1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
// SPDX-License-Identifier: CC0-1.0
//! Implements a buffered encoder.
//!
//! This is a low-level module, most uses should be satisfied by the `display` module instead.
//!
//! The main type of this module is [`BufEncoder`] which provides buffered hex encoding. Such is
//! faster than the usual `write!(f, "{02x}", b)?` in a for loop because it reduces dynamic
//! dispatch and decreases the number of allocations if a `String` is being created.
use core::borrow::Borrow;
pub use out_bytes::OutBytes;
use super::Case;
/// Trait for types that can be soundly converted to `OutBytes`.
///
/// To protect the API from future breakage this sealed trait guards which types can be used with
/// the `Encoder`. Currently it is implemented for byte arrays of various interesting lengths.
///
/// ## Safety
///
/// This is not `unsafe` yet but the `as_out_bytes` should always return the same reference if the
/// same reference is supplied. IOW the returned memory address and length should be the same if
/// the input memory address and length are the same.
///
/// If the trait ever becomes `unsafe` this will be required for soundness.
pub trait AsOutBytes: out_bytes::Sealed {
/// Performs the conversion.
fn as_out_bytes(&self) -> &OutBytes;
/// Performs the conversion.
fn as_mut_out_bytes(&mut self) -> &mut OutBytes;
}
/// A buffer with compile-time-known length.
///
/// This is essentially `Default + AsOutBytes` but supports lengths 1.41 doesn't.
pub trait FixedLenBuf: Sized + AsOutBytes {
/// Creates an uninitialized buffer.
///
/// The current implementtions initialize the buffer with zeroes but it should be treated a
/// uninitialized anyway.
fn uninit() -> Self;
}
/// Implements `OutBytes`
///
/// This prevents the rest of the crate from accessing the field of `OutBytes`.
mod out_bytes {
use super::AsOutBytes;
/// A byte buffer that can only be written-into.
///
/// You shouldn't concern yourself with this, just call `BufEncoder::new` with your array.
///
/// This prepares the API for potential future support of `[MaybeUninit<u8>]`. We don't want to use
/// `unsafe` until it's proven to be needed but if it does we have an easy, compatible upgrade
/// option.
///
/// Warning: `repr(transparent)` is an internal implementation detail and **must not** be
/// relied on!
#[repr(transparent)]
pub struct OutBytes([u8]);
impl OutBytes {
/// Returns the first `len` bytes as initialized.
///
/// Not `unsafe` because we don't use `unsafe` (yet).
///
/// ## Panics
///
/// The method panics if `len` is out of bounds.
#[track_caller]
pub(crate) fn assume_init(&self, len: usize) -> &[u8] { &self.0[..len] }
/// Writes given bytes into the buffer.
///
/// ## Panics
///
/// The method panics if pos is out of bounds or `bytes` don't fit into the buffer.
#[track_caller]
pub(crate) fn write(&mut self, pos: usize, bytes: &[u8]) {
self.0[pos..(pos + bytes.len())].copy_from_slice(bytes);
}
/// Returns the length of the buffer.
pub(crate) fn len(&self) -> usize { self.0.len() }
fn from_bytes(slice: &[u8]) -> &Self {
// SAFETY: copied from std
// conversion of reference to pointer of the same referred type is always sound,
// including in unsized types.
// Thanks to repr(transparent) the types have the same layout making the other
// conversion sound.
// The pointer was just created from a reference that's still alive so dereferencing is
// sound.
unsafe { &*(slice as *const [u8] as *const Self) }
}
fn from_mut_bytes(slice: &mut [u8]) -> &mut Self {
// SAFETY: copied from std
// conversion of reference to pointer of the same referred type is always sound,
// including in unsized types.
// Thanks to repr(transparent) the types have the same layout making the other
// conversion sound.
// The pointer was just created from a reference that's still alive so dereferencing is
// sound.
unsafe { &mut *(slice as *mut [u8] as *mut Self) }
}
}
macro_rules! impl_encode {
($($len:expr),* $(,)?) => {
$(
impl super::FixedLenBuf for [u8; $len] {
fn uninit() -> Self {
[0u8; $len]
}
}
impl AsOutBytes for [u8; $len] {
fn as_out_bytes(&self) -> &OutBytes {
OutBytes::from_bytes(self)
}
fn as_mut_out_bytes(&mut self) -> &mut OutBytes {
OutBytes::from_mut_bytes(self)
}
}
impl Sealed for [u8; $len] {}
impl<'a> super::super::display::DisplayHex for &'a [u8; $len / 2] {
type Display = super::super::display::DisplayArray<core::slice::Iter<'a, u8>, [u8; $len]>;
fn as_hex(self) -> Self::Display {
super::super::display::DisplayArray::new(self.iter())
}
fn hex_reserve_suggestion(self) -> usize {
$len
}
}
)*
}
}
impl<T: AsOutBytes + ?Sized> AsOutBytes for &'_ mut T {
fn as_out_bytes(&self) -> &OutBytes { (**self).as_out_bytes() }
fn as_mut_out_bytes(&mut self) -> &mut OutBytes { (**self).as_mut_out_bytes() }
}
impl<T: AsOutBytes + ?Sized> Sealed for &'_ mut T {}
impl AsOutBytes for OutBytes {
fn as_out_bytes(&self) -> &OutBytes { self }
fn as_mut_out_bytes(&mut self) -> &mut OutBytes { self }
}
impl Sealed for OutBytes {}
// As a sanity check we only provide conversions for even, non-empty arrays.
// Weird lengths 66 and 130 are provided for serialized public keys.
impl_encode!(
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 40, 64, 66, 128, 130, 256, 512,
1024, 2048, 4096, 8192
);
/// Prevents outside crates from implementing the trait
pub trait Sealed {}
}
/// Hex-encodes bytes into the provided buffer.
///
/// This is an important building block for fast hex-encoding. Because string writing tools
/// provided by `core::fmt` involve dynamic dispatch and don't allow reserving capacity in strings
/// buffering the hex and then formatting it is significantly faster.
pub struct BufEncoder<T: AsOutBytes> {
buf: T,
pos: usize,
}
impl<T: AsOutBytes> BufEncoder<T> {
/// Creates an empty `BufEncoder`.
///
/// This is usually used with uninitialized (zeroed) byte array allocated on stack.
/// This can only be constructed with an even-length, non-empty array.
#[inline]
pub fn new(buf: T) -> Self { BufEncoder { buf, pos: 0 } }
/// Encodes `byte` as hex in given `case` and appends it to the buffer.
///
/// ## Panics
///
/// The method panics if the buffer is full.
#[inline]
#[track_caller]
pub fn put_byte(&mut self, byte: u8, case: Case) {
self.buf.as_mut_out_bytes().write(self.pos, &super::byte_to_hex(byte, case.table()));
self.pos += 2;
}
/// Encodes `bytes` as hex in given `case` and appends them to the buffer.
///
/// ## Panics
///
/// The method panics if the bytes wouldn't fit the buffer.
#[inline]
#[track_caller]
pub fn put_bytes<I>(&mut self, bytes: I, case: Case)
where
I: IntoIterator,
I::Item: Borrow<u8>,
{
self.put_bytes_inner(bytes.into_iter(), case)
}
#[inline]
#[track_caller]
fn put_bytes_inner<I>(&mut self, bytes: I, case: Case)
where
I: Iterator,
I::Item: Borrow<u8>,
{
// May give the compiler better optimization opportunity
if let Some(max) = bytes.size_hint().1 {
assert!(max <= self.space_remaining());
}
for byte in bytes {
self.put_byte(*byte.borrow(), case);
}
}
/// Encodes as many `bytes` as fit into the buffer as hex and return the remainder.
///
/// This method works just like `put_bytes` but instead of panicking it returns the unwritten
/// bytes. The method returns an empty slice if all bytes were written
#[must_use = "this may write only part of the input buffer"]
#[inline]
#[track_caller]
pub fn put_bytes_min<'a>(&mut self, bytes: &'a [u8], case: Case) -> &'a [u8] {
let to_write = self.space_remaining().min(bytes.len());
self.put_bytes(&bytes[..to_write], case);
&bytes[to_write..]
}
/// Returns true if no more bytes can be written into the buffer.
#[inline]
pub fn is_full(&self) -> bool { self.pos == self.buf.as_out_bytes().len() }
/// Returns the written bytes as a hex `str`.
#[inline]
pub fn as_str(&self) -> &str {
core::str::from_utf8(self.buf.as_out_bytes().assume_init(self.pos))
.expect("we only write ASCII")
}
/// Resets the buffer to become empty.
#[inline]
pub fn clear(&mut self) { self.pos = 0; }
/// How many bytes can be written to this buffer.
///
/// Note that this returns the number of bytes before encoding, not number of hex digits.
#[inline]
pub fn space_remaining(&self) -> usize { (self.buf.as_out_bytes().len() - self.pos) / 2 }
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty() {
let mut buf = [0u8; 2];
let encoder = BufEncoder::new(&mut buf);
assert_eq!(encoder.as_str(), "");
assert!(!encoder.is_full());
}
#[test]
fn single_byte_exact_buf() {
let mut buf = [0u8; 2];
let mut encoder = BufEncoder::new(&mut buf);
assert_eq!(encoder.space_remaining(), 1);
encoder.put_byte(42, Case::Lower);
assert_eq!(encoder.as_str(), "2a");
assert_eq!(encoder.space_remaining(), 0);
assert!(encoder.is_full());
encoder.clear();
assert_eq!(encoder.space_remaining(), 1);
assert!(!encoder.is_full());
encoder.put_byte(42, Case::Upper);
assert_eq!(encoder.as_str(), "2A");
assert_eq!(encoder.space_remaining(), 0);
assert!(encoder.is_full());
}
#[test]
fn single_byte_oversized_buf() {
let mut buf = [0u8; 4];
let mut encoder = BufEncoder::new(&mut buf);
assert_eq!(encoder.space_remaining(), 2);
encoder.put_byte(42, Case::Lower);
assert_eq!(encoder.space_remaining(), 1);
assert_eq!(encoder.as_str(), "2a");
assert!(!encoder.is_full());
encoder.clear();
assert_eq!(encoder.space_remaining(), 2);
encoder.put_byte(42, Case::Upper);
assert_eq!(encoder.as_str(), "2A");
assert_eq!(encoder.space_remaining(), 1);
assert!(!encoder.is_full());
}
#[test]
fn two_bytes() {
let mut buf = [0u8; 4];
let mut encoder = BufEncoder::new(&mut buf);
encoder.put_byte(42, Case::Lower);
assert_eq!(encoder.space_remaining(), 1);
encoder.put_byte(255, Case::Lower);
assert_eq!(encoder.space_remaining(), 0);
assert_eq!(encoder.as_str(), "2aff");
assert!(encoder.is_full());
encoder.clear();
assert!(!encoder.is_full());
encoder.put_byte(42, Case::Upper);
encoder.put_byte(255, Case::Upper);
assert_eq!(encoder.as_str(), "2AFF");
assert!(encoder.is_full());
}
#[test]
fn put_bytes_min() {
let mut buf = [0u8; 2];
let mut encoder = BufEncoder::new(&mut buf);
let remainder = encoder.put_bytes_min(b"", Case::Lower);
assert_eq!(remainder, b"");
assert_eq!(encoder.as_str(), "");
let remainder = encoder.put_bytes_min(b"*", Case::Lower);
assert_eq!(remainder, b"");
assert_eq!(encoder.as_str(), "2a");
encoder.clear();
let remainder = encoder.put_bytes_min(&[42, 255], Case::Lower);
assert_eq!(remainder, &[255]);
assert_eq!(encoder.as_str(), "2a");
}
#[test]
fn same_as_fmt() {
use core::fmt::{self, Write};
struct Writer {
buf: [u8; 2],
pos: usize,
}
impl Writer {
fn as_str(&self) -> &str { core::str::from_utf8(&self.buf[..self.pos]).unwrap() }
}
impl Write for Writer {
fn write_str(&mut self, s: &str) -> fmt::Result {
assert!(self.pos <= 2);
if s.len() > 2 - self.pos {
Err(fmt::Error)
} else {
self.buf[self.pos..(self.pos + s.len())].copy_from_slice(s.as_bytes());
self.pos += s.len();
Ok(())
}
}
}
let mut writer = Writer { buf: [0u8; 2], pos: 0 };
let mut buf = [0u8; 2];
let mut encoder = BufEncoder::new(&mut buf);
for i in 0..=255 {
write!(writer, "{:02x}", i).unwrap();
encoder.put_byte(i, Case::Lower);
assert_eq!(encoder.as_str(), writer.as_str());
writer.pos = 0;
encoder.clear();
}
for i in 0..=255 {
write!(writer, "{:02X}", i).unwrap();
encoder.put_byte(i, Case::Upper);
assert_eq!(encoder.as_str(), writer.as_str());
writer.pos = 0;
encoder.clear();
}
}
}