink, prefix, opcode, length, reg_g, addr, rex, 0);
                }
            }
        }

        Inst::XmmRmiRVex {
            op,
            src1,
            src2,
            dst,
        } => {
            use LegacyPrefixes as LP;
            use OpcodeMap as OM;

            let dst = allocs.next(dst.to_reg().to_reg());
            let src1 = allocs.next(src1.to_reg());
            let src2 = src2.clone().to_reg_mem_imm().with_allocs(allocs);

            let src2 = match src2 {
                // For opcodes where one of the operands is an immediate the
                // encoding is a bit different, notably the usage of
                // `opcode_ext`, so handle that specially here.
                RegMemImm::Imm { simm32 } => {
                    let (opcode, opcode_ext, prefix) = match op {
                        AvxOpcode::Vpsrlw => (0x71, 2, LegacyPrefixes::_66),
                        AvxOpcode::Vpsrld => (0x72, 2, LegacyPrefixes::_66),
                        AvxOpcode::Vpsrlq => (0x73, 2, LegacyPrefixes::_66),
                        AvxOpcode::Vpsllw => (0x71, 6, LegacyPrefixes::_66),
                        AvxOpcode::Vpslld => (0x72, 6, LegacyPrefixes::_66),
                        AvxOpcode::Vpsllq => (0x73, 6, LegacyPrefixes::_66),
                        AvxOpcode::Vpsraw => (0x71, 4, LegacyPrefixes::_66),
                        AvxOpcode::Vpsrad => (0x72, 4, LegacyPrefixes::_66),
                        _ => panic!("unexpected rmi_r_vex opcode with immediate {op:?}"),
                    };
                    VexInstruction::new()
                        .length(VexVectorLength::V128)
                        .prefix(prefix)
                        .map(OpcodeMap::_0F)
                        .opcode(opcode)
                        .opcode_ext(opcode_ext)
                        .vvvv(dst.to_real_reg().unwrap().hw_enc())
                        .prefix(LegacyPrefixes::_66)
                        .rm(src1.to_real_reg().unwrap().hw_enc())
                        .imm(simm32.try_into().unwrap())
                        .encode(sink);
                    return;
                }
                RegMemImm::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMemImm::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };
            let (prefix, map, opcode) = match op {
                AvxOpcode::Vminps => (LP::None, OM::_0F, 0x5D),
                AvxOpcode::Vminpd => (LP::_66, OM::_0F, 0x5D),
                AvxOpcode::Vmaxps => (LP::None, OM::_0F, 0x5F),
                AvxOpcode::Vmaxpd => (LP::_66, OM::_0F, 0x5F),
                AvxOpcode::Vandnps => (LP::None, OM::_0F, 0x55),
                AvxOpcode::Vandnpd => (LP::_66, OM::_0F, 0x55),
                AvxOpcode::Vpandn => (LP::_66, OM::_0F, 0xDF),
                AvxOpcode::Vpsrlw => (LP::_66, OM::_0F, 0xD1),
                AvxOpcode::Vpsrld => (LP::_66, OM::_0F, 0xD2),
                AvxOpcode::Vpsrlq => (LP::_66, OM::_0F, 0xD3),
                AvxOpcode::Vpaddb => (LP::_66, OM::_0F, 0xFC),
                AvxOpcode::Vpaddw => (LP::_66, OM::_0F, 0xFD),
                AvxOpcode::Vpaddd => (LP::_66, OM::_0F, 0xFE),
                AvxOpcode::Vpaddq => (LP::_66, OM::_0F, 0xD4),
                AvxOpcode::Vpaddsb => (LP::_66, OM::_0F, 0xEC),
                AvxOpcode::Vpaddsw => (LP::_66, OM::_0F, 0xED),
                AvxOpcode::Vpaddusb => (LP::_66, OM::_0F, 0xDC),
                AvxOpcode::Vpaddusw => (LP::_66, OM::_0F, 0xDD),
                AvxOpcode::Vpsubb => (LP::_66, OM::_0F, 0xF8),
                AvxOpcode::Vpsubw => (LP::_66, OM::_0F, 0xF9),
                AvxOpcode::Vpsubd => (LP::_66, OM::_0F, 0xFA),
                AvxOpcode::Vpsubq => (LP::_66, OM::_0F, 0xFB),
                AvxOpcode::Vpsubsb => (LP::_66, OM::_0F, 0xE8),
                AvxOpcode::Vpsubsw => (LP::_66, OM::_0F, 0xE9),
                AvxOpcode::Vpsubusb => (LP::_66, OM::_0F, 0xD8),
                AvxOpcode::Vpsubusw => (LP::_66, OM::_0F, 0xD9),
                AvxOpcode::Vpavgb => (LP::_66, OM::_0F, 0xE0),
                AvxOpcode::Vpavgw => (LP::_66, OM::_0F, 0xE3),
                AvxOpcode::Vpand => (LP::_66, OM::_0F, 0xDB),
                AvxOpcode::Vandps => (LP::None, OM::_0F, 0x54),
                AvxOpcode::Vandpd => (LP::_66, OM::_0F, 0x54),
                AvxOpcode::Vpor => (LP::_66, OM::_0F, 0xEB),
                AvxOpcode::Vorps => (LP::None, OM::_0F, 0x56),
                AvxOpcode::Vorpd => (LP::_66, OM::_0F, 0x56),
                AvxOpcode::Vpxor => (LP::_66, OM::_0F, 0xEF),
                AvxOpcode::Vxorps => (LP::None, OM::_0F, 0x57),
                AvxOpcode::Vxorpd => (LP::_66, OM::_0F, 0x57),
                AvxOpcode::Vpmullw => (LP::_66, OM::_0F, 0xD5),
                AvxOpcode::Vpmulld => (LP::_66, OM::_0F38, 0x40),
                AvxOpcode::Vpmulhw => (LP::_66, OM::_0F, 0xE5),
                AvxOpcode::Vpmulhrsw => (LP::_66, OM::_0F38, 0x0B),
                AvxOpcode::Vpmulhuw => (LP::_66, OM::_0F, 0xE4),
                AvxOpcode::Vpmuldq => (LP::_66, OM::_0F38, 0x28),
                AvxOpcode::Vpmuludq => (LP::_66, OM::_0F, 0xF4),
                AvxOpcode::Vpunpckhwd => (LP::_66, OM::_0F, 0x69),
                AvxOpcode::Vpunpcklwd => (LP::_66, OM::_0F, 0x61),
                AvxOpcode::Vunpcklps => (LP::None, OM::_0F, 0x14),
                AvxOpcode::Vaddps => (LP::None, OM::_0F, 0x58),
                AvxOpcode::Vaddpd => (LP::_66, OM::_0F, 0x58),
                AvxOpcode::Vsubps => (LP::None, OM::_0F, 0x5C),
                AvxOpcode::Vsubpd => (LP::_66, OM::_0F, 0x5C),
                AvxOpcode::Vmulps => (LP::None, OM::_0F, 0x59),
                AvxOpcode::Vmulpd => (LP::_66, OM::_0F, 0x59),
                AvxOpcode::Vdivps => (LP::None, OM::_0F, 0x5E),
                AvxOpcode::Vdivpd => (LP::_66, OM::_0F, 0x5E),
                AvxOpcode::Vpcmpeqb => (LP::_66, OM::_0F, 0x74),
                AvxOpcode::Vpcmpeqw => (LP::_66, OM::_0F, 0x75),
                AvxOpcode::Vpcmpeqd => (LP::_66, OM::_0F, 0x76),
                AvxOpcode::Vpcmpeqq => (LP::_66, OM::_0F38, 0x29),
                AvxOpcode::Vpcmpgtb => (LP::_66, OM::_0F, 0x64),
                AvxOpcode::Vpcmpgtw => (LP::_66, OM::_0F, 0x65),
                AvxOpcode::Vpcmpgtd => (LP::_66, OM::_0F, 0x66),
                AvxOpcode::Vpcmpgtq => (LP::_66, OM::_0F38, 0x37),
                AvxOpcode::Vmovlhps => (LP::None, OM::_0F, 0x16),
                AvxOpcode::Vpminsb => (LP::_66, OM::_0F38, 0x38),
                AvxOpcode::Vpminsw => (LP::_66, OM::_0F, 0xEA),
                AvxOpcode::Vpminsd => (LP::_66, OM::_0F38, 0x39),
                AvxOpcode::Vpmaxsb => (LP::_66, OM::_0F38, 0x3C),
                AvxOpcode::Vpmaxsw => (LP::_66, OM::_0F, 0xEE),
                AvxOpcode::Vpmaxsd => (LP::_66, OM::_0F38, 0x3D),
                AvxOpcode::Vpminub => (LP::_66, OM::_0F, 0xDA),
                AvxOpcode::Vpminuw => (LP::_66, OM::_0F38, 0x3A),
                AvxOpcode::Vpminud => (LP::_66, OM::_0F38, 0x3B),
                AvxOpcode::Vpmaxub => (LP::_66, OM::_0F, 0xDE),
                AvxOpcode::Vpmaxuw => (LP::_66, OM::_0F38, 0x3E),
                AvxOpcode::Vpmaxud => (LP::_66, OM::_0F38, 0x3F),
                AvxOpcode::Vpunpcklbw => (LP::_66, OM::_0F, 0x60),
                AvxOpcode::Vpunpckhbw => (LP::_66, OM::_0F, 0x68),
                AvxOpcode::Vpacksswb => (LP::_66, OM::_0F, 0x63),
                AvxOpcode::Vpackssdw => (LP::_66, OM::_0F, 0x6B),
                AvxOpcode::Vpackuswb => (LP::_66, OM::_0F, 0x67),
                AvxOpcode::Vpackusdw => (LP::_66, OM::_0F38, 0x2B),
                AvxOpcode::Vpmaddwd => (LP::_66, OM::_0F, 0xF5),
                AvxOpcode::Vpmaddubsw => (LP::_66, OM::_0F38, 0x04),
                AvxOpcode::Vpshufb => (LP::_66, OM::_0F38, 0x00),
                AvxOpcode::Vpsllw => (LP::_66, OM::_0F, 0xF1),
                AvxOpcode::Vpslld => (LP::_66, OM::_0F, 0xF2),
                AvxOpcode::Vpsllq => (LP::_66, OM::_0F, 0xF3),
                AvxOpcode::Vpsraw => (LP::_66, OM::_0F, 0xE1),
                AvxOpcode::Vpsrad => (LP::_66, OM::_0F, 0xE2),
                AvxOpcode::Vaddss => (LP::_F3, OM::_0F, 0x58),
                AvxOpcode::Vaddsd => (LP::_F2, OM::_0F, 0x58),
                AvxOpcode::Vmulss => (LP::_F3, OM::_0F, 0x59),
                AvxOpcode::Vmulsd => (LP::_F2, OM::_0F, 0x59),
                AvxOpcode::Vsubss => (LP::_F3, OM::_0F, 0x5C),
                AvxOpcode::Vsubsd => (LP::_F2, OM::_0F, 0x5C),
                AvxOpcode::Vdivss => (LP::_F3, OM::_0F, 0x5E),
                AvxOpcode::Vdivsd => (LP::_F2, OM::_0F, 0x5E),
                AvxOpcode::Vminss => (LP::_F3, OM::_0F, 0x5D),
                AvxOpcode::Vminsd => (LP::_F2, OM::_0F, 0x5D),
                AvxOpcode::Vmaxss => (LP::_F3, OM::_0F, 0x5F),
                AvxOpcode::Vmaxsd => (LP::_F2, OM::_0F, 0x5F),
                AvxOpcode::Vphaddw => (LP::_66, OM::_0F38, 0x01),
                AvxOpcode::Vphaddd => (LP::_66, OM::_0F38, 0x02),
                AvxOpcode::Vpunpckldq => (LP::_66, OM::_0F, 0x62),
                AvxOpcode::Vpunpckhdq => (LP::_66, OM::_0F, 0x6A),
                AvxOpcode::Vpunpcklqdq => (LP::_66, OM::_0F, 0x6C),
                AvxOpcode::Vpunpckhqdq => (LP::_66, OM::_0F, 0x6D),
                AvxOpcode::Vmovsd => (LP::_F2, OM::_0F, 0x10),
                _ => panic!("unexpected rmir vex opcode {op:?}"),
            };
            VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .vvvv(src1.to_real_reg().unwrap().hw_enc())
                .rm(src2)
                .encode(sink);
        }

        Inst::XmmRmRImmVex {
            op,
            src1,
            src2,
            dst,
            imm,
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src1 = allocs.next(src1.to_reg());
            let src2 = match src2.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };

            let (w, prefix, map, opcode) = match op {
                AvxOpcode::Vcmpps => (false, LegacyPrefixes::None, OpcodeMap::_0F, 0xC2),
                AvxOpcode::Vcmppd => (false, LegacyPrefixes::_66, OpcodeMap::_0F, 0xC2),
                AvxOpcode::Vpalignr => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0F),
                AvxOpcode::Vinsertps => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x21),
                AvxOpcode::Vshufps => (false, LegacyPrefixes::None, OpcodeMap::_0F, 0xC6),
                AvxOpcode::Vpblendw => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0E),
                _ => panic!("unexpected rmr_imm_vex opcode {op:?}"),
            };

            VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(prefix)
                .map(map)
                .w(w)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .vvvv(src1.to_real_reg().unwrap().hw_enc())
                .rm(src2)
                .imm(*imm)
                .encode(sink);
        }

        Inst::XmmVexPinsr {
            op,
            src1,
            src2,
            dst,
            imm,
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src1 = allocs.next(src1.to_reg());
            let src2 = match src2.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };

            let (w, map, opcode) = match op {
                AvxOpcode::Vpinsrb => (false, OpcodeMap::_0F3A, 0x20),
                AvxOpcode::Vpinsrw => (false, OpcodeMap::_0F, 0xC4),
                AvxOpcode::Vpinsrd => (false, OpcodeMap::_0F3A, 0x22),
                AvxOpcode::Vpinsrq => (true, OpcodeMap::_0F3A, 0x22),
                _ => panic!("unexpected vex_pinsr opcode {op:?}"),
            };

            VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(LegacyPrefixes::_66)
                .map(map)
                .w(w)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .vvvv(src1.to_real_reg().unwrap().hw_enc())
                .rm(src2)
                .imm(*imm)
                .encode(sink);
        }

        Inst::XmmRmRVex3 {
            op,
            src1,
            src2,
            src3,
            dst,
        } => {
            let src1 = allocs.next(src1.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(src1, dst);
            let src2 = allocs.next(src2.to_reg());
            let src3 = match src3.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };

            let (w, map, opcode) = match op {
                AvxOpcode::Vfmadd132ss => (false, OpcodeMap::_0F38, 0x99),
                AvxOpcode::Vfmadd213ss => (false, OpcodeMap::_0F38, 0xA9),
                AvxOpcode::Vfnmadd132ss => (false, OpcodeMap::_0F38, 0x9D),
                AvxOpcode::Vfnmadd213ss => (false, OpcodeMap::_0F38, 0xAD),
                AvxOpcode::Vfmadd132sd => (true, OpcodeMap::_0F38, 0x99),
                AvxOpcode::Vfmadd213sd => (true, OpcodeMap::_0F38, 0xA9),
                AvxOpcode::Vfnmadd132sd => (true, OpcodeMap::_0F38, 0x9D),
                AvxOpcode::Vfnmadd213sd => (true, OpcodeMap::_0F38, 0xAD),
                AvxOpcode::Vfmadd132ps => (false, OpcodeMap::_0F38, 0x98),
                AvxOpcode::Vfmadd213ps => (false, OpcodeMap::_0F38, 0xA8),
                AvxOpcode::Vfnmadd132ps => (false, OpcodeMap::_0F38, 0x9C),
                AvxOpcode::Vfnmadd213ps => (false, OpcodeMap::_0F38, 0xAC),
                AvxOpcode::Vfmadd132pd => (true, OpcodeMap::_0F38, 0x98),
                AvxOpcode::Vfmadd213pd => (true, OpcodeMap::_0F38, 0xA8),
                AvxOpcode::Vfnmadd132pd => (true, OpcodeMap::_0F38, 0x9C),
                AvxOpcode::Vfnmadd213pd => (true, OpcodeMap::_0F38, 0xAC),
                AvxOpcode::Vblendvps => (false, OpcodeMap::_0F3A, 0x4A),
                AvxOpcode::Vblendvpd => (false, OpcodeMap::_0F3A, 0x4B),
                AvxOpcode::Vpblendvb => (false, OpcodeMap::_0F3A, 0x4C),
                _ => unreachable!(),
            };

            VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(LegacyPrefixes::_66)
                .map(map)
                .w(w)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .rm(src3)
                .vvvv(src2.to_real_reg().unwrap().hw_enc())
                .encode(sink);
        }

        Inst::XmmRmRBlendVex {
            op,
            src1,
            src2,
            mask,
            dst,
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src1 = allocs.next(src1.to_reg());
            let src2 = match src2.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };
            let mask = allocs.next(mask.to_reg());

            let opcode = match op {
                AvxOpcode::Vblendvps => 0x4A,
                AvxOpcode::Vblendvpd => 0x4B,
                AvxOpcode::Vpblendvb => 0x4C,
                _ => unreachable!(),
            };

            VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(LegacyPrefixes::_66)
                .map(OpcodeMap::_0F3A)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .vvvv(src1.to_real_reg().unwrap().hw_enc())
                .rm(src2)
                .imm(mask.to_real_reg().unwrap().hw_enc() << 4)
                .encode(sink);
        }

        Inst::XmmUnaryRmRVex { op, src, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src = match src.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };

            let (prefix, map, opcode) = match op {
                AvxOpcode::Vpmovsxbw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x20),
                AvxOpcode::Vpmovzxbw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x30),
                AvxOpcode::Vpmovsxwd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x23),
                AvxOpcode::Vpmovzxwd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x33),
                AvxOpcode::Vpmovsxdq => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x25),
                AvxOpcode::Vpmovzxdq => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x35),
                AvxOpcode::Vpabsb => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x1C),
                AvxOpcode::Vpabsw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x1D),
                AvxOpcode::Vpabsd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x1E),
                AvxOpcode::Vsqrtps => (LegacyPrefixes::None, OpcodeMap::_0F, 0x51),
                AvxOpcode::Vsqrtpd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x51),
                AvxOpcode::Vcvtdq2pd => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0xE6),
                AvxOpcode::Vcvtdq2ps => (LegacyPrefixes::None, OpcodeMap::_0F, 0x5B),
                AvxOpcode::Vcvtpd2ps => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x5A),
                AvxOpcode::Vcvtps2pd => (LegacyPrefixes::None, OpcodeMap::_0F, 0x5A),
                AvxOpcode::Vcvttpd2dq => (LegacyPrefixes::_66, OpcodeMap::_0F, 0xE6),
                AvxOpcode::Vcvttps2dq => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x5B),
                AvxOpcode::Vmovdqu => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x6F),
                AvxOpcode::Vmovups => (LegacyPrefixes::None, OpcodeMap::_0F, 0x10),
                AvxOpcode::Vmovupd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x10),

                // Note that for `vmov{s,d}` the `inst.isle` rules should
                // statically ensure that only `Amode` operands are used here.
                // Otherwise the other encodings of `vmovss` are more like
                // 2-operand instructions which this unary encoding does not
                // have.
                AvxOpcode::Vmovss => match &src {
                    RegisterOrAmode::Amode(_) => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x10),
                    _ => unreachable!(),
                },
                AvxOpcode::Vmovsd => match &src {
                    RegisterOrAmode::Amode(_) => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x10),
                    _ => unreachable!(),
                },

                AvxOpcode::Vpbroadcastb => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x78),
                AvxOpcode::Vpbroadcastw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x79),
                AvxOpcode::Vpbroadcastd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x58),
                AvxOpcode::Vbroadcastss => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x18),
                AvxOpcode::Vmovddup => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x12),

                AvxOpcode::Vcvtss2sd => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x5A),
                AvxOpcode::Vcvtsd2ss => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x5A),
                AvxOpcode::Vsqrtss => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x51),
                AvxOpcode::Vsqrtsd => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x51),

                _ => panic!("unexpected rmr_imm_vex opcode {op:?}"),
            };

            let vex = VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .rm(src);

            // These opcodes take a second operand through `vvvv` which copies
            // the upper bits into the destination register. That's not
            // reflected in the CLIF instruction, however, since the SSE version
            // doesn't have this functionality. Instead just copy whatever
            // happens to already be in the destination, which at least is what
            // LLVM seems to do.
            let vex = match op {
                AvxOpcode::Vcvtss2sd
                | AvxOpcode::Vcvtsd2ss
                | AvxOpcode::Vsqrtss
                | AvxOpcode::Vsqrtsd => vex.vvvv(dst.to_real_reg().unwrap().hw_enc()),
                _ => vex,
            };
            vex.encode(sink);
        }

        Inst::XmmUnaryRmRImmVex { op, src, dst, imm } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src = match src.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };

            let (prefix, map, opcode) = match op {
                AvxOpcode::Vroundps => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x08),
                AvxOpcode::Vroundpd => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x09),
                AvxOpcode::Vpshuflw => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x70),
                AvxOpcode::Vpshufhw => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x70),
                AvxOpcode::Vpshufd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x70),
                AvxOpcode::Vroundss => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0A),
                AvxOpcode::Vroundsd => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0B),
                _ => panic!("unexpected rmr_imm_vex opcode {op:?}"),
            };

            let vex = VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .reg(dst.to_real_reg().unwrap().hw_enc())
                .rm(src)
                .imm(*imm);

            // See comments in similar block above in `XmmUnaryRmRVex` for what
            // this is doing.
            let vex = match op {
                AvxOpcode::Vroundss | AvxOpcode::Vroundsd => {
                    vex.vvvv(dst.to_real_reg().unwrap().hw_enc())
                }
                _ => vex,
            };
            vex.encode(sink);
        }

        Inst::XmmMovRMVex { op, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = dst.with_allocs(allocs).finalize(state, sink);

            let (prefix, map, opcode) = match op {
                AvxOpcode::Vmovdqu => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x7F),
                AvxOpcode::Vmovss => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x11),
                AvxOpcode::Vmovsd => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x11),
                AvxOpcode::Vmovups => (LegacyPrefixes::None, OpcodeMap::_0F, 0x11),
                AvxOpcode::Vmovupd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x11),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            VexInstruction::new()
                .length(VexVectorLength::V128)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .rm(dst)
                .reg(src.to_real_reg().unwrap().hw_enc())
                .encode(sink);
        }

        Inst::XmmMovRMImmVex { op, src, dst, imm } => {
            let src = allocs.next(src.to_reg());
            let dst = dst.with_allocs(allocs).finalize(state, sink);

            let (w, prefix, map, opcode) = match op {
                AvxOpcode::Vpextrb => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x14),
                AvxOpcode::Vpextrw => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x15),
                AvxOpcode::Vpextrd => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
                AvxOpcode::Vpextrq => (true, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            VexInstruction::new()
                .length(VexVectorLength::V128)
                .w(w)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .rm(dst)
                .reg(src.to_real_reg().unwrap().hw_enc())
                .imm(*imm)
                .encode(sink);
        }

        Inst::XmmToGprImmVex { op, src, dst, imm } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());

            let (w, prefix, map, opcode) = match op {
                AvxOpcode::Vpextrb => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x14),
                AvxOpcode::Vpextrw => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x15),
                AvxOpcode::Vpextrd => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
                AvxOpcode::Vpextrq => (true, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            VexInstruction::new()
                .length(VexVectorLength::V128)
                .w(w)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .rm(dst.to_real_reg().unwrap().hw_enc())
                .reg(src.to_real_reg().unwrap().hw_enc())
                .imm(*imm)
                .encode(sink);
        }

        Inst::XmmToGprVex {
            op,
            src,
            dst,
            dst_size,
        } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());

            let (prefix, map, opcode) = match op {
                // vmovd/vmovq are differentiated by `w`
                AvxOpcode::Vmovd | AvxOpcode::Vmovq => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x7E),
                AvxOpcode::Vmovmskps => (LegacyPrefixes::None, OpcodeMap::_0F, 0x50),
                AvxOpcode::Vmovmskpd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x50),
                AvxOpcode::Vpmovmskb => (LegacyPrefixes::_66, OpcodeMap::_0F, 0xD7),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            let w = match dst_size {
                OperandSize::Size64 => true,
                _ => false,
            };
            let mut vex = VexInstruction::new()
                .length(VexVectorLength::V128)
                .w(w)
                .prefix(prefix)
                .map(map)
                .opcode(opcode);
            vex = match op {
                // The `vmovq/vmovd` reverse the order of the destination/source
                // relative to other opcodes using this shape of instruction.
                AvxOpcode::Vmovd | AvxOpcode::Vmovq => vex
                    .rm(dst.to_real_reg().unwrap().hw_enc())
                    .reg(src.to_real_reg().unwrap().hw_enc()),
                _ => vex
                    .rm(src.to_real_reg().unwrap().hw_enc())
                    .reg(dst.to_real_reg().unwrap().hw_enc()),
            };
            vex.encode(sink);
        }

        Inst::GprToXmmVex {
            op,
            src,
            dst,
            src_size,
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src = match src.clone().to_reg_mem().with_allocs(allocs) {
                RegMem::Reg { reg } => {
                    RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
                }
                RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
            };

            let (prefix, map, opcode) = match op {
                // vmovd/vmovq are differentiated by `w`
                AvxOpcode::Vmovd | AvxOpcode::Vmovq => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x6E),
                AvxOpcode::Vcvtsi2ss => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x2A),
                AvxOpcode::Vcvtsi2sd => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x2A),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            let w = match src_size {
                OperandSize::Size64 => true,
                _ => false,
            };
            let mut insn = VexInstruction::new()
                .length(VexVectorLength::V128)
                .w(w)
                .prefix(prefix)
                .map(map)
                .opcode(opcode)
                .rm(src)
                .reg(dst.to_real_reg().unwrap().hw_enc());
            // These opcodes technically take a second operand which is the
            // upper bits to preserve during the float conversion. We don't
            // actually use this in this backend right now so reuse the
            // destination register. This at least matches what LLVM does.
            if let AvxOpcode::Vcvtsi2ss | AvxOpcode::Vcvtsi2sd = op {
                insn = insn.vvvv(dst.to_real_reg().unwrap().hw_enc());
            }
            insn.encode(sink);
        }

        Inst::XmmRmREvex {
            op,
            src1,
            src2,
            dst,
        }
        | Inst::XmmRmREvex3 {
            op,
            src1,
            src2,
            dst,
            // `dst` reuses `src3`.
            ..
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            let src2 = allocs.next(src2.to_reg());
            if let Inst::XmmRmREvex3 { src3, .. } = inst {
                let src3 = allocs.next(src3.to_reg());
                debug_assert_eq!(src3, dst);
            }
            let src1 = src1.clone().to_reg_mem().with_allocs(allocs);

            let (w, opcode) = match op {
                Avx512Opcode::Vpermi2b => (false, 0x75),
                Avx512Opcode::Vpmullq => (true, 0x40),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            match src1 {
                RegMem::Reg { reg: src } => EvexInstruction::new()
                    .length(EvexVectorLength::V128)
                    .prefix(LegacyPrefixes::_66)
                    .map(OpcodeMap::_0F38)
                    .w(w)
                    .opcode(opcode)
                    .reg(dst.to_real_reg().unwrap().hw_enc())
                    .rm(src.to_real_reg().unwrap().hw_enc())
                    .vvvvv(src2.to_real_reg().unwrap().hw_enc())
                    .encode(sink),
                _ => todo!(),
            };
        }

        Inst::XmmMinMaxSeq {
            size,
            is_min,
            lhs,
            rhs,
            dst,
        } => {
            let rhs = allocs.next(rhs.to_reg());
            let lhs = allocs.next(lhs.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(rhs, dst);

            // Generates the following sequence:
            // cmpss/cmpsd %lhs, %rhs_dst
            // jnz do_min_max
            // jp propagate_nan
            //
            // ;; ordered and equal: propagate the sign bit (for -0 vs 0):
            // {and,or}{ss,sd} %lhs, %rhs_dst
            // j done
            //
            // ;; to get the desired NaN behavior (signalling NaN transformed into a quiet NaN, the
            // ;; NaN value is returned), we add both inputs.
            // propagate_nan:
            // add{ss,sd} %lhs, %rhs_dst
            // j done
            //
            // do_min_max:
            // {min,max}{ss,sd} %lhs, %rhs_dst
            //
            // done:
            let done = sink.get_label();
            let propagate_nan = sink.get_label();
            let do_min_max = sink.get_label();

            let (add_op, cmp_op, and_op, or_op, min_max_op) = match size {
                OperandSize::Size32 => (
                    SseOpcode::Addss,
                    SseOpcode::Ucomiss,
                    SseOpcode::Andps,
                    SseOpcode::Orps,
                    if *is_min {
                        SseOpcode::Minss
                    } else {
                        SseOpcode::Maxss
                    },
                ),
                OperandSize::Size64 => (
                    SseOpcode::Addsd,
                    SseOpcode::Ucomisd,
                    SseOpcode::Andpd,
                    SseOpcode::Orpd,
                    if *is_min {
                        SseOpcode::Minsd
                    } else {
                        SseOpcode::Maxsd
                    },
                ),
                _ => unreachable!(),
            };

            let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(lhs), dst);
            inst.emit(&[], sink, info, state);

            one_way_jmp(sink, CC::NZ, do_min_max);
            one_way_jmp(sink, CC::P, propagate_nan);

            // Ordered and equal. The operands are bit-identical unless they are zero
            // and negative zero. These instructions merge the sign bits in that
            // case, and are no-ops otherwise.
            let op = if *is_min { or_op } else { and_op };
            let inst = Inst::xmm_rm_r(op, RegMem::reg(lhs), Writable::from_reg(dst));
            inst.emit(&[], sink, info, state);

            let inst = Inst::jmp_known(done);
            inst.emit(&[], sink, info, state);

            // x86's min/max are not symmetric; if either operand is a NaN, they return the
            // read-only operand: perform an addition between the two operands, which has the
            // desired NaN propagation effects.
            sink.bind_label(propagate_nan);
            let inst = Inst::xmm_rm_r(add_op, RegMem::reg(lhs), Writable::from_reg(dst));
            inst.emit(&[], sink, info, state);

            one_way_jmp(sink, CC::P, done);

            sink.bind_label(do_min_max);

            let inst = Inst::xmm_rm_r(min_max_op, RegMem::reg(lhs), Writable::from_reg(dst));
            inst.emit(&[], sink, info, state);

            sink.bind_label(done);
        }

        Inst::XmmRmRImm {
            op,
            src1,
            src2,
            dst,
            imm,
            size,
        } => {
            let src1 = allocs.next(*src1);
            let dst = allocs.next(dst.to_reg());
            let src2 = src2.with_allocs(allocs);
            debug_assert_eq!(src1, dst);

            let (prefix, opcode, len) = match op {
                SseOpcode::Cmpps => (LegacyPrefixes::None, 0x0FC2, 2),
                SseOpcode::Cmppd => (LegacyPrefixes::_66, 0x0FC2, 2),
                SseOpcode::Cmpss => (LegacyPrefixes::_F3, 0x0FC2, 2),
                SseOpcode::Cmpsd => (LegacyPrefixes::_F2, 0x0FC2, 2),
                SseOpcode::Insertps => (LegacyPrefixes::_66, 0x0F3A21, 3),
                SseOpcode::Palignr => (LegacyPrefixes::_66, 0x0F3A0F, 3),
                SseOpcode::Pinsrb => (LegacyPrefixes::_66, 0x0F3A20, 3),
                SseOpcode::Pinsrw => (LegacyPrefixes::_66, 0x0FC4, 2),
                SseOpcode::Pinsrd => (LegacyPrefixes::_66, 0x0F3A22, 3),
                SseOpcode::Shufps => (LegacyPrefixes::None, 0x0FC6, 2),
                SseOpcode::Pblendw => (LegacyPrefixes::_66, 0x0F3A0E, 3),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            let rex = RexFlags::from(*size);
            let regs_swapped = match *op {
                // These opcodes (and not the SSE2 version of PEXTRW) flip the operand
                // encoding: `dst` in ModRM's r/m, `src` in ModRM's reg field.
                SseOpcode::Pextrb | SseOpcode::Pextrd => true,
                // The rest of the opcodes have the customary encoding: `dst` in ModRM's reg,
                // `src` in ModRM's r/m field.
                _ => false,
            };
            match src2 {
                RegMem::Reg { reg } => {
                    if regs_swapped {
                        emit_std_reg_reg(sink, prefix, opcode, len, reg, dst, rex);
                    } else {
                        emit_std_reg_reg(sink, prefix, opcode, len, dst, reg, rex);
                    }
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    assert!(
                        !regs_swapped,
                        "No existing way to encode a mem argument in the ModRM r/m field."
                    );
                    // N.B.: bytes_at_end == 1, because of the `imm` byte below.
                    emit_std_reg_mem(sink, prefix, opcode, len, dst, addr, rex, 1);
                }
            }
            sink.put1(*imm);
        }

        Inst::XmmUninitializedValue { .. } => {
            // This instruction format only exists to declare a register as a `def`; no code is
            // emitted.
        }

        Inst::XmmMovRM { op, src, dst } => {
            let src = allocs.next(src.to_reg());
            let dst = dst.with_allocs(allocs);

            let (prefix, opcode) = match op {
                SseOpcode::Movaps => (LegacyPrefixes::None, 0x0F29),
                SseOpcode::Movapd => (LegacyPrefixes::_66, 0x0F29),
                SseOpcode::Movdqu => (LegacyPrefixes::_F3, 0x0F7F),
                SseOpcode::Movss => (LegacyPrefixes::_F3, 0x0F11),
                SseOpcode::Movsd => (LegacyPrefixes::_F2, 0x0F11),
                SseOpcode::Movups => (LegacyPrefixes::None, 0x0F11),
                SseOpcode::Movupd => (LegacyPrefixes::_66, 0x0F11),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            let dst = &dst.finalize(state, sink);
            emit_std_reg_mem(sink, prefix, opcode, 2, src, dst, RexFlags::clear_w(), 0);
        }

        Inst::XmmMovRMImm { op, src, dst, imm } => {
            let src = allocs.next(src.to_reg());
            let dst = dst.with_allocs(allocs);

            let (w, prefix, opcode) = match op {
                SseOpcode::Pextrb => (false, LegacyPrefixes::_66, 0x0F3A14),
                SseOpcode::Pextrw => (false, LegacyPrefixes::_66, 0x0F3A15),
                SseOpcode::Pextrd => (false, LegacyPrefixes::_66, 0x0F3A16),
                SseOpcode::Pextrq => (true, LegacyPrefixes::_66, 0x0F3A16),
                _ => unimplemented!("Opcode {:?} not implemented", op),
            };
            let rex = if w {
                RexFlags::set_w()
            } else {
                RexFlags::clear_w()
            };
            let dst = &dst.finalize(state, sink);
            emit_std_reg_mem(sink, prefix, opcode, 3, src, dst, rex, 1);
            sink.put1(*imm);
        }

        Inst::XmmToGpr {
            op,
            src,
            dst,
            dst_size,
        } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());

            let (prefix, opcode, dst_first) = match op {
                SseOpcode::Cvttss2si => (LegacyPrefixes::_F3, 0x0F2C, true),
                SseOpcode::Cvttsd2si => (LegacyPrefixes::_F2, 0x0F2C, true),
                // Movd and movq use the same opcode; the presence of the REX prefix (set below)
                // actually determines which is used.
                SseOpcode::Movd | SseOpcode::Movq => (LegacyPrefixes::_66, 0x0F7E, false),
                SseOpcode::Movmskps => (LegacyPrefixes::None, 0x0F50, true),
                SseOpcode::Movmskpd => (LegacyPrefixes::_66, 0x0F50, true),
                SseOpcode::Pmovmskb => (LegacyPrefixes::_66, 0x0FD7, true),
                _ => panic!("unexpected opcode {:?}", op),
            };
            let rex = RexFlags::from(*dst_size);
            let (src, dst) = if dst_first { (dst, src) } else { (src, dst) };

            emit_std_reg_reg(sink, prefix, opcode, 2, src, dst, rex);
        }

        Inst::XmmToGprImm { op, src, dst, imm } => {
            use OperandSize as OS;

            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());

            let (prefix, opcode, opcode_bytes, dst_size, dst_first) = match op {
                SseOpcode::Pextrb => (LegacyPrefixes::_66, 0x0F3A14, 3, OS::Size32, false),
                SseOpcode::Pextrw => (LegacyPrefixes::_66, 0x0FC5, 2, OS::Size32, true),
                SseOpcode::Pextrd => (LegacyPrefixes::_66, 0x0F3A16, 3, OS::Size32, false),
                SseOpcode::Pextrq => (LegacyPrefixes::_66, 0x0F3A16, 3, OS::Size64, false),
                _ => panic!("unexpected opcode {:?}", op),
            };
            let rex = RexFlags::from(dst_size);
            let (src, dst) = if dst_first { (dst, src) } else { (src, dst) };

            emit_std_reg_reg(sink, prefix, opcode, opcode_bytes, src, dst, rex);
            sink.put1(*imm);
        }

        Inst::GprToXmm {
            op,
            src: src_e,
            dst: reg_g,
            src_size,
        } => {
            let reg_g = allocs.next(reg_g.to_reg().to_reg());
            let src_e = src_e.clone().to_reg_mem().with_allocs(allocs);

            let (prefix, opcode) = match op {
                // Movd and movq use the same opcode; the presence of the REX prefix (set below)
                // actually determines which is used.
                SseOpcode::Movd | SseOpcode::Movq => (LegacyPrefixes::_66, 0x0F6E),
                SseOpcode::Cvtsi2ss => (LegacyPrefixes::_F3, 0x0F2A),
                SseOpcode::Cvtsi2sd => (LegacyPrefixes::_F2, 0x0F2A),
                _ => panic!("unexpected opcode {:?}", op),
            };
            let rex = RexFlags::from(*src_size);
            match src_e {
                RegMem::Reg { reg: reg_e } => {
                    emit_std_reg_reg(sink, prefix, opcode, 2, reg_g, reg_e, rex);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_reg_mem(sink, prefix, opcode, 2, reg_g, addr, rex, 0);
                }
            }
        }

        Inst::XmmCmpRmR { op, src, dst } => {
            let dst = allocs.next(dst.to_reg());
            let src = src.clone().to_reg_mem().with_allocs(allocs);

            let rex = RexFlags::clear_w();
            let (prefix, opcode, len) = match op {
                SseOpcode::Ptest => (LegacyPrefixes::_66, 0x0F3817, 3),
                SseOpcode::Ucomisd => (LegacyPrefixes::_66, 0x0F2E, 2),
                SseOpcode::Ucomiss => (LegacyPrefixes::None, 0x0F2E, 2),
                _ => unimplemented!("Emit xmm cmp rm r"),
            };

            match src {
                RegMem::Reg { reg } => {
                    emit_std_reg_reg(sink, prefix, opcode, len, dst, reg, rex);
                }
                RegMem::Mem { addr } => {
                    let addr = &addr.finalize(state, sink);
                    emit_std_reg_mem(sink, prefix, opcode, len, dst, addr, rex, 0);
                }
            }
        }

        Inst::CvtUint64ToFloatSeq {
            dst_size,
            src,
            dst,
            tmp_gpr1,
            tmp_gpr2,
        } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            let tmp_gpr1 = allocs.next(tmp_gpr1.to_reg().to_reg());
            let tmp_gpr2 = allocs.next(tmp_gpr2.to_reg().to_reg());

            // Note: this sequence is specific to 64-bit mode; a 32-bit mode would require a
            // different sequence.
            //
            // Emit the following sequence:
            //
            //  cmp 0, %src
            //  jl handle_negative
            //
            //  ;; handle positive, which can't overflow
            //  cvtsi2sd/cvtsi2ss %src, %dst
            //  j done
            //
            //  ;; handle negative: see below for an explanation of what it's doing.
            //  handle_negative:
            //  mov %src, %tmp_gpr1
            //  shr $1, %tmp_gpr1
            //  mov %src, %tmp_gpr2
            //  and $1, %tmp_gpr2
            //  or %tmp_gpr1, %tmp_gpr2
            //  cvtsi2sd/cvtsi2ss %tmp_gpr2, %dst
            //  addsd/addss %dst, %dst
            //
            //  done:

            assert_ne!(src, tmp_gpr1);
            assert_ne!(src, tmp_gpr2);
            assert_ne!(tmp_gpr1, tmp_gpr2);

            let handle_negative = sink.get_label();
            let done = sink.get_label();

            // If x seen as a signed int64 is not negative, a signed-conversion will do the right
            // thing.
            // TODO use tst src, src here.
            let inst = Inst::cmp_rmi_r(OperandSize::Size64, RegMemImm::imm(0), src);
            inst.emit(&[], sink, info, state);

            one_way_jmp(sink, CC::L, handle_negative);

            // Handle a positive int64, which is the "easy" case: a signed conversion will do the
            // right thing.
            emit_signed_cvt(
                sink,
                info,
                state,
                src,
                Writable::from_reg(dst),
                *dst_size == OperandSize::Size64,
            );

            let inst = Inst::jmp_known(done);
            inst.emit(&[], sink, info, state);

            sink.bind_label(handle_negative);

            // Divide x by two to get it in range for the signed conversion, keep the LSB, and
            // scale it back up on the FP side.
            let inst = Inst::gen_move(Writable::from_reg(tmp_gpr1), src, types::I64);
            inst.emit(&[], sink, info, state);

            // tmp_gpr1 := src >> 1
            let inst = Inst::shift_r(
                OperandSize::Size64,
                ShiftKind::ShiftRightLogical,
                Imm8Gpr::new(Imm8Reg::Imm8 { imm: 1 }).unwrap(),
                tmp_gpr1,
                Writable::from_reg(tmp_gpr1),
            );
            inst.emit(&[], sink, info, state);

            let inst = Inst::gen_move(Writable::from_reg(tmp_gpr2), src, types::I64);
            inst.emit(&[], sink, info, state);

            let inst = Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::And,
                RegMemImm::imm(1),
                Writable::from_reg(tmp_gpr2),
            );
            inst.emit(&[], sink, info, state);

            let inst = Inst::alu_rmi_r(
                OperandSize::Size64,
                AluRmiROpcode::Or,
                RegMemImm::reg(tmp_gpr1),
                Writable::from_reg(tmp_gpr2),
            );
            inst.emit(&[], sink, info, state);

            emit_signed_cvt(
                sink,
                info,
                state,
                tmp_gpr2,
                Writable::from_reg(dst),
                *dst_size == OperandSize::Size64,
            );

            let add_op = if *dst_size == OperandSize::Size64 {
                SseOpcode::Addsd
            } else {
                SseOpcode::Addss
            };
            let inst = Inst::xmm_rm_r(add_op, RegMem::reg(dst), Writable::from_reg(dst));
            inst.emit(&[], sink, info, state);

            sink.bind_label(done);
        }

        Inst::CvtFloatToSintSeq {
            src_size,
            dst_size,
            is_saturating,
            src,
            dst,
            tmp_gpr,
            tmp_xmm,
        } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            let tmp_gpr = allocs.next(tmp_gpr.to_reg().to_reg());
            let tmp_xmm = allocs.next(tmp_xmm.to_reg().to_reg());

            // Emits the following common sequence:
            //
            // cvttss2si/cvttsd2si %src, %dst
            // cmp %dst, 1
            // jno done
            //
            // Then, for saturating conversions:
            //
            // ;; check for NaN
            // cmpss/cmpsd %src, %src
            // jnp not_nan
            // xor %dst, %dst
            //
            // ;; positive inputs get saturated to INT_MAX; negative ones to INT_MIN, which is
            // ;; already in %dst.
            // xorpd %tmp_xmm, %tmp_xmm
            // cmpss/cmpsd %src, %tmp_xmm
            // jnb done
            // mov/movaps $INT_MAX, %dst
            //
            // done:
            //
            // Then, for non-saturating conversions:
            //
            // ;; check for NaN
            // cmpss/cmpsd %src, %src
            // jnp not_nan
            // ud2 trap BadConversionToInteger
            //
            // ;; check if INT_MIN was the correct result, against a magic constant:
            // not_nan:
            // movaps/mov $magic, %tmp_gpr
            // movq/movd %tmp_gpr, %tmp_xmm
            // cmpss/cmpsd %tmp_xmm, %src
            // jnb/jnbe $check_positive
            // ud2 trap IntegerOverflow
            //
            // ;; if positive, it was a real overflow
            // check_positive:
            // xorpd %tmp_xmm, %tmp_xmm
            // cmpss/cmpsd %src, %tmp_xmm
            // jnb done
            // ud2 trap IntegerOverflow
            //
            // done:

            let (cast_op, cmp_op, trunc_op) = match src_size {
                OperandSize::Size64 => (SseOpcode::Movq, SseOpcode::Ucomisd, SseOpcode::Cvttsd2si),
                OperandSize::Size32 => (SseOpcode::Movd, SseOpcode::Ucomiss, SseOpcode::Cvttss2si),
                _ => unreachable!(),
            };

            let done = sink.get_label();

            // The truncation.
            let inst = Inst::xmm_to_gpr(trunc_op, src, Writable::from_reg(dst), *dst_size);
            inst.emit(&[], sink, info, state);

            // Compare against 1, in case of overflow the dst operand was INT_MIN.
            let inst = Inst::cmp_rmi_r(*dst_size, RegMemImm::imm(1), dst);
            inst.emit(&[], sink, info, state);

            one_way_jmp(sink, CC::NO, done); // no overflow => done

            // Check for NaN.

            let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(src), src);
            inst.emit(&[], sink, info, state);

            if *is_saturating {
                let not_nan = sink.get_label();
                one_way_jmp(sink, CC::NP, not_nan); // go to not_nan if not a NaN

                // For NaN, emit 0.
                let inst = Inst::alu_rmi_r(
                    *dst_size,
                    AluRmiROpcode::Xor,
                    RegMemImm::reg(dst),
                    Writable::from_reg(dst),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::jmp_known(done);
                inst.emit(&[], sink, info, state);

                sink.bind_label(not_nan);

                // If the input was positive, saturate to INT_MAX.

                // Zero out tmp_xmm.
                let inst = Inst::xmm_rm_r(
                    SseOpcode::Xorpd,
                    RegMem::reg(tmp_xmm),
                    Writable::from_reg(tmp_xmm),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(src), tmp_xmm);
                inst.emit(&[], sink, info, state);

                // Jump if >= to done.
                one_way_jmp(sink, CC::NB, done);

                // Otherwise, put INT_MAX.
                if *dst_size == OperandSize::Size64 {
                    let inst = Inst::imm(
                        OperandSize::Size64,
                        0x7fffffffffffffff,
                        Writable::from_reg(dst),
                    );
                    inst.emit(&[], sink, info, state);
                } else {
                    let inst = Inst::imm(OperandSize::Size32, 0x7fffffff, Writable::from_reg(dst));
                    inst.emit(&[], sink, info, state);
                }
            } else {
                let inst = Inst::trap_if(CC::P, TrapCode::BadConversionToInteger);
                inst.emit(&[], sink, info, state);

                // Check if INT_MIN was the correct result: determine the smallest floating point
                // number that would convert to INT_MIN, put it in a temporary register, and compare
                // against the src register.
                // If the src register is less (or in some cases, less-or-equal) than the threshold,
                // trap!

                let mut no_overflow_cc = CC::NB; // >=
                let output_bits = dst_size.to_bits();
                match *src_size {
                    OperandSize::Size32 => {
                        let cst = Ieee32::pow2(output_bits - 1).neg().bits();
                        let inst =
                            Inst::imm(OperandSize::Size32, cst as u64, Writable::from_reg(tmp_gpr));
                        inst.emit(&[], sink, info, state);
                    }
                    OperandSize::Size64 => {
                        // An f64 can represent `i32::min_value() - 1` exactly with precision to spare,
                        // so there are values less than -2^(N-1) that convert correctly to INT_MIN.
                        let cst = if output_bits < 64 {
                            no_overflow_cc = CC::NBE; // >
                            Ieee64::fcvt_to_sint_negative_overflow(output_bits)
                        } else {
                            Ieee64::pow2(output_bits - 1).neg()
                        };
                        let inst =
                            Inst::imm(OperandSize::Size64, cst.bits(), Writable::from_reg(tmp_gpr));
                        inst.emit(&[], sink, info, state);
                    }
                    _ => unreachable!(),
                }

                let inst = Inst::gpr_to_xmm(
                    cast_op,
                    RegMem::reg(tmp_gpr),
                    *src_size,
                    Writable::from_reg(tmp_xmm),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(tmp_xmm), src);
                inst.emit(&[], sink, info, state);

                // no trap if src >= or > threshold
                let inst = Inst::trap_if(no_overflow_cc.invert(), TrapCode::IntegerOverflow);
                inst.emit(&[], sink, info, state);

                // If positive, it was a real overflow.

                // Zero out the tmp_xmm register.
                let inst = Inst::xmm_rm_r(
                    SseOpcode::Xorpd,
                    RegMem::reg(tmp_xmm),
                    Writable::from_reg(tmp_xmm),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(src), tmp_xmm);
                inst.emit(&[], sink, info, state);

                // no trap if 0 >= src
                let inst = Inst::trap_if(CC::B, TrapCode::IntegerOverflow);
                inst.emit(&[], sink, info, state);
            }

            sink.bind_label(done);
        }

        Inst::CvtFloatToUintSeq {
            src_size,
            dst_size,
            is_saturating,
            src,
            dst,
            tmp_gpr,
            tmp_xmm,
            tmp_xmm2,
        } => {
            let src = allocs.next(src.to_reg());
            let dst = allocs.next(dst.to_reg().to_reg());
            let tmp_gpr = allocs.next(tmp_gpr.to_reg().to_reg());
            let tmp_xmm = allocs.next(tmp_xmm.to_reg().to_reg());
            let tmp_xmm2 = allocs.next(tmp_xmm2.to_reg().to_reg());

            // The only difference in behavior between saturating and non-saturating is how we
            // handle errors. Emits the following sequence:
            //
            // movaps/mov 2**(int_width - 1), %tmp_gpr
            // movq/movd %tmp_gpr, %tmp_xmm
            // cmpss/cmpsd %tmp_xmm, %src
            // jnb is_large
            //
            // ;; check for NaN inputs
            // jnp not_nan
            // -- non-saturating: ud2 trap BadConversionToInteger
            // -- saturating: xor %dst, %dst; j done
            //
            // not_nan:
            // cvttss2si/cvttsd2si %src, %dst
            // cmp 0, %dst
            // jnl done
            // -- non-saturating: ud2 trap IntegerOverflow
            // -- saturating: xor %dst, %dst; j done
            //
            // is_large:
            // mov %src, %tmp_xmm2
            // subss/subsd %tmp_xmm, %tmp_xmm2
            // cvttss2si/cvttss2sd %tmp_x, %dst
            // cmp 0, %dst
            // jnl next_is_large
            // -- non-saturating: ud2 trap IntegerOverflow
            // -- saturating: movaps $UINT_MAX, %dst; j done
            //
            // next_is_large:
            // add 2**(int_width -1), %dst ;; 2 instructions for 64-bits integers
            //
            // done:

            assert_ne!(tmp_xmm, src, "tmp_xmm clobbers src!");

            let (sub_op, cast_op, cmp_op, trunc_op) = match src_size {
                OperandSize::Size32 => (
                    SseOpcode::Subss,
                    SseOpcode::Movd,
                    SseOpcode::Ucomiss,
                    SseOpcode::Cvttss2si,
                ),
                OperandSize::Size64 => (
                    SseOpcode::Subsd,
                    SseOpcode::Movq,
                    SseOpcode::Ucomisd,
                    SseOpcode::Cvttsd2si,
                ),
                _ => unreachable!(),
            };

            let done = sink.get_label();

            let cst = match src_size {
                OperandSize::Size32 => Ieee32::pow2(dst_size.to_bits() - 1).bits() as u64,
                OperandSize::Size64 => Ieee64::pow2(dst_size.to_bits() - 1).bits(),
                _ => unreachable!(),
            };

            let inst = Inst::imm(*src_size, cst, Writable::from_reg(tmp_gpr));
            inst.emit(&[], sink, info, state);

            let inst = Inst::gpr_to_xmm(
                cast_op,
                RegMem::reg(tmp_gpr),
                *src_size,
                Writable::from_reg(tmp_xmm),
            );
            inst.emit(&[], sink, info, state);

            let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(tmp_xmm), src);
            inst.emit(&[], sink, info, state);

            let handle_large = sink.get_label();
            one_way_jmp(sink, CC::NB, handle_large); // jump to handle_large if src >= large_threshold

            if *is_saturating {
                // If not NaN jump over this 0-return, otherwise return 0
                let not_nan = sink.get_label();
                one_way_jmp(sink, CC::NP, not_nan);
                let inst = Inst::alu_rmi_r(
                    *dst_size,
                    AluRmiROpcode::Xor,
                    RegMemImm::reg(dst),
                    Writable::from_reg(dst),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::jmp_known(done);
                inst.emit(&[], sink, info, state);
                sink.bind_label(not_nan);
            } else {
                // Trap.
                let inst = Inst::trap_if(CC::P, TrapCode::BadConversionToInteger);
                inst.emit(&[], sink, info, state);
            }

            // Actual truncation for small inputs: if the result is not positive, then we had an
            // overflow.

            let inst = Inst::xmm_to_gpr(trunc_op, src, Writable::from_reg(dst), *dst_size);
            inst.emit(&[], sink, info, state);

            let inst = Inst::cmp_rmi_r(*dst_size, RegMemImm::imm(0), dst);
            inst.emit(&[], sink, info, state);

            one_way_jmp(sink, CC::NL, done); // if dst >= 0, jump to done

            if *is_saturating {
                // The input was "small" (< 2**(width -1)), so the only way to get an integer
                // overflow is because the input was too small: saturate to the min value, i.e. 0.
                let inst = Inst::alu_rmi_r(
                    *dst_size,
                    AluRmiROpcode::Xor,
                    RegMemImm::reg(dst),
                    Writable::from_reg(dst),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::jmp_known(done);
                inst.emit(&[], sink, info, state);
            } else {
                // Trap.
                let inst = Inst::trap(TrapCode::IntegerOverflow);
                inst.emit(&[], sink, info, state);
            }

            // Now handle large inputs.

            sink.bind_label(handle_large);

            let inst = Inst::gen_move(Writable::from_reg(tmp_xmm2), src, types::F64);
            inst.emit(&[], sink, info, state);

            let inst = Inst::xmm_rm_r(sub_op, RegMem::reg(tmp_xmm), Writable::from_reg(tmp_xmm2));
            inst.emit(&[], sink, info, state);

            let inst = Inst::xmm_to_gpr(trunc_op, tmp_xmm2, Writable::from_reg(dst), *dst_size);
            inst.emit(&[], sink, info, state);

            let inst = Inst::cmp_rmi_r(*dst_size, RegMemImm::imm(0), dst);
            inst.emit(&[], sink, info, state);

            if *is_saturating {
                let next_is_large = sink.get_label();
                one_way_jmp(sink, CC::NL, next_is_large); // if dst >= 0, jump to next_is_large

                // The input was "large" (>= 2**(width -1)), so the only way to get an integer
                // overflow is because the input was too large: saturate to the max value.
                let inst = Inst::imm(
                    OperandSize::Size64,
                    if *dst_size == OperandSize::Size64 {
                        u64::max_value()
                    } else {
                        u32::max_value() as u64
                    },
                    Writable::from_reg(dst),
                );
                inst.emit(&[], sink, info, state);

                let inst = Inst::jmp_known(done);
                inst.emit(&[], sink, info, state);
                sink.bind_label(next_is_large);
            } else {
                let inst = Inst::trap_if(CC::L, TrapCode::IntegerOverflow);
                inst.emit(&[], sink, info, state);
            }

            if *dst_size == OperandSize::Size64 {
                let inst = Inst::imm(OperandSize::Size64, 1 << 63, Writable::from_reg(tmp_gpr));
                inst.emit(&[], sink, info, state);

                let inst = Inst::alu_rmi_r(
                    OperandSize::Size64,
                    AluRmiROpcode::Add,
                    RegMemImm::reg(tmp_gpr),
                    Writable::from_reg(dst),
                );
                inst.emit(&[], sink, info, state);
            } else {
                let inst = Inst::alu_rmi_r(
                    OperandSize::Size32,
                    AluRmiROpcode::Add,
                    RegMemImm::imm(1 << 31),
                    Writable::from_reg(dst),
                );
                inst.emit(&[], sink, info, state);
            }

            sink.bind_label(done);
        }

        Inst::LoadExtName { dst, name, offset } => {
            let dst = allocs.next(dst.to_reg());

            if info.flags.is_pic() {
                // Generates: movq symbol@GOTPCREL(%rip), %dst
                let enc_dst = int_reg_enc(dst);
                sink.put1(0x48 | ((enc_dst >> 3) & 1) << 2);
                sink.put1(0x8B);
                sink.put1(0x05 | ((enc_dst & 7) << 3));
                emit_reloc(sink, Reloc::X86GOTPCRel4, name, -4);
                sink.put4(0);
                // Offset in the relocation above applies to the address of the *GOT entry*, not
                // the loaded address; so we emit a separate add or sub instruction if needed.
                if *offset < 0 {
                    assert!(*offset >= -i32::MAX as i64);
                    sink.put1(0x48 | ((enc_dst >> 3) & 1));
                    sink.put1(0x81);
                    sink.put1(0xe8 | (enc_dst & 7));
                    sink.put4((-*offset) as u32);
                } else if *offset > 0 {
                    assert!(*offset <= i32::MAX as i64);
                    sink.put1(0x48 | ((enc_dst >> 3) & 1));
                    sink.put1(0x81);
                    sink.put1(0xc0 | (enc_dst & 7));
                    sink.put4(*offset as u32);
                }
            } else {
                // The full address can be encoded in the register, with a relocation.
                // Generates: movabsq $name, %dst
                let enc_dst = int_reg_enc(dst);
                sink.put1(0x48 | ((enc_dst >> 3) & 1));
                sink.put1(0xB8 | (enc_dst & 7));
                emit_reloc(sink, Reloc::Abs8, name, *offset);
                sink.put8(0);
            }
        }

        Inst::LockCmpxchg {
            ty,
            replacement,
            expected,
            mem,
            dst_old,
        } => {
            let replacement = allocs.next(*replacement);
            let expected = allocs.next(*expected);
            let dst_old = allocs.next(dst_old.to_reg());
            let mem = mem.with_allocs(allocs);

            debug_assert_eq!(expected, regs::rax());
            debug_assert_eq!(dst_old, regs::rax());

            // lock cmpxchg{b,w,l,q} %replacement, (mem)
            // Note that 0xF0 is the Lock prefix.
            let (prefix, opcodes) = match *ty {
                types::I8 => (LegacyPrefixes::_F0, 0x0FB0),
                types::I16 => (LegacyPrefixes::_66F0, 0x0FB1),
                types::I32 => (LegacyPrefixes::_F0, 0x0FB1),
                types::I64 => (LegacyPrefixes::_F0, 0x0FB1),
                _ => unreachable!(),
            };
            let rex = RexFlags::from((OperandSize::from_ty(*ty), replacement));
            let amode = mem.finalize(state, sink);
            emit_std_reg_mem(sink, prefix, opcodes, 2, replacement, &amode, rex, 0);
        }

        Inst::AtomicRmwSeq {
            ty,
            op,
            mem,
            operand,
            temp,
            dst_old,
        } => {
            let operand = allocs.next(*operand);
            let temp = allocs.next_writable(*temp);
            let dst_old = allocs.next_writable(*dst_old);
            debug_assert_eq!(dst_old.to_reg(), regs::rax());
            let mem = mem.finalize(state, sink).with_allocs(allocs);

            // Emit this:
            //    mov{zbq,zwq,zlq,q}     (%r_address), %rax    // rax = old value
            //  again:
            //    movq                   %rax, %r_temp         // rax = old value, r_temp = old value
            //    `op`q                  %r_operand, %r_temp   // rax = old value, r_temp = new value
            //    lock cmpxchg{b,w,l,q}  %r_temp, (%r_address) // try to store new value
            //    jnz again // If this is taken, rax will have a "revised" old value
            //
            // Operand conventions: IN:  %r_address, %r_operand OUT: %rax (old
            //    value), %r_temp (trashed), %rflags (trashed)
            //
            // In the case where the operation is 'xchg', the "`op`q"
            // instruction is instead: movq                    %r_operand,
            //   %r_temp so that we simply write in the destination, the "2nd
            // arg for `op`".
            //
            // TODO: this sequence can be significantly improved (e.g., to `lock
            // <op>`) when it is known that `dst_old` is not used later, see
            // https://github.com/bytecodealliance/wasmtime/issues/2153.
            let again_label = sink.get_label();

            // mov{zbq,zwq,zlq,q} (%r_address), %rax
            // No need to call `add_trap` here, since the `i1` emit will do that.
            let i1 = Inst::load(*ty, mem.clone(), dst_old, ExtKind::ZeroExtend);
            i1.emit(&[], sink, info, state);

            // again:
            sink.bind_label(again_label);

            // movq %rax, %r_temp
            let i2 = Inst::mov_r_r(OperandSize::Size64, dst_old.to_reg(), temp);
            i2.emit(&[], sink, info, state);

            let operand_rmi = RegMemImm::reg(operand);
            use inst_common::MachAtomicRmwOp as RmwOp;
            match op {
                RmwOp::Xchg => {
                    // movq %r_operand, %r_temp
                    let i3 = Inst::mov_r_r(OperandSize::Size64, operand, temp);
                    i3.emit(&[], sink, info, state);
                }
                RmwOp::Nand => {
                    // andq %r_operand, %r_temp
                    let i3 =
                        Inst::alu_rmi_r(OperandSize::Size64, AluRmiROpcode::And, operand_rmi, temp);
                    i3.emit(&[], sink, info, state);

                    // notq %r_temp
                    let i4 = Inst::not(OperandSize::Size64, temp);
                    i4.emit(&[], sink, info, state);
                }
                RmwOp::Umin | RmwOp::Umax | RmwOp::Smin | RmwOp::Smax => {
                    // cmp %r_temp, %r_operand
                    let i3 = Inst::cmp_rmi_r(
                        OperandSize::from_ty(*ty),
                        RegMemImm::reg(temp.to_reg()),
                        operand,
                    );
                    i3.emit(&[], sink, info, state);

                    // cmovcc %r_operand, %r_temp
                    let cc = match op {
                        RmwOp::Umin => CC::BE,
                        RmwOp::Umax => CC::NB,
                        RmwOp::Smin => CC::LE,
                        RmwOp::Smax => CC::NL,
                        _ => unreachable!(),
                    };
                    let i4 = Inst::cmove(OperandSize::Size64, cc, RegMem::reg(operand), temp);
                    i4.emit(&[], sink, info, state);
                }
                _ => {
                    // opq %r_operand, %r_temp
                    let alu_op = match op {
                        RmwOp::Add => AluRmiROpcode::Add,
                        RmwOp::Sub => AluRmiROpcode::Sub,
                        RmwOp::And => AluRmiROpcode::And,
                        RmwOp::Or => AluRmiROpcode::Or,
                        RmwOp::Xor => AluRmiROpcode::Xor,
                        RmwOp::Xchg
                        | RmwOp::Nand
                        | RmwOp::Umin
                        | RmwOp::Umax
                        | RmwOp::Smin
                        | RmwOp::Smax => unreachable!(),
                    };
                    let i3 = Inst::alu_rmi_r(OperandSize::Size64, alu_op, operand_rmi, temp);
                    i3.emit(&[], sink, info, state);
                }
            }

            // lock cmpxchg{b,w,l,q} %r_temp, (%r_address)
            // No need to call `add_trap` here, since the `i4` emit will do that.
            let i4 = Inst::LockCmpxchg {
                ty: *ty,
                replacement: temp.to_reg(),
                expected: dst_old.to_reg(),
                mem: mem.into(),
                dst_old,
            };
            i4.emit(&[], sink, info, state);

            // jnz again
            one_way_jmp(sink, CC::NZ, again_label);
        }

        Inst::Fence { kind } => {
            sink.put1(0x0F);
            sink.put1(0xAE);
            match kind {
                FenceKind::MFence => sink.put1(0xF0), // mfence = 0F AE F0
                FenceKind::LFence => sink.put1(0xE8), // lfence = 0F AE E8
                FenceKind::SFence => sink.put1(0xF8), // sfence = 0F AE F8
            }
        }

        Inst::Hlt => {
            sink.put1(0xcc);
        }

        Inst::Ud2 { trap_code } => {
            sink.add_trap(*trap_code);
            if let Some(s) = state.take_stack_map() {
                sink.add_stack_map(StackMapExtent::UpcomingBytes(2), s);
            }
            sink.put_data(Inst::TRAP_OPCODE);
        }

        Inst::VirtualSPOffsetAdj { offset } => {
            trace!(
                "virtual sp offset adjusted by {} -> {}",
                offset,
                state.virtual_sp_offset + offset
            );
            state.virtual_sp_offset += offset;
        }

        Inst::Nop { len } => {
            // These encodings can all be found in Intel's architecture manual, at the NOP
            // instruction description.
            let mut len = *len;
            while len != 0 {
                let emitted = u8::min(len, 9);
                match emitted {
                    0 => {}
                    1 => sink.put1(0x90), // NOP
                    2 => {
                        // 66 NOP
                        sink.put1(0x66);
                        sink.put1(0x90);
                    }
                    3 => {
                        // NOP [EAX]
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x00);
                    }
                    4 => {
                        // NOP 0(EAX), with 0 a 1-byte immediate.
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x40);
                        sink.put1(0x00);
                    }
                    5 => {
                        // NOP [EAX, EAX, 1]
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x44);
                        sink.put1(0x00);
                        sink.put1(0x00);
                    }
                    6 => {
                        // 66 NOP [EAX, EAX, 1]
                        sink.put1(0x66);
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x44);
                        sink.put1(0x00);
                        sink.put1(0x00);
                    }
                    7 => {
                        // NOP 0[EAX], but 0 is a 4 bytes immediate.
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x80);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                    }
                    8 => {
                        // NOP 0[EAX, EAX, 1], with 0 a 4 bytes immediate.
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x84);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                    }
                    9 => {
                        // 66 NOP 0[EAX, EAX, 1], with 0 a 4 bytes immediate.
                        sink.put1(0x66);
                        sink.put1(0x0F);
                        sink.put1(0x1F);
                        sink.put1(0x84);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                        sink.put1(0x00);
                    }
                    _ => unreachable!(),
                }
                len -= emitted;
            }
        }

        Inst::ElfTlsGetAddr { ref symbol, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(dst, regs::rax());

            // N.B.: Must be exactly this byte sequence; the linker requires it,
            // because it must know how to rewrite the bytes.

            // data16 lea gv@tlsgd(%rip),%rdi
            sink.put1(0x66); // data16
            sink.put1(0b01001000); // REX.W
            sink.put1(0x8d); // LEA
            sink.put1(0x3d); // ModRM byte
            emit_reloc(sink, Reloc::ElfX86_64TlsGd, symbol, -4);
            sink.put4(0); // offset

            // data16 data16 callq __tls_get_addr-4
            sink.put1(0x66); // data16
            sink.put1(0x66); // data16
            sink.put1(0b01001000); // REX.W
            sink.put1(0xe8); // CALL
            emit_reloc(
                sink,
                Reloc::X86CallPLTRel4,
                &ExternalName::LibCall(LibCall::ElfTlsGetAddr),
                -4,
            );
            sink.put4(0); // offset
        }

        Inst::MachOTlsGetAddr { ref symbol, dst } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(dst, regs::rax());

            // movq gv@tlv(%rip), %rdi
            sink.put1(0x48); // REX.w
            sink.put1(0x8b); // MOV
            sink.put1(0x3d); // ModRM byte
            emit_reloc(sink, Reloc::MachOX86_64Tlv, symbol, -4);
            sink.put4(0); // offset

            // callq *(%rdi)
            sink.put1(0xff);
            sink.put1(0x17);
        }

        Inst::CoffTlsGetAddr {
            ref symbol,
            dst,
            tmp,
        } => {
            let dst = allocs.next(dst.to_reg().to_reg());
            debug_assert_eq!(dst, regs::rax());

            // tmp is used below directly as %rcx
            let tmp = allocs.next(tmp.to_reg().to_reg());
            debug_assert_eq!(tmp, regs::rcx());

            // See: https://gcc.godbolt.org/z/M8or9x6ss
            // And: https://github.com/bjorn3/rustc_codegen_cranelift/issues/388#issuecomment-532930282

            // Emit the following sequence
            // movl	(%rip), %eax          ; IMAGE_REL_AMD64_REL32	_tls_index
            // movq	%gs:88, %rcx
            // movq	(%rcx,%rax,8), %rax
            // leaq	(%rax), %rax          ; Reloc: IMAGE_REL_AMD64_SECREL	symbol

            // Load TLS index for current thread
            // movl	(%rip), %eax
            sink.put1(0x8b); // mov
            sink.put1(0x05);
            emit_reloc(
                sink,
                Reloc::X86PCRel4,
                &ExternalName::KnownSymbol(KnownSymbol::CoffTlsIndex),
                -4,
            );
            sink.put4(0); // offset

            // movq	%gs:88, %rcx
            // Load the TLS Storage Array pointer
            // The gs segment register refers to the base address of the TEB on x64.
            // 0x58 is the offset in the TEB for the ThreadLocalStoragePointer member on x64:
            sink.put_data(&[
                0x65, 0x48, // REX.W
                0x8b, // MOV
                0x0c, 0x25, 0x58, // 0x58 - ThreadLocalStoragePointer offset
                0x00, 0x00, 0x00,
            ]);

            // movq	(%rcx,%rax,8), %rax
            // Load the actual TLS entry for this thread.
            // Computes ThreadLocalStoragePointer + _tls_index*8
            sink.put_data(&[0x48, 0x8b, 0x04, 0xc1]);

            // leaq	(%rax), %rax
            sink.put1(0x48);
            sink.put1(0x8d);
            sink.put1(0x80);
            emit_reloc(sink, Reloc::X86SecRel, symbol, 0);
            sink.put4(0); // offset
        }

        Inst::Unwind { ref inst } => {
            sink.add_unwind(inst.clone());
        }

        Inst::DummyUse { .. } => {
            // Nothing.
        }
    }

    state.clear_post_insn();
}