1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
// Copyright 2015-2019 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use std::cmp::Ordering;
use std::sync::{
atomic::{self, AtomicU32},
Arc,
};
use parking_lot::Mutex;
use rand::Rng as _;
#[cfg(not(test))]
use std::time::{Duration, Instant};
#[cfg(test)]
use tokio::time::{Duration, Instant};
pub(crate) struct NameServerStats {
/// The smoothed round-trip time (SRTT).
///
/// This value represents an exponentially weighted moving average (EWMA) of
/// recorded latencies. The algorithm for computing this value is based on
/// the following:
///
/// https://en.wikipedia.org/wiki/Moving_average#Application_to_measuring_computer_performance
///
/// It is also partially inspired by the BIND and PowerDNS implementations:
///
/// - https://github.com/isc-projects/bind9/blob/7bf8a7ab1b280c1021bf1e762a239b07aac3c591/lib/dns/adb.c#L3487
/// - https://github.com/PowerDNS/pdns/blob/7c5f9ae6ae4fb17302d933eaeebc8d6f0249aab2/pdns/syncres.cc#L123
///
/// The algorithm for computing and using this value can be summarized as
/// follows:
///
/// 1. The value is initialized to a random value that represents a very low
/// latency.
/// 2. If the round-trip time (RTT) was successfully measured for a query,
/// then it is incorporated into the EWMA using the formula linked above.
/// 3. If the RTT could not be measured (i.e. due to a connection failure),
/// then a constant penalty factor is applied to the EWMA.
/// 4. When comparing EWMA values, a time-based decay is applied to each
/// value. Note that this decay is only applied at read time.
///
/// For the original discussion regarding this algorithm, see
/// https://github.com/hickory-dns/hickory-dns/issues/1702.
srtt_microseconds: AtomicU32,
/// The last time the `srtt_microseconds` value was updated.
last_update: Arc<Mutex<Option<Instant>>>,
}
impl Default for NameServerStats {
fn default() -> Self {
// Initialize the SRTT to a randomly generated value that represents a
// very low RTT. Such a value helps ensure that each server is attempted
// early.
Self::new(Duration::from_micros(rand::thread_rng().gen_range(1..32)))
}
}
/// Returns an exponentially weighted value in the range of 0.0 < x < 1.0
///
/// Computes the value using the following formula:
///
/// e<sup>(-t<sub>now</sub> - t<sub>last</sub>) / weight</sup>
///
/// As the duration since the `last_update` approaches the provided `weight`,
/// the returned value decreases.
fn compute_srtt_factor(last_update: Instant, weight: u32) -> f64 {
let exponent = (-last_update.elapsed().as_secs_f64().max(1.0)) / f64::from(weight);
exponent.exp()
}
impl NameServerStats {
const CONNECTION_FAILURE_PENALTY: u32 = Duration::from_millis(150).as_micros() as u32;
const MAX_SRTT_MICROS: u32 = Duration::from_secs(5).as_micros() as u32;
pub(crate) fn new(initial_srtt: Duration) -> Self {
Self {
srtt_microseconds: AtomicU32::new(initial_srtt.as_micros() as u32),
last_update: Arc::new(Mutex::new(None)),
}
}
/// Records the measured `rtt` for a particular query.
pub(crate) fn record_rtt(&self, rtt: Duration) {
// If the cast on the result does overflow (it shouldn't), then the
// value is saturated to u32::MAX, which is above the `MAX_SRTT_MICROS`
// limit (meaning that any potential overflow is inconsequential).
// See https://github.com/rust-lang/rust/issues/10184.
self.update_srtt(
rtt.as_micros() as u32,
|cur_srtt_microseconds, last_update| {
// An arbitrarily low weight is used when computing the factor
// to ensure that recent RTT measurements are weighted more
// heavily.
let factor = compute_srtt_factor(last_update, 3);
let new_srtt = (1.0 - factor) * (rtt.as_micros() as f64)
+ factor * f64::from(cur_srtt_microseconds);
new_srtt.round() as u32
},
);
}
/// Records a connection failure for a particular query.
pub(crate) fn record_connection_failure(&self) {
self.update_srtt(
Self::CONNECTION_FAILURE_PENALTY,
|cur_srtt_microseconds, _last_update| {
cur_srtt_microseconds.saturating_add(Self::CONNECTION_FAILURE_PENALTY)
},
);
}
/// Returns the raw SRTT value.
///
/// Prefer to use `decayed_srtt` when ordering name servers.
fn srtt(&self) -> Duration {
Duration::from_micros(u64::from(
self.srtt_microseconds.load(atomic::Ordering::Acquire),
))
}
/// Returns the SRTT value after applying a time based decay.
///
/// The decay exponentially decreases the SRTT value. The primary reasons
/// for applying a downwards decay are twofold:
///
/// 1. It helps distribute query load.
/// 2. It helps detect positive network changes. For example, decreases in
/// latency or a server that has recovered from a failure.
fn decayed_srtt(&self) -> f64 {
let srtt = f64::from(self.srtt_microseconds.load(atomic::Ordering::Acquire));
self.last_update.lock().map_or(srtt, |last_update| {
// In general, if the time between queries is relatively short, then
// the server ordering algorithm will approximate a spike
// distribution where the servers with the lowest latencies are
// chosen much more frequently. Conversely, if the time between
// queries is relatively long, then the query distribution will be
// more uniform. A larger weight widens the window in which servers
// with historically lower latencies will be heavily preferred. On
// the other hand, a larger weight may also increase the time it
// takes to recover from a failure or to observe positive changes in
// latency.
srtt * compute_srtt_factor(last_update, 180)
})
}
/// Updates the SRTT value.
///
/// If the `last_update` value has not been set, then uses the `default`
/// value to update the SRTT. Otherwise, invokes the `update_fn` with the
/// current SRTT value and the `last_update` timestamp.
fn update_srtt(&self, default: u32, update_fn: impl Fn(u32, Instant) -> u32) {
let last_update = self.last_update.lock().replace(Instant::now());
let _ = self.srtt_microseconds.fetch_update(
atomic::Ordering::SeqCst,
atomic::Ordering::SeqCst,
move |cur_srtt_microseconds| {
Some(
last_update
.map_or(default, |last_update| {
update_fn(cur_srtt_microseconds, last_update)
})
.min(Self::MAX_SRTT_MICROS),
)
},
);
}
}
impl PartialEq for NameServerStats {
fn eq(&self, other: &Self) -> bool {
self.srtt() == other.srtt()
}
}
impl Eq for NameServerStats {}
// TODO: Replace this with `f64::total_cmp` once the Rust version is bumped to
// 1.62.0 (the method is stable beyond that version). In the meantime, the
// implementation is copied from here:
// https://github.com/rust-lang/rust/blob/master/library/core/src/num/f64.rs#L1336
fn total_cmp(x: f64, y: f64) -> Ordering {
let mut left = x.to_bits() as i64;
let mut right = y.to_bits() as i64;
left ^= (((left >> 63) as u64) >> 1) as i64;
right ^= (((right >> 63) as u64) >> 1) as i64;
left.cmp(&right)
}
impl Ord for NameServerStats {
/// Custom implementation of Ord for NameServer which incorporates the
/// performance of the connection into it's ranking.
fn cmp(&self, other: &Self) -> Ordering {
total_cmp(self.decayed_srtt(), other.decayed_srtt())
}
}
impl PartialOrd for NameServerStats {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[cfg(test)]
#[allow(clippy::extra_unused_type_parameters)]
mod tests {
use super::*;
fn is_send_sync<S: Sync + Send>() -> bool {
true
}
#[test]
fn stats_are_sync() {
assert!(is_send_sync::<NameServerStats>());
}
#[tokio::test(start_paused = true)]
async fn test_stats_cmp() {
let server_a = NameServerStats::new(Duration::from_micros(10));
let server_b = NameServerStats::new(Duration::from_micros(20));
// No RTTs or failures have been recorded. The initial SRTTs should be
// compared.
assert_eq!(server_a.cmp(&server_b), Ordering::Less);
// Server A was used. Unused server B should now be preferred.
server_a.record_rtt(Duration::from_millis(30));
tokio::time::advance(Duration::from_secs(5)).await;
assert_eq!(server_a.cmp(&server_b), Ordering::Greater);
// Both servers have been used. Server A has a lower SRTT and should be
// preferred.
server_b.record_rtt(Duration::from_millis(50));
tokio::time::advance(Duration::from_secs(5)).await;
assert_eq!(server_a.cmp(&server_b), Ordering::Less);
// Server A experiences a connection failure, which results in Server B
// being preferred.
server_a.record_connection_failure();
tokio::time::advance(Duration::from_secs(5)).await;
assert_eq!(server_a.cmp(&server_b), Ordering::Greater);
// Server A should eventually recover and once again be preferred.
while server_a.cmp(&server_b) != Ordering::Less {
server_b.record_rtt(Duration::from_millis(50));
tokio::time::advance(Duration::from_secs(5)).await;
}
server_a.record_rtt(Duration::from_millis(30));
tokio::time::advance(Duration::from_secs(3)).await;
assert_eq!(server_a.cmp(&server_b), Ordering::Less);
}
#[tokio::test(start_paused = true)]
async fn test_record_rtt() {
let server = NameServerStats::new(Duration::from_micros(10));
let first_rtt = Duration::from_millis(50);
server.record_rtt(first_rtt);
// The first recorded RTT should replace the initial value.
assert_eq!(server.srtt(), first_rtt);
tokio::time::advance(Duration::from_secs(3)).await;
// Subsequent RTTs should factor in previously recorded values.
server.record_rtt(Duration::from_millis(100));
assert_eq!(server.srtt(), Duration::from_micros(81606));
}
#[test]
fn test_record_rtt_maximum_value() {
let server = NameServerStats::new(Duration::from_micros(10));
server.record_rtt(Duration::MAX);
// Updates to the SRTT are capped at a maximum value.
assert_eq!(
server.srtt(),
Duration::from_micros(NameServerStats::MAX_SRTT_MICROS.into())
);
}
#[tokio::test(start_paused = true)]
async fn test_record_connection_failure() {
let server = NameServerStats::new(Duration::from_micros(10));
// Verify that the SRTT value is initially replaced with the penalty and
// subsequent failures result in the penalty being added.
for failure_count in 1..4 {
server.record_connection_failure();
assert_eq!(
server.srtt(),
Duration::from_micros(
NameServerStats::CONNECTION_FAILURE_PENALTY
.checked_mul(failure_count)
.expect("checked_mul overflow")
.into()
)
);
tokio::time::advance(Duration::from_secs(3)).await;
}
// Verify that the `last_update` timestamp was updated for a connection
// failure and is used in subsequent calculations.
server.record_rtt(Duration::from_millis(50));
assert_eq!(server.srtt(), Duration::from_micros(197152));
}
#[test]
fn test_record_connection_failure_maximum_value() {
let server = NameServerStats::new(Duration::from_micros(10));
let num_failures =
(NameServerStats::MAX_SRTT_MICROS / NameServerStats::CONNECTION_FAILURE_PENALTY) + 1;
for _ in 0..num_failures {
server.record_connection_failure();
}
// Updates to the SRTT are capped at a maximum value.
assert_eq!(
server.srtt(),
Duration::from_micros(NameServerStats::MAX_SRTT_MICROS.into())
);
}
#[tokio::test(start_paused = true)]
async fn test_decayed_srtt() {
let initial_srtt = 10;
let server = NameServerStats::new(Duration::from_micros(initial_srtt));
// No decay should be applied to the initial value.
assert_eq!(server.decayed_srtt() as u32, initial_srtt as u32);
tokio::time::advance(Duration::from_secs(5)).await;
server.record_rtt(Duration::from_millis(100));
// The decay function should assume a minimum of one second has elapsed
// since the last update.
tokio::time::advance(Duration::from_millis(500)).await;
assert_eq!(server.decayed_srtt() as u32, 99445);
tokio::time::advance(Duration::from_secs(5)).await;
assert_eq!(server.decayed_srtt() as u32, 96990);
}
}