1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
// Copyright 2015-2018 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use std::io;
use std::marker::PhantomData;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use async_trait::async_trait;
use futures_util::stream::Stream;
use futures_util::{future::Future, ready, TryFutureExt};
use rand;
use rand::distributions::{uniform::Uniform, Distribution};
use tracing::{debug, warn};
use crate::udp::MAX_RECEIVE_BUFFER_SIZE;
use crate::xfer::{BufDnsStreamHandle, SerialMessage, StreamReceiver};
use crate::Time;
pub(crate) type UdpCreator<S> = Arc<
dyn Send
+ Sync
+ (Fn(
SocketAddr, // local addr
SocketAddr, // server addr
) -> Pin<Box<dyn Send + (Future<Output = Result<S, std::io::Error>>)>>),
>;
/// Trait for DnsUdpSocket
#[async_trait]
pub trait DnsUdpSocket
where
Self: Send + Sync + Sized + Unpin,
{
/// Time implementation used for this type
type Time: Time;
/// Poll once Receive data from the socket and returns the number of bytes read and the address from
/// where the data came on success.
fn poll_recv_from(
&self,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<(usize, SocketAddr)>>;
/// Receive data from the socket and returns the number of bytes read and the address from
/// where the data came on success.
async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
futures_util::future::poll_fn(|cx| self.poll_recv_from(cx, buf)).await
}
/// Poll once to send data to the given address.
fn poll_send_to(
&self,
cx: &mut Context<'_>,
buf: &[u8],
target: SocketAddr,
) -> Poll<io::Result<usize>>;
/// Send data to the given address.
async fn send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
futures_util::future::poll_fn(|cx| self.poll_send_to(cx, buf, target)).await
}
}
/// Trait for UdpSocket
#[async_trait]
pub trait UdpSocket: DnsUdpSocket {
/// setups up a "client" udp connection that will only receive packets from the associated address
async fn connect(addr: SocketAddr) -> io::Result<Self>;
/// same as connect, but binds to the specified local address for sending address
async fn connect_with_bind(addr: SocketAddr, bind_addr: SocketAddr) -> io::Result<Self>;
/// a "server" UDP socket, that bind to the local listening address, and unbound remote address (can receive from anything)
async fn bind(addr: SocketAddr) -> io::Result<Self>;
}
/// A UDP stream of DNS binary packets
#[must_use = "futures do nothing unless polled"]
pub struct UdpStream<S: Send> {
socket: S,
outbound_messages: StreamReceiver,
}
/// To implement quinn::AsyncUdpSocket, we need our custom socket capable of getting local address.
pub trait QuicLocalAddr {
/// Get local address
fn local_addr(&self) -> std::io::Result<std::net::SocketAddr>;
}
#[cfg(feature = "tokio-runtime")]
use tokio::net::UdpSocket as TokioUdpSocket;
#[cfg(feature = "tokio-runtime")]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio-runtime")))]
#[allow(unreachable_pub)]
impl QuicLocalAddr for TokioUdpSocket {
fn local_addr(&self) -> std::io::Result<SocketAddr> {
self.local_addr()
}
}
impl<S: UdpSocket + Send + 'static> UdpStream<S> {
/// This method is intended for client connections, see `with_bound` for a method better for
/// straight listening. It is expected that the resolver wrapper will be responsible for
/// creating and managing new UdpStreams such that each new client would have a random port
/// (reduce chance of cache poisoning). This will return a randomly assigned local port.
///
/// # Arguments
///
/// * `remote_addr` - socket address for the remote connection (used to determine IPv4 or IPv6)
///
/// # Return
///
/// a tuple of a Future Stream which will handle sending and receiving messages, and a
/// handle which can be used to send messages into the stream.
#[allow(clippy::type_complexity)]
pub fn new(
remote_addr: SocketAddr,
bind_addr: Option<SocketAddr>,
) -> (
Box<dyn Future<Output = Result<Self, io::Error>> + Send + Unpin>,
BufDnsStreamHandle,
) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(remote_addr);
// TODO: allow the bind address to be specified...
// constructs a future for getting the next randomly bound port to a UdpSocket
let next_socket = NextRandomUdpSocket::new(&remote_addr, &bind_addr);
// This set of futures collapses the next udp socket into a stream which can be used for
// sending and receiving udp packets.
let stream = Box::new(next_socket.map_ok(move |socket| Self {
socket,
outbound_messages,
}));
(stream, message_sender)
}
}
impl<S: DnsUdpSocket + Send + 'static> UdpStream<S> {
/// Initialize the Stream with an already bound socket. Generally this should be only used for
/// server listening sockets. See `new` for a client oriented socket. Specifically, this there
/// is already a bound socket in this context, whereas `new` makes sure to randomize ports
/// for additional cache poison prevention.
///
/// # Arguments
///
/// * `socket` - an already bound UDP socket
/// * `remote_addr` - remote side of this connection
///
/// # Return
///
/// a tuple of a Future Stream which will handle sending and receiving messages, and a
/// handle which can be used to send messages into the stream.
pub fn with_bound(socket: S, remote_addr: SocketAddr) -> (Self, BufDnsStreamHandle) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(remote_addr);
let stream = Self {
socket,
outbound_messages,
};
(stream, message_sender)
}
#[allow(unused)]
pub(crate) fn from_parts(socket: S, outbound_messages: StreamReceiver) -> Self {
Self {
socket,
outbound_messages,
}
}
}
impl<S: Send> UdpStream<S> {
#[allow(clippy::type_complexity)]
fn pollable_split(&mut self) -> (&mut S, &mut StreamReceiver) {
(&mut self.socket, &mut self.outbound_messages)
}
}
impl<S: DnsUdpSocket + Send + 'static> Stream for UdpStream<S> {
type Item = Result<SerialMessage, io::Error>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let (socket, outbound_messages) = self.pollable_split();
let socket = Pin::new(socket);
let mut outbound_messages = Pin::new(outbound_messages);
// this will not accept incoming data while there is data to send
// makes this self throttling.
while let Poll::Ready(Some(message)) = outbound_messages.as_mut().poll_peek(cx) {
// first try to send
let addr = message.addr();
// this will return if not ready,
// meaning that sending will be preferred over receiving...
// TODO: shouldn't this return the error to send to the sender?
if let Err(e) = ready!(socket.poll_send_to(cx, message.bytes(), addr)) {
// Drop the UDP packet and continue
warn!(
"error sending message to {} on udp_socket, dropping response: {}",
addr, e
);
}
// message sent, need to pop the message
assert!(outbound_messages.as_mut().poll_next(cx).is_ready());
}
// For QoS, this will only accept one message and output that
// receive all inbound messages
// TODO: this should match edns settings
let mut buf = [0u8; MAX_RECEIVE_BUFFER_SIZE];
let (len, src) = ready!(socket.poll_recv_from(cx, &mut buf))?;
let serial_message = SerialMessage::new(buf.iter().take(len).cloned().collect(), src);
Poll::Ready(Some(Ok(serial_message)))
}
}
#[must_use = "futures do nothing unless polled"]
pub(crate) struct NextRandomUdpSocket<S> {
name_server: SocketAddr,
bind_address: SocketAddr,
closure: UdpCreator<S>,
marker: PhantomData<S>,
}
impl<S: UdpSocket + 'static> NextRandomUdpSocket<S> {
/// Creates a future for randomly binding to a local socket address for client connections,
/// if no port is specified.
///
/// If a port is specified in the bind address it is used.
pub(crate) fn new(name_server: &SocketAddr, bind_addr: &Option<SocketAddr>) -> Self {
let bind_address = match bind_addr {
Some(ba) => *ba,
None => match *name_server {
SocketAddr::V4(..) => SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0),
SocketAddr::V6(..) => {
SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), 0)
}
},
};
Self {
name_server: *name_server,
bind_address,
closure: Arc::new(|local_addr: _, _server_addr: _| S::bind(local_addr)),
marker: PhantomData,
}
}
}
impl<S: DnsUdpSocket> NextRandomUdpSocket<S> {
/// Create a future with generator
pub(crate) fn new_with_closure(name_server: &SocketAddr, func: UdpCreator<S>) -> Self {
let bind_address = match *name_server {
SocketAddr::V4(..) => SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0),
SocketAddr::V6(..) => {
SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), 0)
}
};
Self {
name_server: *name_server,
bind_address,
closure: func,
marker: PhantomData,
}
}
}
impl<S: DnsUdpSocket + Send> Future for NextRandomUdpSocket<S> {
type Output = Result<S, io::Error>;
/// polls until there is an available next random UDP port,
/// if no port has been specified in bind_addr.
///
/// if there is no port available after 10 attempts, returns NotReady
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if self.bind_address.port() == 0 {
// Per RFC 6056 Section 2.1:
//
// The dynamic port range defined by IANA consists of the 49152-65535
// range, and is meant for the selection of ephemeral ports.
let rand_port_range = Uniform::new_inclusive(49152_u16, u16::max_value());
let mut rand = rand::thread_rng();
for attempt in 0..10 {
let port = rand_port_range.sample(&mut rand);
let bind_addr = SocketAddr::new(self.bind_address.ip(), port);
// TODO: allow TTL to be adjusted...
// TODO: this immediate poll might be wrong in some cases...
match (*self.closure)(bind_addr, self.name_server)
.as_mut()
.poll(cx)
{
Poll::Ready(Ok(socket)) => {
debug!("created socket successfully");
return Poll::Ready(Ok(socket));
}
Poll::Ready(Err(err)) => match err.kind() {
io::ErrorKind::AddrInUse => {
debug!("unable to bind port, attempt: {}: {}", attempt, err);
}
_ => {
debug!("failed to bind port: {}", err);
return Poll::Ready(Err(err));
}
},
Poll::Pending => debug!("unable to bind port, attempt: {}", attempt),
}
}
debug!("could not get next random port, delaying");
// TODO: because no interest is registered anywhere, we must awake.
cx.waker().wake_by_ref();
// returning NotReady here, perhaps the next poll there will be some more socket available.
Poll::Pending
} else {
// Use port that was specified in bind address.
(*self.closure)(self.bind_address, self.name_server)
.as_mut()
.poll(cx)
}
}
}
#[cfg(feature = "tokio-runtime")]
#[async_trait]
impl UdpSocket for tokio::net::UdpSocket {
/// setups up a "client" udp connection that will only receive packets from the associated address
///
/// if the addr is ipv4 then it will bind local addr to 0.0.0.0:0, ipv6 \[::\]0
async fn connect(addr: SocketAddr) -> io::Result<Self> {
let bind_addr: SocketAddr = match addr {
SocketAddr::V4(_addr) => (Ipv4Addr::UNSPECIFIED, 0).into(),
SocketAddr::V6(_addr) => (Ipv6Addr::UNSPECIFIED, 0).into(),
};
Self::connect_with_bind(addr, bind_addr).await
}
/// same as connect, but binds to the specified local address for sending address
async fn connect_with_bind(_addr: SocketAddr, bind_addr: SocketAddr) -> io::Result<Self> {
let socket = Self::bind(bind_addr).await?;
// TODO: research connect more, it appears to break UDP receiving tests, etc...
// socket.connect(addr).await?;
Ok(socket)
}
async fn bind(addr: SocketAddr) -> io::Result<Self> {
Self::bind(addr).await
}
}
#[cfg(feature = "tokio-runtime")]
#[async_trait]
impl DnsUdpSocket for tokio::net::UdpSocket {
type Time = crate::TokioTime;
fn poll_recv_from(
&self,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<(usize, SocketAddr)>> {
let mut buf = tokio::io::ReadBuf::new(buf);
let addr = ready!(Self::poll_recv_from(self, cx, &mut buf))?;
let len = buf.filled().len();
Poll::Ready(Ok((len, addr)))
}
fn poll_send_to(
&self,
cx: &mut Context<'_>,
buf: &[u8],
target: SocketAddr,
) -> Poll<io::Result<usize>> {
Self::poll_send_to(self, cx, buf, target)
}
}
#[cfg(test)]
#[cfg(feature = "tokio-runtime")]
mod tests {
#[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
use std::net::Ipv6Addr;
use std::net::{IpAddr, Ipv4Addr};
use tokio::{net::UdpSocket as TokioUdpSocket, runtime::Runtime};
#[test]
fn test_next_random_socket() {
use crate::tests::next_random_socket_test;
let io_loop = Runtime::new().expect("failed to create tokio runtime");
next_random_socket_test::<TokioUdpSocket, Runtime>(io_loop)
}
#[test]
fn test_udp_stream_ipv4() {
use crate::tests::udp_stream_test;
let io_loop = Runtime::new().expect("failed to create tokio runtime");
io_loop.block_on(udp_stream_test::<TokioUdpSocket>(IpAddr::V4(
Ipv4Addr::new(127, 0, 0, 1),
)));
}
#[test]
#[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
fn test_udp_stream_ipv6() {
use crate::tests::udp_stream_test;
let io_loop = Runtime::new().expect("failed to create tokio runtime");
io_loop.block_on(udp_stream_test::<TokioUdpSocket>(IpAddr::V6(
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1),
)));
}
}