1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! Field arithmetic modulo \\(p = 2\^{255} - 19\\), using \\(64\\)-bit
//! limbs with \\(128\\)-bit products.
use core::fmt::Debug;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Sub, SubAssign};
use subtle::Choice;
use subtle::ConditionallySelectable;
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
/// A `FieldElement51` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// In the 64-bit implementation, a `FieldElement` is represented in
/// radix \\(2\^{51}\\) as five `u64`s; the coefficients are allowed to
/// grow up to \\(2\^{54}\\) between reductions modulo \\(p\\).
///
/// # Note
///
/// The `curve25519_dalek::field` module provides a type alias
/// `curve25519_dalek::field::FieldElement` to either `FieldElement51`
/// or `FieldElement2625`.
///
/// The backend-specific type `FieldElement51` should not be used
/// outside of the `curve25519_dalek::field` module.
#[derive(Copy, Clone)]
pub struct FieldElement51(pub(crate) [u64; 5]);
impl Debug for FieldElement51 {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "FieldElement51({:?})", &self.0[..])
}
}
#[cfg(feature = "zeroize")]
impl Zeroize for FieldElement51 {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
impl<'b> AddAssign<&'b FieldElement51> for FieldElement51 {
fn add_assign(&mut self, _rhs: &'b FieldElement51) {
for i in 0..5 {
self.0[i] += _rhs.0[i];
}
}
}
impl<'a, 'b> Add<&'b FieldElement51> for &'a FieldElement51 {
type Output = FieldElement51;
fn add(self, _rhs: &'b FieldElement51) -> FieldElement51 {
let mut output = *self;
output += _rhs;
output
}
}
impl<'b> SubAssign<&'b FieldElement51> for FieldElement51 {
fn sub_assign(&mut self, _rhs: &'b FieldElement51) {
let result = (self as &FieldElement51) - _rhs;
self.0 = result.0;
}
}
impl<'a, 'b> Sub<&'b FieldElement51> for &'a FieldElement51 {
type Output = FieldElement51;
fn sub(self, _rhs: &'b FieldElement51) -> FieldElement51 {
// To avoid underflow, first add a multiple of p.
// Choose 16*p = p << 4 to be larger than 54-bit _rhs.
//
// If we could statically track the bitlengths of the limbs
// of every FieldElement51, we could choose a multiple of p
// just bigger than _rhs and avoid having to do a reduction.
//
// Since we don't yet have type-level integers to do this, we
// have to add an explicit reduction call here.
FieldElement51::reduce([
(self.0[0] + 36028797018963664u64) - _rhs.0[0],
(self.0[1] + 36028797018963952u64) - _rhs.0[1],
(self.0[2] + 36028797018963952u64) - _rhs.0[2],
(self.0[3] + 36028797018963952u64) - _rhs.0[3],
(self.0[4] + 36028797018963952u64) - _rhs.0[4],
])
}
}
impl<'b> MulAssign<&'b FieldElement51> for FieldElement51 {
fn mul_assign(&mut self, _rhs: &'b FieldElement51) {
let result = (self as &FieldElement51) * _rhs;
self.0 = result.0;
}
}
impl<'a, 'b> Mul<&'b FieldElement51> for &'a FieldElement51 {
type Output = FieldElement51;
#[rustfmt::skip] // keep alignment of c* calculations
fn mul(self, _rhs: &'b FieldElement51) -> FieldElement51 {
/// Helper function to multiply two 64-bit integers with 128
/// bits of output.
#[inline(always)]
fn m(x: u64, y: u64) -> u128 { (x as u128) * (y as u128) }
// Alias self, _rhs for more readable formulas
let a: &[u64; 5] = &self.0;
let b: &[u64; 5] = &_rhs.0;
// Precondition: assume input limbs a[i], b[i] are bounded as
//
// a[i], b[i] < 2^(51 + b)
//
// where b is a real parameter measuring the "bit excess" of the limbs.
// 64-bit precomputations to avoid 128-bit multiplications.
//
// This fits into a u64 whenever 51 + b + lg(19) < 64.
//
// Since 51 + b + lg(19) < 51 + 4.25 + b
// = 55.25 + b,
// this fits if b < 8.75.
let b1_19 = b[1] * 19;
let b2_19 = b[2] * 19;
let b3_19 = b[3] * 19;
let b4_19 = b[4] * 19;
// Multiply to get 128-bit coefficients of output
let c0: u128 = m(a[0], b[0]) + m(a[4], b1_19) + m(a[3], b2_19) + m(a[2], b3_19) + m(a[1], b4_19);
let mut c1: u128 = m(a[1], b[0]) + m(a[0], b[1]) + m(a[4], b2_19) + m(a[3], b3_19) + m(a[2], b4_19);
let mut c2: u128 = m(a[2], b[0]) + m(a[1], b[1]) + m(a[0], b[2]) + m(a[4], b3_19) + m(a[3], b4_19);
let mut c3: u128 = m(a[3], b[0]) + m(a[2], b[1]) + m(a[1], b[2]) + m(a[0], b[3]) + m(a[4], b4_19);
let mut c4: u128 = m(a[4], b[0]) + m(a[3], b[1]) + m(a[2], b[2]) + m(a[1], b[3]) + m(a[0] , b[4]);
// How big are the c[i]? We have
//
// c[i] < 2^(102 + 2*b) * (1+i + (4-i)*19)
// < 2^(102 + lg(1 + 4*19) + 2*b)
// < 2^(108.27 + 2*b)
//
// The carry (c[i] >> 51) fits into a u64 when
// 108.27 + 2*b - 51 < 64
// 2*b < 6.73
// b < 3.365.
//
// So we require b < 3 to ensure this fits.
debug_assert!(a[0] < (1 << 54)); debug_assert!(b[0] < (1 << 54));
debug_assert!(a[1] < (1 << 54)); debug_assert!(b[1] < (1 << 54));
debug_assert!(a[2] < (1 << 54)); debug_assert!(b[2] < (1 << 54));
debug_assert!(a[3] < (1 << 54)); debug_assert!(b[3] < (1 << 54));
debug_assert!(a[4] < (1 << 54)); debug_assert!(b[4] < (1 << 54));
// Casting to u64 and back tells the compiler that the carry is
// bounded by 2^64, so that the addition is a u128 + u64 rather
// than u128 + u128.
const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;
let mut out = [0u64; 5];
c1 += ((c0 >> 51) as u64) as u128;
out[0] = (c0 as u64) & LOW_51_BIT_MASK;
c2 += ((c1 >> 51) as u64) as u128;
out[1] = (c1 as u64) & LOW_51_BIT_MASK;
c3 += ((c2 >> 51) as u64) as u128;
out[2] = (c2 as u64) & LOW_51_BIT_MASK;
c4 += ((c3 >> 51) as u64) as u128;
out[3] = (c3 as u64) & LOW_51_BIT_MASK;
let carry: u64 = (c4 >> 51) as u64;
out[4] = (c4 as u64) & LOW_51_BIT_MASK;
// To see that this does not overflow, we need out[0] + carry * 19 < 2^64.
//
// c4 < a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0 + (carry from c3)
// < 5*(2^(51 + b) * 2^(51 + b)) + (carry from c3)
// < 2^(102 + 2*b + lg(5)) + 2^64.
//
// When b < 3 we get
//
// c4 < 2^110.33 so that carry < 2^59.33
//
// so that
//
// out[0] + carry * 19 < 2^51 + 19 * 2^59.33 < 2^63.58
//
// and there is no overflow.
out[0] += carry * 19;
// Now out[1] < 2^51 + 2^(64 -51) = 2^51 + 2^13 < 2^(51 + epsilon).
out[1] += out[0] >> 51;
out[0] &= LOW_51_BIT_MASK;
// Now out[i] < 2^(51 + epsilon) for all i.
FieldElement51(out)
}
}
impl<'a> Neg for &'a FieldElement51 {
type Output = FieldElement51;
fn neg(self) -> FieldElement51 {
let mut output = *self;
output.negate();
output
}
}
impl ConditionallySelectable for FieldElement51 {
fn conditional_select(
a: &FieldElement51,
b: &FieldElement51,
choice: Choice,
) -> FieldElement51 {
FieldElement51([
u64::conditional_select(&a.0[0], &b.0[0], choice),
u64::conditional_select(&a.0[1], &b.0[1], choice),
u64::conditional_select(&a.0[2], &b.0[2], choice),
u64::conditional_select(&a.0[3], &b.0[3], choice),
u64::conditional_select(&a.0[4], &b.0[4], choice),
])
}
fn conditional_swap(a: &mut FieldElement51, b: &mut FieldElement51, choice: Choice) {
u64::conditional_swap(&mut a.0[0], &mut b.0[0], choice);
u64::conditional_swap(&mut a.0[1], &mut b.0[1], choice);
u64::conditional_swap(&mut a.0[2], &mut b.0[2], choice);
u64::conditional_swap(&mut a.0[3], &mut b.0[3], choice);
u64::conditional_swap(&mut a.0[4], &mut b.0[4], choice);
}
fn conditional_assign(&mut self, other: &FieldElement51, choice: Choice) {
self.0[0].conditional_assign(&other.0[0], choice);
self.0[1].conditional_assign(&other.0[1], choice);
self.0[2].conditional_assign(&other.0[2], choice);
self.0[3].conditional_assign(&other.0[3], choice);
self.0[4].conditional_assign(&other.0[4], choice);
}
}
impl FieldElement51 {
pub(crate) const fn from_limbs(limbs: [u64; 5]) -> FieldElement51 {
FieldElement51(limbs)
}
/// The scalar \\( 0 \\).
pub const ZERO: FieldElement51 = FieldElement51::from_limbs([0, 0, 0, 0, 0]);
/// The scalar \\( 1 \\).
pub const ONE: FieldElement51 = FieldElement51::from_limbs([1, 0, 0, 0, 0]);
/// The scalar \\( -1 \\).
pub const MINUS_ONE: FieldElement51 = FieldElement51::from_limbs([
2251799813685228,
2251799813685247,
2251799813685247,
2251799813685247,
2251799813685247,
]);
/// Invert the sign of this field element
pub fn negate(&mut self) {
// See commentary in the Sub impl
let neg = FieldElement51::reduce([
36028797018963664u64 - self.0[0],
36028797018963952u64 - self.0[1],
36028797018963952u64 - self.0[2],
36028797018963952u64 - self.0[3],
36028797018963952u64 - self.0[4],
]);
self.0 = neg.0;
}
/// Given 64-bit input limbs, reduce to enforce the bound 2^(51 + epsilon).
#[inline(always)]
fn reduce(mut limbs: [u64; 5]) -> FieldElement51 {
const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;
// Since the input limbs are bounded by 2^64, the biggest
// carry-out is bounded by 2^13.
//
// The biggest carry-in is c4 * 19, resulting in
//
// 2^51 + 19*2^13 < 2^51.0000000001
//
// Because we don't need to canonicalize, only to reduce the
// limb sizes, it's OK to do a "weak reduction", where we
// compute the carry-outs in parallel.
let c0 = limbs[0] >> 51;
let c1 = limbs[1] >> 51;
let c2 = limbs[2] >> 51;
let c3 = limbs[3] >> 51;
let c4 = limbs[4] >> 51;
limbs[0] &= LOW_51_BIT_MASK;
limbs[1] &= LOW_51_BIT_MASK;
limbs[2] &= LOW_51_BIT_MASK;
limbs[3] &= LOW_51_BIT_MASK;
limbs[4] &= LOW_51_BIT_MASK;
limbs[0] += c4 * 19;
limbs[1] += c0;
limbs[2] += c1;
limbs[3] += c2;
limbs[4] += c3;
FieldElement51(limbs)
}
/// Load a `FieldElement51` from the low 255 bits of a 256-bit
/// input.
///
/// # Warning
///
/// This function does not check that the input used the canonical
/// representative. It masks the high bit, but it will happily
/// decode 2^255 - 18 to 1. Applications that require a canonical
/// encoding of every field element should decode, re-encode to
/// the canonical encoding, and check that the input was
/// canonical.
///
#[rustfmt::skip] // keep alignment of bit shifts
pub fn from_bytes(bytes: &[u8; 32]) -> FieldElement51 {
let load8 = |input: &[u8]| -> u64 {
(input[0] as u64)
| ((input[1] as u64) << 8)
| ((input[2] as u64) << 16)
| ((input[3] as u64) << 24)
| ((input[4] as u64) << 32)
| ((input[5] as u64) << 40)
| ((input[6] as u64) << 48)
| ((input[7] as u64) << 56)
};
let low_51_bit_mask = (1u64 << 51) - 1;
FieldElement51(
// load bits [ 0, 64), no shift
[ load8(&bytes[ 0..]) & low_51_bit_mask
// load bits [ 48,112), shift to [ 51,112)
, (load8(&bytes[ 6..]) >> 3) & low_51_bit_mask
// load bits [ 96,160), shift to [102,160)
, (load8(&bytes[12..]) >> 6) & low_51_bit_mask
// load bits [152,216), shift to [153,216)
, (load8(&bytes[19..]) >> 1) & low_51_bit_mask
// load bits [192,256), shift to [204,112)
, (load8(&bytes[24..]) >> 12) & low_51_bit_mask
])
}
/// Serialize this `FieldElement51` to a 32-byte array. The
/// encoding is canonical.
#[rustfmt::skip] // keep alignment of s[*] calculations
pub fn as_bytes(&self) -> [u8; 32] {
// Let h = limbs[0] + limbs[1]*2^51 + ... + limbs[4]*2^204.
//
// Write h = pq + r with 0 <= r < p.
//
// We want to compute r = h mod p.
//
// If h < 2*p = 2^256 - 38,
// then q = 0 or 1,
//
// with q = 0 when h < p
// and q = 1 when h >= p.
//
// Notice that h >= p <==> h + 19 >= p + 19 <==> h + 19 >= 2^255.
// Therefore q can be computed as the carry bit of h + 19.
// First, reduce the limbs to ensure h < 2*p.
let mut limbs = FieldElement51::reduce(self.0).0;
let mut q = (limbs[0] + 19) >> 51;
q = (limbs[1] + q) >> 51;
q = (limbs[2] + q) >> 51;
q = (limbs[3] + q) >> 51;
q = (limbs[4] + q) >> 51;
// Now we can compute r as r = h - pq = r - (2^255-19)q = r + 19q - 2^255q
limbs[0] += 19 * q;
// Now carry the result to compute r + 19q ...
let low_51_bit_mask = (1u64 << 51) - 1;
limbs[1] += limbs[0] >> 51;
limbs[0] &= low_51_bit_mask;
limbs[2] += limbs[1] >> 51;
limbs[1] &= low_51_bit_mask;
limbs[3] += limbs[2] >> 51;
limbs[2] &= low_51_bit_mask;
limbs[4] += limbs[3] >> 51;
limbs[3] &= low_51_bit_mask;
// ... but instead of carrying (limbs[4] >> 51) = 2^255q
// into another limb, discard it, subtracting the value
limbs[4] &= low_51_bit_mask;
// Now arrange the bits of the limbs.
let mut s = [0u8;32];
s[ 0] = limbs[0] as u8;
s[ 1] = (limbs[0] >> 8) as u8;
s[ 2] = (limbs[0] >> 16) as u8;
s[ 3] = (limbs[0] >> 24) as u8;
s[ 4] = (limbs[0] >> 32) as u8;
s[ 5] = (limbs[0] >> 40) as u8;
s[ 6] = ((limbs[0] >> 48) | (limbs[1] << 3)) as u8;
s[ 7] = (limbs[1] >> 5) as u8;
s[ 8] = (limbs[1] >> 13) as u8;
s[ 9] = (limbs[1] >> 21) as u8;
s[10] = (limbs[1] >> 29) as u8;
s[11] = (limbs[1] >> 37) as u8;
s[12] = ((limbs[1] >> 45) | (limbs[2] << 6)) as u8;
s[13] = (limbs[2] >> 2) as u8;
s[14] = (limbs[2] >> 10) as u8;
s[15] = (limbs[2] >> 18) as u8;
s[16] = (limbs[2] >> 26) as u8;
s[17] = (limbs[2] >> 34) as u8;
s[18] = (limbs[2] >> 42) as u8;
s[19] = ((limbs[2] >> 50) | (limbs[3] << 1)) as u8;
s[20] = (limbs[3] >> 7) as u8;
s[21] = (limbs[3] >> 15) as u8;
s[22] = (limbs[3] >> 23) as u8;
s[23] = (limbs[3] >> 31) as u8;
s[24] = (limbs[3] >> 39) as u8;
s[25] = ((limbs[3] >> 47) | (limbs[4] << 4)) as u8;
s[26] = (limbs[4] >> 4) as u8;
s[27] = (limbs[4] >> 12) as u8;
s[28] = (limbs[4] >> 20) as u8;
s[29] = (limbs[4] >> 28) as u8;
s[30] = (limbs[4] >> 36) as u8;
s[31] = (limbs[4] >> 44) as u8;
// High bit should be zero.
debug_assert!((s[31] & 0b1000_0000u8) == 0u8);
s
}
/// Given `k > 0`, return `self^(2^k)`.
#[rustfmt::skip] // keep alignment of c* calculations
pub fn pow2k(&self, mut k: u32) -> FieldElement51 {
debug_assert!( k > 0 );
/// Multiply two 64-bit integers with 128 bits of output.
#[inline(always)]
fn m(x: u64, y: u64) -> u128 {
(x as u128) * (y as u128)
}
let mut a: [u64; 5] = self.0;
loop {
// Precondition: assume input limbs a[i] are bounded as
//
// a[i] < 2^(51 + b)
//
// where b is a real parameter measuring the "bit excess" of the limbs.
// Precomputation: 64-bit multiply by 19.
//
// This fits into a u64 whenever 51 + b + lg(19) < 64.
//
// Since 51 + b + lg(19) < 51 + 4.25 + b
// = 55.25 + b,
// this fits if b < 8.75.
let a3_19 = 19 * a[3];
let a4_19 = 19 * a[4];
// Multiply to get 128-bit coefficients of output.
//
// The 128-bit multiplications by 2 turn into 1 slr + 1 slrd each,
// which doesn't seem any better or worse than doing them as precomputations
// on the 64-bit inputs.
let c0: u128 = m(a[0], a[0]) + 2*( m(a[1], a4_19) + m(a[2], a3_19) );
let mut c1: u128 = m(a[3], a3_19) + 2*( m(a[0], a[1]) + m(a[2], a4_19) );
let mut c2: u128 = m(a[1], a[1]) + 2*( m(a[0], a[2]) + m(a[4], a3_19) );
let mut c3: u128 = m(a[4], a4_19) + 2*( m(a[0], a[3]) + m(a[1], a[2]) );
let mut c4: u128 = m(a[2], a[2]) + 2*( m(a[0], a[4]) + m(a[1], a[3]) );
// Same bound as in multiply:
// c[i] < 2^(102 + 2*b) * (1+i + (4-i)*19)
// < 2^(102 + lg(1 + 4*19) + 2*b)
// < 2^(108.27 + 2*b)
//
// The carry (c[i] >> 51) fits into a u64 when
// 108.27 + 2*b - 51 < 64
// 2*b < 6.73
// b < 3.365.
//
// So we require b < 3 to ensure this fits.
debug_assert!(a[0] < (1 << 54));
debug_assert!(a[1] < (1 << 54));
debug_assert!(a[2] < (1 << 54));
debug_assert!(a[3] < (1 << 54));
debug_assert!(a[4] < (1 << 54));
const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;
// Casting to u64 and back tells the compiler that the carry is bounded by 2^64, so
// that the addition is a u128 + u64 rather than u128 + u128.
c1 += ((c0 >> 51) as u64) as u128;
a[0] = (c0 as u64) & LOW_51_BIT_MASK;
c2 += ((c1 >> 51) as u64) as u128;
a[1] = (c1 as u64) & LOW_51_BIT_MASK;
c3 += ((c2 >> 51) as u64) as u128;
a[2] = (c2 as u64) & LOW_51_BIT_MASK;
c4 += ((c3 >> 51) as u64) as u128;
a[3] = (c3 as u64) & LOW_51_BIT_MASK;
let carry: u64 = (c4 >> 51) as u64;
a[4] = (c4 as u64) & LOW_51_BIT_MASK;
// To see that this does not overflow, we need a[0] + carry * 19 < 2^64.
//
// c4 < a2^2 + 2*a0*a4 + 2*a1*a3 + (carry from c3)
// < 2^(102 + 2*b + lg(5)) + 2^64.
//
// When b < 3 we get
//
// c4 < 2^110.33 so that carry < 2^59.33
//
// so that
//
// a[0] + carry * 19 < 2^51 + 19 * 2^59.33 < 2^63.58
//
// and there is no overflow.
a[0] += carry * 19;
// Now a[1] < 2^51 + 2^(64 -51) = 2^51 + 2^13 < 2^(51 + epsilon).
a[1] += a[0] >> 51;
a[0] &= LOW_51_BIT_MASK;
// Now all a[i] < 2^(51 + epsilon) and a = self^(2^k).
k -= 1;
if k == 0 {
break;
}
}
FieldElement51(a)
}
/// Returns the square of this field element.
pub fn square(&self) -> FieldElement51 {
self.pow2k(1)
}
/// Returns 2 times the square of this field element.
pub fn square2(&self) -> FieldElement51 {
let mut square = self.pow2k(1);
for i in 0..5 {
square.0[i] *= 2;
}
square
}
}