1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
use std::cmp;
use std::fmt;
use std::net::Ipv4Addr;
use std::str::FromStr;
use std::hash::{Hash, Hasher};
use crate::{IpNetworkError, IpNetworkParseError};
use crate::helpers;
use crate::iterator;
use std::collections::HashMap;
use std::collections::hash_map::Entry;
/// IPv4 Network.
#[derive(Clone, Copy, Debug, Eq, PartialOrd, Ord)]
pub struct Ipv4Network {
pub(crate) network_address: Ipv4Addr,
pub(crate) netmask: u8,
}
impl Ipv4Network {
/// IPv4 address length in bits.
pub const LENGTH: u8 = 32;
/// Default route that contains all IP addresses, IP network 0.0.0.0/0
pub const DEFAULT_ROUTE: Self = Self {
network_address: Ipv4Addr::UNSPECIFIED,
netmask: 0,
};
/// Constructs new `Ipv4Network` based on [`Ipv4Addr`] and `netmask`.
///
/// Returns error if netmask is bigger than 32 or if host bits are set in `network_address`.
///
/// [`Ipv4Addr`]: https://doc.rust-lang.org/std/net/struct.Ipv4Addr.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// assert_eq!(ip_network.network_address(), Ipv4Addr::new(192, 168, 1, 0));
/// assert_eq!(ip_network.netmask(), 24);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
#[allow(clippy::new_ret_no_self)]
pub fn new(network_address: Ipv4Addr, netmask: u8) -> Result<Self, IpNetworkError> {
if netmask > Self::LENGTH {
return Err(IpNetworkError::NetmaskError(netmask));
}
if u32::from(network_address).trailing_zeros() < u32::from(Self::LENGTH - netmask) {
return Err(IpNetworkError::HostBitsSet);
}
Ok(Self {
network_address,
netmask,
})
}
/// Constructs new `Ipv4Network` based on [`Ipv4Addr`] and `netmask` with truncating host bits
/// from given `network_address`.
///
/// Returns error if netmask is bigger than 32.
///
/// [`Ipv4Addr`]: https://doc.rust-lang.org/std/net/struct.Ipv4Addr.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new_truncate(Ipv4Addr::new(192, 168, 1, 100), 24)?;
/// assert_eq!(ip_network.network_address(), Ipv4Addr::new(192, 168, 1, 0));
/// assert_eq!(ip_network.netmask(), 24);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn new_truncate(network_address: Ipv4Addr, netmask: u8) -> Result<Self, IpNetworkError> {
if netmask > Self::LENGTH {
return Err(IpNetworkError::NetmaskError(netmask));
}
let network_address =
Ipv4Addr::from(u32::from(network_address) & helpers::bite_mask(netmask));
Ok(Self {
network_address,
netmask,
})
}
/// Returns network IP address (first address in range).
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// assert_eq!(ip_network.network_address(), Ipv4Addr::new(192, 168, 1, 0));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
#[inline]
pub fn network_address(&self) -> Ipv4Addr {
self.network_address
}
/// Returns broadcast address of network (last address in range).
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// assert_eq!(ip_network.broadcast_address(), Ipv4Addr::new(192, 168, 1, 255));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn broadcast_address(&self) -> Ipv4Addr {
Ipv4Addr::from(u32::from(self.network_address) | !helpers::bite_mask(self.netmask))
}
/// Returns network mask as integer.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// assert_eq!(ip_network.netmask(), 24);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
#[inline]
pub fn netmask(&self) -> u8 {
self.netmask
}
/// Returns network mask as IPv4 address.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// assert_eq!(ip_network.full_netmask(), Ipv4Addr::new(255, 255, 255, 0));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn full_netmask(&self) -> Ipv4Addr {
Ipv4Addr::from(helpers::bite_mask(self.netmask))
}
/// Returns [`true`] if given [`IPv4Addr`] is inside this network.
///
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
/// [`Ipv4Addr`]: https://doc.rust-lang.org/std/net/struct.Ipv4Addr.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// assert!(ip_network.contains(Ipv4Addr::new(192, 168, 1, 2)));
/// assert!(!ip_network.contains(Ipv4Addr::new(192, 168, 2, 2)));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn contains(&self, ip: Ipv4Addr) -> bool {
u32::from(ip) & helpers::bite_mask(self.netmask) == u32::from(self.network_address)
}
/// Returns iterator over host IP addresses in range (without network and broadcast address). You
/// can also use this method to check how much hosts address are in range by calling [`len()`] method
/// on iterator (see Examples).
///
/// [`len()`]: https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html#method.len
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip = Ipv4Addr::new(192, 168, 1, 0);
/// let mut hosts = Ipv4Network::new(ip, 24)?.hosts();
/// assert_eq!(254, hosts.len());
/// assert_eq!(hosts.next().unwrap(), Ipv4Addr::new(192, 168, 1, 1));
/// assert_eq!(hosts.last().unwrap(), Ipv4Addr::new(192, 168, 1, 254));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn hosts(&self) -> impl ExactSizeIterator<Item = Ipv4Addr> {
iterator::Ipv4RangeIterator::hosts(*self)
}
/// Returns network with smaller netmask by one. If netmask is already zero, `None` will be returned.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip = Ipv4Addr::new(192, 168, 1, 0);
/// let mut hosts = Ipv4Network::new(ip, 24)?;
/// assert_eq!(hosts.supernet(), Some(Ipv4Network::new(Ipv4Addr::new(192, 168, 0, 0), 23)?));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn supernet(&self) -> Option<Self> {
if self.netmask == 0 {
None
} else {
Some(Self::new_truncate(self.network_address, self.netmask - 1).unwrap())
}
}
/// Returns iterator over networks with bigger netmask by one. If netmask is already 32,
/// iterator is empty.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?;
/// let mut iterator = ip_network.subnets();
/// assert_eq!(iterator.next().unwrap(), Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 25)?);
/// assert_eq!(iterator.last().unwrap(), Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 128), 25)?);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn subnets(&self) -> impl ExactSizeIterator<Item = Ipv4Network> {
let new_netmask = cmp::min(self.netmask + 1, Self::LENGTH);
iterator::Ipv4NetworkIterator::new(*self, new_netmask)
}
/// Returns `Ipv4NetworkIterator` over networks with defined netmask.
///
/// # Panics
///
/// This method panics when prefix is bigger than 32 or when prefix is lower or equal than netmask.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip = Ipv4Addr::new(192, 168, 1, 0);
/// let mut iterator = Ipv4Network::new(ip, 24)?.subnets_with_prefix(25);
/// assert_eq!(iterator.next().unwrap(), Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 25)?);
/// assert_eq!(iterator.last().unwrap(), Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 128), 25)?);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn subnets_with_prefix(&self, prefix: u8) -> impl ExactSizeIterator<Item = Ipv4Network> {
iterator::Ipv4NetworkIterator::new(*self, prefix)
}
/// Returns [`true`] for the default route network (0.0.0.0/0), that contains all IPv4 addresses.
///
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 0)?.is_default_route());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_default_route(&self) -> bool {
self.netmask == 0
}
/// Returns [`true`] for network in local identification range (0.0.0.0/8).
///
/// This property is defined by [IETF RFC 1122].
///
/// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 8)?.is_local_identification());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_local_identification(&self) -> bool {
self.network_address.octets()[0] == 0 && self.netmask >= 8
}
/// Returns [`true`] for the special 'unspecified' network (0.0.0.0/32).
///
/// This property is defined in _UNIX Network Programming, Second Edition_,
/// W. Richard Stevens, p. 891; see also [ip7].
///
/// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 32)?.is_unspecified());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_unspecified(&self) -> bool {
self.netmask == Self::LENGTH && self.network_address.is_unspecified()
}
/// Returns [`true`] if this network is inside loopback address range (127.0.0.0/8).
///
/// This property is defined by [IETF RFC 1122].
///
/// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 8)?.is_loopback());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_loopback(&self) -> bool {
self.network_address.is_loopback()
}
/// Returns [`true`] if this is a broadcast network (255.255.255.255/32).
///
/// A broadcast address has all octets set to 255 as defined in [IETF RFC 919].
///
/// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(255, 255, 255, 255), 32)?.is_broadcast());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_broadcast(&self) -> bool {
self.network_address.is_broadcast()
}
/// Returns [`true`] if this whole network range is inside private address ranges.
///
/// The private address ranges are defined in [IETF RFC 1918] and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
///
/// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?.is_private());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_private(&self) -> bool {
let octets = self.network_address.octets();
match octets[0] {
10 if self.netmask >= 8 => true,
172 if octets[1] >= 16 && octets[1] <= 31 && self.netmask >= 12 => true,
192 if octets[1] == 168 && self.netmask >= 16 => true,
_ => false,
}
}
/// Returns [`true`] if this whole network is inside IETF Protocol Assignments range (192.0.0.0/24).
///
/// This property is defined by [IETF RFC 6890, Section 2.1].
///
/// [IETF RFC 6890, Section 2.1]: https://tools.ietf.org/html/rfc6890#section-2.1
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(192, 0, 0, 0), 24)?.is_ietf_protocol_assignments());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_ietf_protocol_assignments(&self) -> bool {
let octets = self.network_address.octets();
octets[0] == 192 && octets[1] == 0 && octets[2] == 0 && self.netmask >= 24
}
/// Returns [`true`] if this whole network is inside Shared Address Space (100.64.0.0/10).
///
/// This property is defined by [IETF RFC 6598].
///
/// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(100, 64, 0, 0), 10)?.is_shared_address_space());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_shared_address_space(&self) -> bool {
let octets = self.network_address.octets();
octets[0] == 100 && octets[1] & 0xc0 == 64
}
/// Returns [`true`] if the network is is inside link-local range (169.254.0.0/16).
///
/// This property is defined by [IETF RFC 3927].
///
/// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(169, 254, 1, 0), 24)?.is_link_local());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_link_local(&self) -> bool {
self.network_address.is_link_local() && self.netmask >= 16
}
/// Returns [`true`] if this whole network is inside multicast address range (224.0.0.0/4).
///
/// Multicast network addresses have a most significant octet between 224 and 239,
/// and is defined by [IETF RFC 5771].
///
/// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(224, 168, 1, 0), 24)?.is_multicast());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_multicast(&self) -> bool {
self.network_address.octets()[0] & 0xf0 == 224 && self.netmask >= 4
}
/// Returns [`true`] if this whole network is inside benchmarking address range (198.18.0.0/15).
///
/// This property is defined by [IETF RFC 2544].
///
/// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(198, 19, 1, 0), 24)?.is_benchmarking());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_benchmarking(&self) -> bool {
// Not necessary to check netmask
let octets = self.network_address.octets();
octets[0] == 198 && octets[1] & 0xfe == 18
}
/// Returns [`true`] if this whole network is inside reserved address range (240.0.0.0/4), except
/// broadcast address (255.255.255.255/32).
///
/// Reserved network addresses have a most significant octet between 240 and 255,
/// and is defined by [IETF RFC 1112].
///
/// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(240, 168, 1, 0), 24)?.is_reserved());
/// assert!(!Ipv4Network::new(Ipv4Addr::new(255, 255, 255, 255), 32)?.is_reserved());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_reserved(&self) -> bool {
// Not necessary to check netmask
self.network_address.octets()[0] & 0xf0 == 240 && !self.network_address.is_broadcast()
}
/// Returns [`true`] if this network is in a range designated for documentation.
///
/// This is defined in [IETF RFC 5737]:
///
/// - 192.0.2.0/24 (TEST-NET-1)
/// - 198.51.100.0/24 (TEST-NET-2)
/// - 203.0.113.0/24 (TEST-NET-3)
///
/// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(Ipv4Network::new(Ipv4Addr::new(192, 0, 2, 0), 24)?.is_documentation());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_documentation(&self) -> bool {
self.network_address.is_documentation() && self.netmask >= 24
}
/// Returns [`true`] if the network appears to be globally routable.
/// See [IANA IPv4 Special-Purpose Address Registry][ipv4-sr].
///
/// The following return [`false`]:
///
/// - local identification (0.0.0.0/8)
/// - private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
/// - Shared Address Space (100.64.0.0/10)
/// - the loopback address (127.0.0.0/8)
/// - the link-local address (169.254.0.0/16)
/// - IETF Protocol Assignments (192.0.0.0/24, except 192.0.0.9/32 and 192.0.0.10/32)
/// - the broadcast address (255.255.255.255/32)
/// - test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
/// - benchmarking (198.18.0.0/15)
/// - reserved range (240.0.0.0/4)
///
/// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
/// [`true`]: https://doc.rust-lang.org/std/primitive.bool.html
/// [`false`]: https://doc.rust-lang.org/std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert!(!Ipv4Network::new(Ipv4Addr::new(10, 254, 0, 0), 16)?.is_global());
/// assert!(!Ipv4Network::new(Ipv4Addr::new(192, 168, 10, 65), 32)?.is_global());
/// assert!(!Ipv4Network::new(Ipv4Addr::new(172, 16, 10, 65), 32)?.is_global());
/// assert!(!Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 32)?.is_global());
/// assert!(Ipv4Network::new(Ipv4Addr::new(80, 9, 12, 3), 32)?.is_global());
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn is_global(&self) -> bool {
let octets = self.network_address.octets();
// These address are only two globally routable from IETF Protocol Assignments.
if self.netmask == 32 && (octets == [192, 0, 0, 9] || octets == [192, 0, 0, 10]) {
return true;
}
!self.is_local_identification()
&& !self.is_private()
&& !self.is_ietf_protocol_assignments()
&& !self.is_shared_address_space()
&& !self.is_loopback()
&& !self.is_link_local()
&& !self.is_broadcast()
&& !self.is_documentation()
&& !self.is_benchmarking()
&& !self.is_reserved()
}
/// Return a vector of the summarized network range given the first and last IPv4 addresses.
/// Implementation of this method was inspired by Python [`ipaddress.summarize_address_range`]
/// method. If first IP address is bigger than last, empty vector is returned.
///
/// [`ipaddress.summarize_address_range`]: https://docs.python.org/3/library/ipaddress.html#ipaddress.summarize_address_range
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ranges = Ipv4Network::summarize_address_range(
/// Ipv4Addr::new(10, 254, 0, 0),
/// Ipv4Addr::new(10, 255, 255, 255),
/// );
///
/// assert_eq!(Ipv4Network::new(Ipv4Addr::new(10, 254, 0, 0), 15)?, ranges[0]);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn summarize_address_range(first: Ipv4Addr, last: Ipv4Addr) -> Vec<Self> {
let mut first_int = u32::from(first);
let last_int = u32::from(last);
let mut vector = vec![];
while first_int <= last_int {
let bit_length_diff = if last_int - first_int == u32::MAX {
Self::LENGTH
} else {
helpers::bit_length(last_int - first_int + 1) - 1
};
let nbits = cmp::min(first_int.trailing_zeros() as u8, bit_length_diff);
vector.push(Self {
network_address: Ipv4Addr::from(first_int),
netmask: Self::LENGTH - nbits,
});
if nbits == Self::LENGTH {
break;
}
match first_int.checked_add(1 << nbits) {
Some(x) => first_int = x,
None => break,
}
}
vector
}
/// Return an iterator of the collapsed Ipv4Networks.
///
/// Implementation of this method was inspired by Python [`ipaddress.collapse_addresses`]
///
/// [`ipaddress.collapse_addresses`]: https://docs.python.org/3/library/ipaddress.html#ipaddress.collapse_addresses
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let collapsed = Ipv4Network::collapse_addresses(&[
/// Ipv4Network::new(Ipv4Addr::new(192, 0, 2, 0), 25)?,
/// Ipv4Network::new(Ipv4Addr::new(192, 0, 2, 128), 25)?,
/// ]);
///
/// assert_eq!(Ipv4Network::new(Ipv4Addr::new(192, 0, 2, 0), 24)?, collapsed[0]);
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
pub fn collapse_addresses(addresses: &[Self]) -> Vec<Self> {
let mut subnets = HashMap::new();
let mut to_merge = addresses.to_vec();
while let Some(net) = to_merge.pop() {
let supernet = net.supernet().unwrap_or(Ipv4Network::DEFAULT_ROUTE);
match subnets.entry(supernet) {
Entry::Vacant(vacant) => {
vacant.insert(net);
}
Entry::Occupied(occupied) => {
if *occupied.get() != net {
occupied.remove();
to_merge.push(supernet);
}
}
}
}
let mut output: Vec<Ipv4Network> = vec![];
let mut values = subnets.values().collect::<Vec<_>>();
values.sort_unstable();
for net in values {
if let Some(last) = output.last() {
// Since they are sorted, last.network_address <= net.network_address is a given.
if last.broadcast_address() >= net.broadcast_address() {
continue;
}
}
output.push(*net);
}
output
}
/// Converts string in format X.X.X.X/Y (CIDR notation) to `Ipv4Network`, but truncating host bits.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip_network = Ipv4Network::from_str_truncate("192.168.1.255/24")?;
/// assert_eq!(ip_network.network_address(), Ipv4Addr::new(192, 168, 1, 0));
/// assert_eq!(ip_network.netmask(), 24);
/// # Ok::<(), ip_network::IpNetworkParseError>(())
/// ```
pub fn from_str_truncate(s: &str) -> Result<Self, IpNetworkParseError> {
let (ip, netmask) =
helpers::split_ip_netmask(s).ok_or(IpNetworkParseError::InvalidFormatError)?;
let network_address =
Ipv4Addr::from_str(ip).map_err(|_| IpNetworkParseError::AddrParseError)?;
let netmask =
u8::from_str(netmask).map_err(|_| IpNetworkParseError::InvalidNetmaskFormat)?;
Self::new_truncate(network_address, netmask).map_err(IpNetworkParseError::IpNetworkError)
}
}
impl fmt::Display for Ipv4Network {
/// Converts `Ipv4Network` to string in format X.X.X.X/Y (CIDR notation).
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// assert_eq!(Ipv4Network::new(Ipv4Addr::new(192, 168, 1, 0), 24)?.to_string(), "192.168.1.0/24");
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}/{}", self.network_address, self.netmask)
}
}
impl FromStr for Ipv4Network {
type Err = IpNetworkParseError;
/// Converts string in format X.X.X.X/Y (CIDR notation) to `Ipv4Network`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
/// use std::str::FromStr;
///
/// let ip_network = Ipv4Network::from_str("192.168.1.0/24")?;
/// assert_eq!(ip_network.network_address(), Ipv4Addr::new(192, 168, 1, 0));
/// assert_eq!(ip_network.netmask(), 24);
/// # Ok::<(), ip_network::IpNetworkParseError>(())
/// ```
fn from_str(s: &str) -> Result<Ipv4Network, IpNetworkParseError> {
let (ip, netmask) =
helpers::split_ip_netmask(s).ok_or(IpNetworkParseError::InvalidFormatError)?;
let network_address =
Ipv4Addr::from_str(ip).map_err(|_| IpNetworkParseError::AddrParseError)?;
let netmask =
u8::from_str(netmask).map_err(|_| IpNetworkParseError::InvalidNetmaskFormat)?;
Self::new(network_address, netmask).map_err(IpNetworkParseError::IpNetworkError)
}
}
impl From<Ipv4Addr> for Ipv4Network {
/// Converts `Ipv4Addr` to `Ipv4Network` with netmask 32.
#[inline]
fn from(ip: Ipv4Addr) -> Self {
Self {
network_address: ip,
netmask: Self::LENGTH,
}
}
}
impl PartialEq for Ipv4Network {
#[inline]
fn eq(&self, other: &Ipv4Network) -> bool {
self.netmask == other.netmask && self.network_address == other.network_address
}
}
impl Hash for Ipv4Network {
fn hash<H: Hasher>(&self, state: &mut H) {
self.network_address.hash(state);
self.netmask.hash(state);
}
}
impl IntoIterator for Ipv4Network {
type Item = Ipv4Addr;
type IntoIter = iterator::Ipv4RangeIterator;
/// Returns iterator over all IP addresses in range including network and broadcast addresses.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ip_network::Ipv4Network;
///
/// let ip = Ipv4Addr::new(192, 168, 1, 0);
/// let mut iter = Ipv4Network::new(ip, 24)?.into_iter();
/// assert_eq!(iter.next().unwrap(), Ipv4Addr::new(192, 168, 1, 0));
/// assert_eq!(iter.next().unwrap(), Ipv4Addr::new(192, 168, 1, 1));
/// assert_eq!(iter.last().unwrap(), Ipv4Addr::new(192, 168, 1, 255));
/// # Ok::<(), ip_network::IpNetworkError>(())
/// ```
fn into_iter(self) -> Self::IntoIter {
Self::IntoIter::new(self.network_address, self.broadcast_address())
}
}
#[cfg(test)]
mod tests {
use std::net::Ipv4Addr;
use crate::{IpNetworkError, Ipv4Network};
use std::str::FromStr;
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
fn return_test_ipv4_network() -> Ipv4Network {
Ipv4Network::new(Ipv4Addr::new(192, 168, 0, 0), 16).unwrap()
}
#[test]
fn default_route() {
let network = Ipv4Network::DEFAULT_ROUTE;
assert!(network.is_default_route());
}
#[test]
fn new_host_bits_set() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ip_network = Ipv4Network::new(ip, 8);
assert!(ip_network.is_err());
assert_eq!(IpNetworkError::HostBitsSet, ip_network.unwrap_err());
}
#[test]
fn new_host_bits_set_no_31() {
let ip = Ipv4Addr::new(127, 0, 0, 2);
let ip_network = Ipv4Network::new(ip, 31);
assert!(ip_network.is_ok());
}
#[test]
fn new_host_bits_set_no_32() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ip_network = Ipv4Network::new(ip, 32);
assert!(ip_network.is_ok());
}
#[test]
fn new_host_bits_set_no_zero() {
let ip = Ipv4Addr::new(0, 0, 0, 0);
let ip_network = Ipv4Network::new(ip, 0);
assert!(ip_network.is_ok());
}
#[test]
fn new_big_invalid_netmask() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ip_network = Ipv4Network::new(ip, 33);
assert!(ip_network.is_err());
assert_eq!(IpNetworkError::NetmaskError(33), ip_network.unwrap_err());
}
#[test]
fn new_truncate_host_bits_set() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ip_network = Ipv4Network::new_truncate(ip, 8).unwrap();
assert_eq!(ip_network.network_address(), Ipv4Addr::new(127, 0, 0, 0));
}
#[test]
fn new_truncate_big_invalid_netmask() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ip_network = Ipv4Network::new_truncate(ip, 33);
assert!(ip_network.is_err());
assert_eq!(IpNetworkError::NetmaskError(33), ip_network.unwrap_err());
}
#[test]
fn basic_getters() {
let ip_network = return_test_ipv4_network();
assert_eq!(ip_network.network_address(), Ipv4Addr::new(192, 168, 0, 0));
assert_eq!(ip_network.netmask(), 16);
assert_eq!(
ip_network.broadcast_address(),
Ipv4Addr::new(192, 168, 255, 255)
);
assert_eq!(ip_network.full_netmask(), Ipv4Addr::new(255, 255, 0, 0));
assert_eq!(
ip_network.supernet(),
Some(Ipv4Network::new(Ipv4Addr::new(192, 168, 0, 0), 15).unwrap())
);
assert_eq!(ip_network.hosts().len(), 256 * 256 - 2);
}
#[test]
fn host_network_without_hosts() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ip_network = Ipv4Network::new(ip, 32).unwrap();
assert_eq!(0, ip_network.hosts().len());
}
#[test]
fn supernet_none() {
let ipv4_network = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 0).unwrap();
assert_eq!(None, ipv4_network.supernet());
}
#[test]
fn iterator() {
let ip_network = return_test_ipv4_network();
assert_eq!(ip_network.into_iter().len(), 256 * 256);
}
#[test]
fn iterator_for() {
let mut i = 0;
for _ in return_test_ipv4_network() {
i += 1;
}
assert_eq!(i, 256 * 256);
}
#[test]
fn contains() {
let ip_network = return_test_ipv4_network();
assert!(!ip_network.contains(Ipv4Addr::new(192, 167, 255, 255)));
assert!(ip_network.contains(Ipv4Addr::new(192, 168, 0, 0)));
assert!(ip_network.contains(Ipv4Addr::new(192, 168, 255, 255)));
assert!(!ip_network.contains(Ipv4Addr::new(192, 169, 0, 0)));
}
#[test]
fn subnets() {
let ip_network = return_test_ipv4_network();
let mut subnets = ip_network.subnets();
assert_eq!(subnets.len(), 2);
assert_eq!(
subnets.next().unwrap(),
Ipv4Network::new(Ipv4Addr::new(192, 168, 0, 0), 17).unwrap()
);
assert_eq!(
subnets.next().unwrap(),
Ipv4Network::new(Ipv4Addr::new(192, 168, 128, 0), 17).unwrap()
);
assert!(subnets.next().is_none());
}
#[test]
fn subnets_none() {
let ipv4_network = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 32).unwrap();
assert_eq!(0, ipv4_network.subnets().len());
}
#[test]
fn subnets_with_prefix() {
let ip_network = return_test_ipv4_network();
let mut subnets = ip_network.subnets_with_prefix(18);
assert_eq!(subnets.len(), 4);
assert_eq!(
subnets.next().unwrap(),
Ipv4Network::new(Ipv4Addr::new(192, 168, 0, 0), 18).unwrap()
);
assert_eq!(
subnets.next().unwrap(),
Ipv4Network::new(Ipv4Addr::new(192, 168, 64, 0), 18).unwrap()
);
assert_eq!(
subnets.next().unwrap(),
Ipv4Network::new(Ipv4Addr::new(192, 168, 128, 0), 18).unwrap()
);
assert_eq!(
subnets.next().unwrap(),
Ipv4Network::new(Ipv4Addr::new(192, 168, 192, 0), 18).unwrap()
);
assert!(subnets.next().is_none());
}
#[test]
fn parse() {
let ip_network: Ipv4Network = "192.168.0.0/16".parse().unwrap();
assert_eq!(ip_network, return_test_ipv4_network());
}
#[test]
fn format() {
let ip_network = return_test_ipv4_network();
assert_eq!(ip_network.to_string(), "192.168.0.0/16");
}
#[test]
fn cmd_different_ip() {
let a = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 8).unwrap();
let b = Ipv4Network::new(Ipv4Addr::new(128, 0, 0, 0), 8).unwrap();
assert!(b > a);
}
#[test]
fn cmd_different_netmask() {
let a = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 8).unwrap();
let b = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 16).unwrap();
assert!(b > a);
}
#[test]
fn is_private() {
let is_private = |ip, netmask| Ipv4Network::new(ip, netmask).unwrap().is_private();
assert!(is_private(Ipv4Addr::new(10, 0, 0, 0), 8));
assert!(!is_private(Ipv4Addr::new(10, 0, 0, 0), 7));
assert!(is_private(Ipv4Addr::new(10, 0, 0, 0), 32));
assert!(!is_private(Ipv4Addr::new(11, 0, 0, 0), 32));
assert!(is_private(Ipv4Addr::new(172, 16, 0, 0), 12));
assert!(is_private(Ipv4Addr::new(172, 16, 0, 0), 32));
assert!(is_private(Ipv4Addr::new(172, 31, 255, 255), 32));
assert!(!is_private(Ipv4Addr::new(172, 32, 0, 0), 32));
assert!(is_private(Ipv4Addr::new(192, 168, 0, 0), 16));
assert!(is_private(Ipv4Addr::new(192, 168, 0, 0), 32));
assert!(!is_private(Ipv4Addr::new(192, 168, 0, 0), 15));
}
#[test]
fn is_global() {
let is_global = |ip, netmask| Ipv4Network::new(ip, netmask).unwrap().is_global();
assert!(is_global(Ipv4Addr::new(0, 0, 0, 0), 4));
assert!(!is_global(Ipv4Addr::new(0, 0, 0, 0), 8));
assert!(!is_global(Ipv4Addr::new(0, 0, 0, 0), 16));
assert!(!is_global(Ipv4Addr::new(100, 64, 0, 0), 10)); // Shared Address Space
assert!(!is_global(Ipv4Addr::new(100, 127, 0, 0), 16)); // Shared Address Space
assert!(!is_global(Ipv4Addr::new(10, 0, 0, 0), 8));
assert!(is_global(Ipv4Addr::new(10, 0, 0, 0), 7));
assert!(!is_global(Ipv4Addr::new(10, 0, 0, 0), 32));
assert!(is_global(Ipv4Addr::new(11, 0, 0, 0), 32));
assert!(!is_global(Ipv4Addr::new(172, 16, 0, 0), 12));
assert!(!is_global(Ipv4Addr::new(172, 16, 0, 0), 32));
assert!(!is_global(Ipv4Addr::new(172, 31, 255, 255), 32));
assert!(is_global(Ipv4Addr::new(172, 32, 0, 0), 32));
assert!(!is_global(Ipv4Addr::new(192, 168, 0, 0), 16));
assert!(!is_global(Ipv4Addr::new(192, 168, 0, 0), 32));
assert!(is_global(Ipv4Addr::new(192, 168, 0, 0), 15));
assert!(!is_global(Ipv4Addr::new(127, 0, 0, 0), 8));
assert!(!is_global(Ipv4Addr::new(169, 254, 0, 0), 16));
assert!(!is_global(Ipv4Addr::new(255, 255, 255, 255), 32));
assert!(!is_global(Ipv4Addr::new(192, 0, 2, 0), 24));
assert!(!is_global(Ipv4Addr::new(198, 51, 100, 0), 24));
assert!(!is_global(Ipv4Addr::new(203, 0, 113, 0), 24));
assert!(!is_global(Ipv4Addr::new(198, 18, 0, 0), 15)); // benchmarking
assert!(!is_global(Ipv4Addr::new(198, 19, 0, 0), 16)); // benchmarking
assert!(!is_global(Ipv4Addr::new(240, 0, 0, 0), 4));
assert!(!is_global(Ipv4Addr::new(240, 0, 0, 0), 8));
assert!(!is_global(Ipv4Addr::new(255, 0, 0, 0), 8));
assert!(!is_global(Ipv4Addr::new(192, 0, 0, 0), 24)); // IETF Protocol Assignments
}
#[test]
fn hash_same_for_same_input() {
use std::hash::{Hash, Hasher};
use std::collections::hash_map::DefaultHasher;
let mut hasher = DefaultHasher::new();
let ip = Ipv4Addr::new(127, 0, 0, 0);
let network = Ipv4Network::new(ip, 8).unwrap();
network.hash(&mut hasher);
let first_hash = hasher.finish();
let mut hasher = DefaultHasher::new();
let ip = Ipv4Addr::new(127, 0, 0, 0);
let network = Ipv4Network::new(ip, 8).unwrap();
network.hash(&mut hasher);
let second_hash = hasher.finish();
assert_eq!(first_hash, second_hash);
}
#[test]
fn summarize_address_range() {
let networks = Ipv4Network::summarize_address_range(
Ipv4Addr::new(194, 249, 198, 0),
Ipv4Addr::new(194, 249, 198, 159),
);
assert_eq!(networks.len(), 2);
assert_eq!(
networks[0],
Ipv4Network::new(Ipv4Addr::new(194, 249, 198, 0), 25).unwrap()
);
assert_eq!(
networks[1],
Ipv4Network::new(Ipv4Addr::new(194, 249, 198, 128), 27).unwrap()
);
}
#[test]
fn summarize_address_range_whole_range() {
let networks = Ipv4Network::summarize_address_range(
Ipv4Addr::new(0, 0, 0, 0),
Ipv4Addr::new(255, 255, 255, 255),
);
assert_eq!(networks.len(), 1);
assert_eq!(
networks[0],
Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 0).unwrap()
);
}
#[test]
fn summarize_address_range_first_is_bigger() {
let networks = Ipv4Network::summarize_address_range(
Ipv4Addr::new(255, 255, 255, 255),
Ipv4Addr::new(0, 0, 0, 0),
);
assert_eq!(0, networks.len());
}
#[test]
fn collapse_addresses() {
let addresses = [
Ipv4Network::from_str("192.0.2.0/26").unwrap(),
Ipv4Network::from_str("192.0.2.64/26").unwrap(),
Ipv4Network::from_str("192.0.2.128/26").unwrap(),
Ipv4Network::from_str("192.0.2.192/26").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(1, collapsed.len());
assert_eq!(Ipv4Network::from_str("192.0.2.0/24").unwrap(), collapsed[0]);
}
#[test]
fn collapse_addresses_2() {
let addresses = [
Ipv4Network::from_str("192.0.2.0/25").unwrap(),
Ipv4Network::from_str("192.0.2.128/25").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(1, collapsed.len());
assert_eq!(Ipv4Network::from_str("192.0.2.0/24").unwrap(), collapsed[0]);
}
#[test]
fn collapse_addresses_3() {
// test only IP addresses including some duplicates
let addresses = [
Ipv4Network::from_str("1.1.1.0/32").unwrap(),
Ipv4Network::from_str("1.1.1.1/32").unwrap(),
Ipv4Network::from_str("1.1.1.2/32").unwrap(),
Ipv4Network::from_str("1.1.1.3/32").unwrap(),
Ipv4Network::from_str("1.1.1.4/32").unwrap(),
Ipv4Network::from_str("1.1.1.0/32").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(2, collapsed.len());
assert_eq!(Ipv4Network::from_str("1.1.1.0/30").unwrap(), collapsed[0]);
assert_eq!(Ipv4Network::from_str("1.1.1.4/32").unwrap(), collapsed[1]);
}
#[test]
fn collapse_addresses_4() {
// test a mix of IP addresses and networks including some duplicates
let addresses = [
Ipv4Network::from_str("1.1.1.0/32").unwrap(),
Ipv4Network::from_str("1.1.1.1/32").unwrap(),
Ipv4Network::from_str("1.1.1.2/32").unwrap(),
Ipv4Network::from_str("1.1.1.3/32").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(1, collapsed.len());
assert_eq!(Ipv4Network::from_str("1.1.1.0/30").unwrap(), collapsed[0]);
}
#[test]
fn collapse_addresses_5() {
// test only IP networks
let addresses = [
Ipv4Network::from_str("1.1.0.0/24").unwrap(),
Ipv4Network::from_str("1.1.1.0/24").unwrap(),
Ipv4Network::from_str("1.1.2.0/24").unwrap(),
Ipv4Network::from_str("1.1.3.0/24").unwrap(),
Ipv4Network::from_str("1.1.4.0/24").unwrap(),
Ipv4Network::from_str("1.1.0.0/22").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(2, collapsed.len());
assert_eq!(Ipv4Network::from_str("1.1.0.0/22").unwrap(), collapsed[0]);
assert_eq!(Ipv4Network::from_str("1.1.4.0/24").unwrap(), collapsed[1]);
}
#[test]
fn collapse_addresses_5_order() {
let addresses = [
Ipv4Network::from_str("1.1.3.0/24").unwrap(),
Ipv4Network::from_str("1.1.4.0/24").unwrap(),
Ipv4Network::from_str("1.1.0.0/22").unwrap(),
Ipv4Network::from_str("1.1.2.0/24").unwrap(),
Ipv4Network::from_str("1.1.0.0/24").unwrap(),
Ipv4Network::from_str("1.1.1.0/24").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(2, collapsed.len());
assert_eq!(Ipv4Network::from_str("1.1.0.0/22").unwrap(), collapsed[0]);
assert_eq!(Ipv4Network::from_str("1.1.4.0/24").unwrap(), collapsed[1]);
}
#[test]
fn collapse_addresses_6() {
// test that two addresses are supernet'ed properly
let addresses = [
Ipv4Network::from_str("1.1.0.0/24").unwrap(),
Ipv4Network::from_str("1.1.1.0/24").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(1, collapsed.len());
assert_eq!(Ipv4Network::from_str("1.1.0.0/23").unwrap(), collapsed[0]);
}
#[test]
fn collapse_addresses_7() {
// test same IP networks
let addresses = [
Ipv4Network::from_str("1.1.1.1/32").unwrap(),
Ipv4Network::from_str("1.1.1.1/32").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(1, collapsed.len());
assert_eq!(Ipv4Network::from_str("1.1.1.1/32").unwrap(), collapsed[0]);
}
#[test]
fn collapse_addresses_8() {
let addresses = [
Ipv4Network::from_str("0.0.0.0/0").unwrap(),
Ipv4Network::from_str("1.1.1.1/32").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(1, collapsed.len());
assert_eq!(Ipv4Network::from_str("0.0.0.0/0").unwrap(), collapsed[0]);
}
#[test]
fn collapse_addresses_9() {
let addresses = [
Ipv4Network::from_str("1.228.0.0/16").unwrap(),
Ipv4Network::from_str("1.230.0.0/15").unwrap(),
];
let collapsed = Ipv4Network::collapse_addresses(&addresses);
assert_eq!(2, collapsed.len());
}
#[test]
fn from_ipv4addr() {
let ip = Ipv4Addr::new(127, 0, 0, 1);
let ipv4_network = Ipv4Network::from(ip);
assert_eq!(ip, ipv4_network.network_address());
assert_eq!(32, ipv4_network.netmask());
}
#[test]
fn hash() {
let network1 = Ipv4Network::from_str("192.0.2.0/26").unwrap();
let network2 = Ipv4Network::from_str("192.0.2.64/26").unwrap();
let mut hasher1 = DefaultHasher::new();
network1.hash(&mut hasher1);
let mut hasher2 = DefaultHasher::new();
network2.hash(&mut hasher2);
assert_ne!(hasher1.finish(), hasher2.finish());
}
}