1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Copyright 2020 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use alloc::{string::String, vec::Vec};
use core::{fmt, result::Result};
use serde::{de, Deserializer, Serializer};

static CHARS: &[u8] = b"0123456789abcdef";

/// Serialize given bytes to a 0x-prefixed hex string.
///
/// If `skip_leading_zero` initial 0s will not be printed out,
/// unless the byte string is empty, in which case `0x0` will be returned.
/// The results are consistent with `serialize_uint` output if the flag is
/// on and `serialize_raw` if the flag is off.
pub fn to_hex(bytes: &[u8], skip_leading_zero: bool) -> String {
	let bytes = if skip_leading_zero {
		let non_zero = bytes.iter().take_while(|b| **b == 0).count();
		let bytes = &bytes[non_zero..];
		if bytes.is_empty() {
			return "0x0".into()
		} else {
			bytes
		}
	} else if bytes.is_empty() {
		return "0x".into()
	} else {
		bytes
	};

	let mut slice = vec![0u8; (bytes.len() + 1) * 2];
	to_hex_raw(&mut slice, bytes, skip_leading_zero).into()
}

fn to_hex_raw<'a>(v: &'a mut [u8], bytes: &[u8], skip_leading_zero: bool) -> &'a str {
	assert!(v.len() > 1 + bytes.len() * 2);

	v[0] = b'0';
	v[1] = b'x';

	let mut idx = 2;
	let first_nibble = bytes[0] >> 4;
	if first_nibble != 0 || !skip_leading_zero {
		v[idx] = CHARS[first_nibble as usize];
		idx += 1;
	}
	v[idx] = CHARS[(bytes[0] & 0xf) as usize];
	idx += 1;

	for &byte in bytes.iter().skip(1) {
		v[idx] = CHARS[(byte >> 4) as usize];
		v[idx + 1] = CHARS[(byte & 0xf) as usize];
		idx += 2;
	}

	// SAFETY: all characters come either from CHARS or "0x", therefore valid UTF8
	unsafe { core::str::from_utf8_unchecked(&v[0..idx]) }
}

/// Decoding bytes from hex string error.
#[derive(Debug, PartialEq, Eq)]
pub enum FromHexError {
	/// The `0x` prefix is missing.
	#[deprecated(since = "0.3.2", note = "We support non 0x-prefixed hex strings")]
	MissingPrefix,
	/// Invalid (non-hex) character encountered.
	InvalidHex {
		/// The unexpected character.
		character: char,
		/// Index of that occurrence.
		index: usize,
	},
}

#[cfg(feature = "std")]
impl std::error::Error for FromHexError {}

impl fmt::Display for FromHexError {
	fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
		match *self {
			#[allow(deprecated)]
			Self::MissingPrefix => write!(fmt, "0x prefix is missing"),
			Self::InvalidHex { character, index } => write!(fmt, "invalid hex character: {}, at {}", character, index),
		}
	}
}

/// Decode given (both 0x-prefixed or not) hex string into a vector of bytes.
///
/// Returns an error if non-hex characters are present.
pub fn from_hex(v: &str) -> Result<Vec<u8>, FromHexError> {
	let (v, stripped) = v.strip_prefix("0x").map_or((v, false), |v| (v, true));

	let mut bytes = vec![0u8; (v.len() + 1) / 2];
	from_hex_raw(v, &mut bytes, stripped)?;
	Ok(bytes)
}

/// Decode given 0x-prefix-stripped hex string into provided slice.
/// Used internally by `from_hex` and `deserialize_check_len`.
///
/// The method will panic if `bytes` have incorrect length (make sure to allocate enough beforehand).
fn from_hex_raw(v: &str, bytes: &mut [u8], stripped: bool) -> Result<usize, FromHexError> {
	let bytes_len = v.len();
	let mut modulus = bytes_len % 2;
	let mut buf = 0;
	let mut pos = 0;
	for (index, byte) in v.bytes().enumerate() {
		buf <<= 4;

		match byte {
			b'A'..=b'F' => buf |= byte - b'A' + 10,
			b'a'..=b'f' => buf |= byte - b'a' + 10,
			b'0'..=b'9' => buf |= byte - b'0',
			b' ' | b'\r' | b'\n' | b'\t' => {
				buf >>= 4;
				continue
			},
			b => {
				let character = char::from(b);
				return Err(FromHexError::InvalidHex { character, index: index + if stripped { 2 } else { 0 } })
			},
		}

		modulus += 1;
		if modulus == 2 {
			modulus = 0;
			bytes[pos] = buf;
			pos += 1;
		}
	}

	Ok(pos)
}

/// Serializes a slice of bytes.
pub fn serialize_raw<S>(slice: &mut [u8], bytes: &[u8], serializer: S) -> Result<S::Ok, S::Error>
where
	S: Serializer,
{
	if bytes.is_empty() {
		serializer.serialize_str("0x")
	} else {
		serializer.serialize_str(to_hex_raw(slice, bytes, false))
	}
}

/// Serializes a slice of bytes.
pub fn serialize<S>(bytes: &[u8], serializer: S) -> Result<S::Ok, S::Error>
where
	S: Serializer,
{
	let mut slice = vec![0u8; (bytes.len() + 1) * 2];
	serialize_raw(&mut slice, bytes, serializer)
}

/// Serialize a slice of bytes as uint.
///
/// The representation will have all leading zeros trimmed.
pub fn serialize_uint<S>(slice: &mut [u8], bytes: &[u8], serializer: S) -> Result<S::Ok, S::Error>
where
	S: Serializer,
{
	let non_zero = bytes.iter().take_while(|b| **b == 0).count();
	let bytes = &bytes[non_zero..];
	if bytes.is_empty() {
		serializer.serialize_str("0x0")
	} else {
		serializer.serialize_str(to_hex_raw(slice, bytes, true))
	}
}

/// Expected length of bytes vector.
#[derive(Debug, PartialEq, Eq)]
pub enum ExpectedLen<'a> {
	/// Exact length in bytes.
	Exact(&'a mut [u8]),
	/// A bytes length between (min; slice.len()].
	Between(usize, &'a mut [u8]),
}

impl<'a> fmt::Display for ExpectedLen<'a> {
	fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
		match *self {
			ExpectedLen::Exact(ref v) => write!(fmt, "{} bytes", v.len()),
			ExpectedLen::Between(min, ref v) => write!(fmt, "between ({}; {}] bytes", min, v.len()),
		}
	}
}

/// Deserialize into vector of bytes.  This will allocate an O(n) intermediate
/// string.
pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<u8>, D::Error>
where
	D: Deserializer<'de>,
{
	struct Visitor;

	impl<'b> de::Visitor<'b> for Visitor {
		type Value = Vec<u8>;

		fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
			write!(formatter, "a (both 0x-prefixed or not) hex string or byte array")
		}

		fn visit_str<E: de::Error>(self, v: &str) -> Result<Self::Value, E> {
			from_hex(v).map_err(E::custom)
		}

		fn visit_string<E: de::Error>(self, v: String) -> Result<Self::Value, E> {
			self.visit_str(&v)
		}

		fn visit_bytes<E: de::Error>(self, v: &[u8]) -> Result<Self::Value, E> {
			Ok(v.to_vec())
		}

		fn visit_byte_buf<E: de::Error>(self, v: Vec<u8>) -> Result<Self::Value, E> {
			Ok(v)
		}

		fn visit_seq<A: de::SeqAccess<'b>>(self, mut seq: A) -> Result<Self::Value, A::Error> {
			let mut bytes = vec![];
			while let Some(n) = seq.next_element::<u8>()? {
				bytes.push(n);
			}
			Ok(bytes)
		}

		fn visit_newtype_struct<D: Deserializer<'b>>(self, deserializer: D) -> Result<Self::Value, D::Error> {
			deserializer.deserialize_bytes(self)
		}
	}

	deserializer.deserialize_str(Visitor)
}

/// Deserialize into vector of bytes with additional size check.
/// Returns number of bytes written.
pub fn deserialize_check_len<'a, 'de, D>(deserializer: D, len: ExpectedLen<'a>) -> Result<usize, D::Error>
where
	D: Deserializer<'de>,
{
	struct Visitor<'a> {
		len: ExpectedLen<'a>,
	}

	impl<'a, 'b> de::Visitor<'b> for Visitor<'a> {
		type Value = usize;

		fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
			write!(formatter, "a (both 0x-prefixed or not) hex string or byte array containing {}", self.len)
		}

		fn visit_str<E: de::Error>(self, v: &str) -> Result<Self::Value, E> {
			let (v, stripped) = v.strip_prefix("0x").map_or((v, false), |v| (v, true));

			let len = v.len();
			let is_len_valid = match self.len {
				ExpectedLen::Exact(ref slice) => len == 2 * slice.len(),
				ExpectedLen::Between(min, ref slice) => len <= 2 * slice.len() && len > 2 * min,
			};

			if !is_len_valid {
				return Err(E::invalid_length(v.len(), &self))
			}

			let bytes = match self.len {
				ExpectedLen::Exact(slice) => slice,
				ExpectedLen::Between(_, slice) => slice,
			};

			from_hex_raw(v, bytes, stripped).map_err(E::custom)
		}

		fn visit_string<E: de::Error>(self, v: String) -> Result<Self::Value, E> {
			self.visit_str(&v)
		}

		fn visit_bytes<E: de::Error>(self, v: &[u8]) -> Result<Self::Value, E> {
			let len = v.len();
			let is_len_valid = match self.len {
				ExpectedLen::Exact(ref slice) => len == slice.len(),
				ExpectedLen::Between(min, ref slice) => len <= slice.len() && len > min,
			};

			if !is_len_valid {
				return Err(E::invalid_length(v.len(), &self))
			}

			let bytes = match self.len {
				ExpectedLen::Exact(slice) => slice,
				ExpectedLen::Between(_, slice) => slice,
			};

			bytes[..len].copy_from_slice(v);
			Ok(len)
		}

		fn visit_byte_buf<E: de::Error>(self, v: Vec<u8>) -> Result<Self::Value, E> {
			self.visit_bytes(&v)
		}

		fn visit_seq<A: de::SeqAccess<'b>>(self, mut seq: A) -> Result<Self::Value, A::Error> {
			let mut v = vec![];
			while let Some(n) = seq.next_element::<u8>()? {
				v.push(n);
			}
			self.visit_byte_buf(v)
		}

		fn visit_newtype_struct<D: Deserializer<'b>>(self, deserializer: D) -> Result<Self::Value, D::Error> {
			deserializer.deserialize_bytes(self)
		}
	}

	deserializer.deserialize_str(Visitor { len })
}

#[cfg(test)]
mod tests {
	use super::*;
	use serde_derive::{Deserialize, Serialize};

	#[derive(Serialize, Deserialize)]
	struct Bytes(#[serde(with = "super")] Vec<u8>);

	#[test]
	fn should_not_fail_on_short_string_with_prefix() {
		let a: Bytes = serde_json::from_str("\"0x\"").unwrap();
		let b: Bytes = serde_json::from_str("\"0x1\"").unwrap();
		let c: Bytes = serde_json::from_str("\"0x12\"").unwrap();
		let d: Bytes = serde_json::from_str("\"0x123\"").unwrap();
		let e: Bytes = serde_json::from_str("\"0x1234\"").unwrap();
		let f: Bytes = serde_json::from_str("\"0x12345\"").unwrap();

		assert!(a.0.is_empty());
		assert_eq!(b.0, vec![1]);
		assert_eq!(c.0, vec![0x12]);
		assert_eq!(d.0, vec![0x1, 0x23]);
		assert_eq!(e.0, vec![0x12, 0x34]);
		assert_eq!(f.0, vec![0x1, 0x23, 0x45]);
	}

	#[test]
	fn should_not_fail_on_other_strings_with_prefix() {
		let a: Bytes =
			serde_json::from_str("\"0x7f864e18e3dd8b58386310d2fe0919eef27c6e558564b7f67f22d99d20f587\"").unwrap();
		let b: Bytes =
			serde_json::from_str("\"0x7f864e18e3dd8b58386310d2fe0919eef27c6e558564b7f67f22d99d20f587b\"").unwrap();
		let c: Bytes =
			serde_json::from_str("\"0x7f864e18e3dd8b58386310d2fe0919eef27c6e558564b7f67f22d99d20f587b4\"").unwrap();

		assert_eq!(a.0.len(), 31);
		assert_eq!(b.0.len(), 32);
		assert_eq!(c.0.len(), 32);
	}

	#[test]
	fn should_not_fail_on_short_string_without_prefix() {
		let a: Bytes = serde_json::from_str("\"\"").unwrap();
		let b: Bytes = serde_json::from_str("\"1\"").unwrap();
		let c: Bytes = serde_json::from_str("\"12\"").unwrap();
		let d: Bytes = serde_json::from_str("\"123\"").unwrap();
		let e: Bytes = serde_json::from_str("\"1234\"").unwrap();
		let f: Bytes = serde_json::from_str("\"12345\"").unwrap();

		assert!(a.0.is_empty());
		assert_eq!(b.0, vec![1]);
		assert_eq!(c.0, vec![0x12]);
		assert_eq!(d.0, vec![0x1, 0x23]);
		assert_eq!(e.0, vec![0x12, 0x34]);
		assert_eq!(f.0, vec![0x1, 0x23, 0x45]);
	}

	#[test]
	fn should_not_fail_on_other_strings_without_prefix() {
		let a: Bytes =
			serde_json::from_str("\"7f864e18e3dd8b58386310d2fe0919eef27c6e558564b7f67f22d99d20f587\"").unwrap();
		let b: Bytes =
			serde_json::from_str("\"7f864e18e3dd8b58386310d2fe0919eef27c6e558564b7f67f22d99d20f587b\"").unwrap();
		let c: Bytes =
			serde_json::from_str("\"7f864e18e3dd8b58386310d2fe0919eef27c6e558564b7f67f22d99d20f587b4\"").unwrap();

		assert_eq!(a.0.len(), 31);
		assert_eq!(b.0.len(), 32);
		assert_eq!(c.0.len(), 32);
	}

	#[test]
	fn should_serialize_and_deserialize_empty_bytes() {
		let bytes = Bytes(Vec::new());

		let data = serde_json::to_string(&bytes).unwrap();

		assert_eq!("\"0x\"", &data);

		let deserialized: Bytes = serde_json::from_str(&data).unwrap();
		assert!(deserialized.0.is_empty())
	}

	#[test]
	fn should_encode_to_and_from_hex_with_prefix() {
		assert_eq!(to_hex(&[0, 1, 2], true), "0x102");
		assert_eq!(to_hex(&[0, 1, 2], false), "0x000102");
		assert_eq!(to_hex(&[0], true), "0x0");
		assert_eq!(to_hex(&[], true), "0x0");
		assert_eq!(to_hex(&[], false), "0x");
		assert_eq!(to_hex(&[0], false), "0x00");
		assert_eq!(from_hex("0x0102"), Ok(vec![1, 2]));
		assert_eq!(from_hex("0x102"), Ok(vec![1, 2]));
		assert_eq!(from_hex("0xf"), Ok(vec![0xf]));
	}

	#[test]
	fn should_decode_hex_without_prefix() {
		assert_eq!(from_hex("0102"), Ok(vec![1, 2]));
		assert_eq!(from_hex("102"), Ok(vec![1, 2]));
		assert_eq!(from_hex("f"), Ok(vec![0xf]));
	}

	#[test]
	fn should_deserialize_from_owned_bytes() {
		type BytesDeserializer<'a> = serde::de::value::BytesDeserializer<'a, serde::de::value::Error>;

		// using `deserialize` to decode owned bytes.
		let des = BytesDeserializer::new(&[1, 2, 3, 4, 5]);
		let deserialized: Vec<u8> = deserialize(des).unwrap();
		assert_eq!(deserialized, vec![1, 2, 3, 4, 5]);

		// using `deserialize` to decode owned bytes into buffer with fixed length.
		let des = BytesDeserializer::new(&[1, 2, 3, 4, 5]);
		let mut output = vec![0, 0, 0, 0, 0];
		let expected_len = ExpectedLen::Exact(&mut *output);
		let n = deserialize_check_len(des, expected_len).unwrap();
		assert_eq!(n, 5);
		assert_eq!(output, vec![1, 2, 3, 4, 5]);

		// using `deserialize` to decode owned bytes into buffer with min/max length.
		let des = BytesDeserializer::new(&[1, 2, 3]);
		let mut output = vec![0, 0, 0, 0, 0];
		let expected_len = ExpectedLen::Between(2, &mut *output);
		let n = deserialize_check_len(des, expected_len).unwrap();
		assert_eq!(n, 3);
		assert_eq!(output, vec![1, 2, 3, 0, 0]);
	}

	#[test]
	fn should_deserialize_from_borrowed_bytes() {
		type BytesDeserializer<'a> = serde::de::value::BorrowedBytesDeserializer<'a, serde::de::value::Error>;

		// using `deserialize` to decode borrowed bytes.
		let des = BytesDeserializer::new(&[1, 2, 3, 4, 5]);
		let deserialized: Vec<u8> = deserialize(des).unwrap();
		assert_eq!(deserialized, vec![1, 2, 3, 4, 5]);

		// using `deserialize` to decode borrowed bytes into buffer with fixed length.
		let des = BytesDeserializer::new(&[1, 2, 3, 4, 5]);
		let mut output = vec![0, 0, 0, 0, 0];
		let expected_len = ExpectedLen::Exact(&mut *output);
		let n = deserialize_check_len(des, expected_len).unwrap();
		assert_eq!(n, 5);
		assert_eq!(output, vec![1, 2, 3, 4, 5]);

		// using `deserialize` to decode borrowed bytes into buffer with min/max length.
		let des = BytesDeserializer::new(&[1, 2, 3]);
		let mut output = vec![0, 0, 0, 0, 0];
		let expected_len = ExpectedLen::Between(2, &mut *output);
		let n = deserialize_check_len(des, expected_len).unwrap();
		assert_eq!(n, 3);
		assert_eq!(output, vec![1, 2, 3, 0, 0]);
	}

	#[test]
	fn should_deserialize_from_u8_sequence() {
		use serde::de::value::SeqDeserializer;

		// using `deserialize` to decode a sequence of bytes.
		let des = SeqDeserializer::<_, serde::de::value::Error>::new([1u8, 2, 3, 4, 5].into_iter());
		let deserialized: Vec<u8> = deserialize(des).unwrap();
		assert_eq!(deserialized, vec![1, 2, 3, 4, 5]);

		// using `deserialize` to decode a sequence of bytes into a buffer with fixed length.
		let des = SeqDeserializer::<_, serde::de::value::Error>::new([1u8, 2, 3, 4, 5].into_iter());
		let mut output = vec![0, 0, 0, 0, 0];
		let expected_len = ExpectedLen::Exact(&mut *output);
		let n = deserialize_check_len(des, expected_len).unwrap();
		assert_eq!(n, 5);
		assert_eq!(output, vec![1, 2, 3, 4, 5]);

		// using `deserialize` to decode a sequence of bytes into a buffer with min/max length.
		let des = SeqDeserializer::<_, serde::de::value::Error>::new([1u8, 2, 3].into_iter());
		let mut output = vec![0, 0, 0, 0, 0];
		let expected_len = ExpectedLen::Between(2, &mut *output);
		let n = deserialize_check_len(des, expected_len).unwrap();
		assert_eq!(n, 3);
		assert_eq!(output, vec![1, 2, 3, 0, 0]);
	}
}