1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use std::fmt;
use std::iter::FusedIterator;

use super::lazy_buffer::LazyBuffer;
use alloc::vec::Vec;

use crate::adaptors::checked_binomial;

/// An iterator to iterate through all the `k`-length combinations in an iterator.
///
/// See [`.combinations()`](crate::Itertools::combinations) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Combinations<I: Iterator> {
    indices: Vec<usize>,
    pool: LazyBuffer<I>,
    first: bool,
}

impl<I> Clone for Combinations<I>
where
    I: Clone + Iterator,
    I::Item: Clone,
{
    clone_fields!(indices, pool, first);
}

impl<I> fmt::Debug for Combinations<I>
where
    I: Iterator + fmt::Debug,
    I::Item: fmt::Debug,
{
    debug_fmt_fields!(Combinations, indices, pool, first);
}

/// Create a new `Combinations` from a clonable iterator.
pub fn combinations<I>(iter: I, k: usize) -> Combinations<I>
where
    I: Iterator,
{
    Combinations {
        indices: (0..k).collect(),
        pool: LazyBuffer::new(iter),
        first: true,
    }
}

impl<I: Iterator> Combinations<I> {
    /// Returns the length of a combination produced by this iterator.
    #[inline]
    pub fn k(&self) -> usize {
        self.indices.len()
    }

    /// Returns the (current) length of the pool from which combination elements are
    /// selected. This value can change between invocations of [`next`](Combinations::next).
    #[inline]
    pub fn n(&self) -> usize {
        self.pool.len()
    }

    /// Returns a reference to the source pool.
    #[inline]
    pub(crate) fn src(&self) -> &LazyBuffer<I> {
        &self.pool
    }

    /// Resets this `Combinations` back to an initial state for combinations of length
    /// `k` over the same pool data source. If `k` is larger than the current length
    /// of the data pool an attempt is made to prefill the pool so that it holds `k`
    /// elements.
    pub(crate) fn reset(&mut self, k: usize) {
        self.first = true;

        if k < self.indices.len() {
            self.indices.truncate(k);
            for i in 0..k {
                self.indices[i] = i;
            }
        } else {
            for i in 0..self.indices.len() {
                self.indices[i] = i;
            }
            self.indices.extend(self.indices.len()..k);
            self.pool.prefill(k);
        }
    }

    pub(crate) fn n_and_count(self) -> (usize, usize) {
        let Self {
            indices,
            pool,
            first,
        } = self;
        let n = pool.count();
        (n, remaining_for(n, first, &indices).unwrap())
    }

    /// Initialises the iterator by filling a buffer with elements from the
    /// iterator. Returns true if there are no combinations, false otherwise.
    fn init(&mut self) -> bool {
        self.pool.prefill(self.k());
        let done = self.k() > self.n();
        if !done {
            self.first = false;
        }

        done
    }

    /// Increments indices representing the combination to advance to the next
    /// (in lexicographic order by increasing sequence) combination. For example
    /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
    ///
    /// Returns true if we've run out of combinations, false otherwise.
    fn increment_indices(&mut self) -> bool {
        if self.indices.is_empty() {
            return true; // Done
        }

        // Scan from the end, looking for an index to increment
        let mut i: usize = self.indices.len() - 1;

        // Check if we need to consume more from the iterator
        if self.indices[i] == self.pool.len() - 1 {
            self.pool.get_next(); // may change pool size
        }

        while self.indices[i] == i + self.pool.len() - self.indices.len() {
            if i > 0 {
                i -= 1;
            } else {
                // Reached the last combination
                return true;
            }
        }

        // Increment index, and reset the ones to its right
        self.indices[i] += 1;
        for j in i + 1..self.indices.len() {
            self.indices[j] = self.indices[j - 1] + 1;
        }

        // If we've made it this far, we haven't run out of combos
        false
    }

    /// Returns the n-th item or the number of successful steps.
    pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
    where
        I::Item: Clone,
    {
        let done = if self.first {
            self.init()
        } else {
            self.increment_indices()
        };
        if done {
            return Err(0);
        }
        for i in 0..n {
            if self.increment_indices() {
                return Err(i + 1);
            }
        }
        Ok(self.pool.get_at(&self.indices))
    }
}

impl<I> Iterator for Combinations<I>
where
    I: Iterator,
    I::Item: Clone,
{
    type Item = Vec<I::Item>;
    fn next(&mut self) -> Option<Self::Item> {
        let done = if self.first {
            self.init()
        } else {
            self.increment_indices()
        };

        if done {
            return None;
        }

        Some(self.pool.get_at(&self.indices))
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.try_nth(n).ok()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (mut low, mut upp) = self.pool.size_hint();
        low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
        upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
        (low, upp)
    }

    #[inline]
    fn count(self) -> usize {
        self.n_and_count().1
    }
}

impl<I> FusedIterator for Combinations<I>
where
    I: Iterator,
    I::Item: Clone,
{
}

/// For a given size `n`, return the count of remaining combinations or None if it would overflow.
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
    let k = indices.len();
    if n < k {
        Some(0)
    } else if first {
        checked_binomial(n, k)
    } else {
        // https://en.wikipedia.org/wiki/Combinatorial_number_system
        // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf

        // The combinations generated after the current one can be counted by counting as follows:
        // - The subsequent combinations that differ in indices[0]:
        //   If subsequent combinations differ in indices[0], then their value for indices[0]
        //   must be at least 1 greater than the current indices[0].
        //   As indices is strictly monotonically sorted, this means we can effectively choose k values
        //   from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
        // - The subsequent combinations with same indices[0], but differing indices[1]:
        //   Here we can choose k - 1 values from (n - 1 - indices[1]) values,
        //   leading to binomial(n - 1 - indices[1], k - 1) possibilities.
        // - (...)
        // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
        //   Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
        //   Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.

        // Below, `n0` resembles indices[i].
        indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
            sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
        })
    }
}