1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Provides functionality for verifying proofs.

use alloc::vec::Vec;
use codec::{Decode, Encode};
use sp_core::Hasher;
use sp_runtime::DispatchError;

// Re-export the `proving_trie` types and traits.
pub use sp_runtime::proving_trie::*;

/// Something that can verify the existence of some data in a given proof.
pub trait VerifyExistenceProof {
	/// The proof type.
	type Proof;
	/// The hash type.
	type Hash;

	/// Verify the given `proof`.
	///
	/// Ensures that the `proof` was build for `root` and returns the proved data.
	fn verify_proof(proof: Self::Proof, root: &Self::Hash) -> Result<Vec<u8>, DispatchError>;
}

/// Implements [`VerifyExistenceProof`] using a binary merkle tree.
pub struct BinaryMerkleTreeProver<H>(core::marker::PhantomData<H>);

impl<H: Hasher> VerifyExistenceProof for BinaryMerkleTreeProver<H>
where
	H::Out: Decode + Encode,
{
	type Proof = binary_merkle_tree::MerkleProof<H::Out, Vec<u8>>;
	type Hash = H::Out;

	fn verify_proof(proof: Self::Proof, root: &Self::Hash) -> Result<Vec<u8>, DispatchError> {
		if proof.root != *root {
			return Err(TrieError::RootMismatch.into());
		}

		if binary_merkle_tree::verify_proof::<H, _, _>(
			&proof.root,
			proof.proof,
			proof.number_of_leaves,
			proof.leaf_index,
			&proof.leaf,
		) {
			Ok(proof.leaf)
		} else {
			Err(TrieError::IncompleteProof.into())
		}
	}
}

impl<H: Hasher> ProofToHashes for BinaryMerkleTreeProver<H> {
	type Proof = binary_merkle_tree::MerkleProof<H::Out, Vec<u8>>;

	// This base 2 merkle trie includes a `proof` field which is a `Vec<Hash>`.
	// The length of this vector tells us the depth of the proof, and how many
	// hashes we need to calculate.
	fn proof_to_hashes(proof: &Self::Proof) -> Result<u32, DispatchError> {
		let depth = proof.proof.len();
		Ok(depth as u32)
	}
}

/// Proof used by [`SixteenPatriciaMerkleTreeProver`] for [`VerifyExistenceProof`].
#[derive(Encode, Decode, Clone)]
pub struct SixteenPatriciaMerkleTreeExistenceProof {
	/// The key of the value to prove.
	pub key: Vec<u8>,
	/// The value for that the existence is proved.
	pub value: Vec<u8>,
	/// The encoded nodes to prove the existence of the data under `key`.
	pub proof: Vec<Vec<u8>>,
}

/// Implements [`VerifyExistenceProof`] using a 16-patricia merkle tree.
pub struct SixteenPatriciaMerkleTreeProver<H>(core::marker::PhantomData<H>);

impl<H: Hasher> VerifyExistenceProof for SixteenPatriciaMerkleTreeProver<H> {
	type Proof = SixteenPatriciaMerkleTreeExistenceProof;
	type Hash = H::Out;

	fn verify_proof(proof: Self::Proof, root: &Self::Hash) -> Result<Vec<u8>, DispatchError> {
		sp_trie::verify_trie_proof::<sp_trie::LayoutV1<H>, _, _, _>(
			&root,
			&proof.proof,
			[&(&proof.key, Some(&proof.value))],
		)
		.map_err(|err| TrieError::from(err).into())
		.map(|_| proof.value)
	}
}

impl<H: Hasher> ProofToHashes for SixteenPatriciaMerkleTreeProver<H> {
	type Proof = SixteenPatriciaMerkleTreeExistenceProof;

	// This base 16 trie uses a raw proof of `Vec<Vec<u8>`, where the length of the first `Vec`
	// is the depth of the trie. We can use this to predict the number of hashes.
	fn proof_to_hashes(proof: &Self::Proof) -> Result<u32, DispatchError> {
		let depth = proof.proof.len();
		Ok(depth as u32)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_runtime::{
		proving_trie::{base16::BasicProvingTrie, ProvingTrie},
		traits::BlakeTwo256,
	};

	#[test]
	fn verify_binary_merkle_tree_prover_works() {
		let proof = binary_merkle_tree::merkle_proof::<BlakeTwo256, _, _>(
			vec![b"hey".encode(), b"yes".encode()],
			1,
		);
		let root = proof.root;

		assert_eq!(
			BinaryMerkleTreeProver::<BlakeTwo256>::verify_proof(proof, &root).unwrap(),
			b"yes".encode()
		);
	}

	#[test]
	fn verify_sixteen_patricia_merkle_tree_prover_works() {
		let trie = BasicProvingTrie::<BlakeTwo256, u32, _>::generate_for(vec![
			(0u32, String::from("hey")),
			(1u32, String::from("yes")),
		])
		.unwrap();
		let proof = trie.create_proof(&1u32).unwrap();
		let structured_proof: Vec<Vec<u8>> = Decode::decode(&mut &proof[..]).unwrap();
		let root = *trie.root();

		let proof = SixteenPatriciaMerkleTreeExistenceProof {
			key: 1u32.encode(),
			value: String::from("yes").encode(),
			proof: structured_proof,
		};

		assert_eq!(
			SixteenPatriciaMerkleTreeProver::<BlakeTwo256>::verify_proof(proof, &root).unwrap(),
			String::from("yes").encode()
		);
	}

	#[test]
	fn proof_to_hashes_sixteen() {
		let mut i: u32 = 1;

		// Compute log base 16 and round up
		let log16 = |x: u32| -> u32 {
			let x_f64 = x as f64;
			let log16_x = (x_f64.ln() / 16_f64.ln()).ceil();
			log16_x as u32
		};

		while i < 10_000_000 {
			let trie = BasicProvingTrie::<BlakeTwo256, u32, _>::generate_for(
				(0..i).map(|i| (i, u128::from(i))),
			)
			.unwrap();
			let proof = trie.create_proof(&0).unwrap();
			let structured_proof: Vec<Vec<u8>> = Decode::decode(&mut &proof[..]).unwrap();
			let root = *trie.root();

			let proof = SixteenPatriciaMerkleTreeExistenceProof {
				key: 0u32.encode(),
				value: 0u128.encode(),
				proof: structured_proof,
			};
			let hashes =
				SixteenPatriciaMerkleTreeProver::<BlakeTwo256>::proof_to_hashes(&proof).unwrap();
			let log16 = log16(i).max(1);
			assert_eq!(hashes, log16);

			assert_eq!(
				SixteenPatriciaMerkleTreeProver::<BlakeTwo256>::verify_proof(proof.clone(), &root)
					.unwrap(),
				proof.value
			);

			i = i * 10;
		}
	}

	#[test]
	fn proof_to_hashes_binary() {
		let mut i: u32 = 1;
		while i < 10_000_000 {
			let proof = binary_merkle_tree::merkle_proof::<BlakeTwo256, _, _>(
				(0..i).map(|i| u128::from(i).encode()),
				0,
			);
			let root = proof.root;

			let hashes = BinaryMerkleTreeProver::<BlakeTwo256>::proof_to_hashes(&proof).unwrap();
			let log2 = (i as f64).log2().ceil() as u32;
			assert_eq!(hashes, log2);

			assert_eq!(
				BinaryMerkleTreeProver::<BlakeTwo256>::verify_proof(proof, &root).unwrap(),
				0u128.encode()
			);

			i = i * 10;
		}
	}
}