1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Implementation of a Kademlia routing table as used by a single peer
//! participating in a Kademlia DHT.
//!
//! The entry point for the API of this module is a [`KBucketsTable`].
//!
//! ## Pending Insertions
//!
//! When the bucket associated with the `Key` of an inserted entry is full
//! but contains disconnected nodes, it accepts a [`PendingEntry`].
//! Pending entries are inserted lazily when their timeout is found to be expired
//! upon querying the `KBucketsTable`. When that happens, the `KBucketsTable` records
//! an [`AppliedPending`] result which must be consumed by calling [`take_applied_pending`]
//! regularly and / or after performing lookup operations like [`entry`] and [`closest`].
//!
//! [`entry`]: KBucketsTable::entry
//! [`closest`]: KBucketsTable::closest
//! [`AppliedPending`]: bucket::AppliedPending
//! [`take_applied_pending`]: KBucketsTable::take_applied_pending
//! [`PendingEntry`]: entry::PendingEntry
// [Implementation Notes]
//
// 1. Routing Table Layout
//
// The routing table is currently implemented as a fixed-size "array" of
// buckets, ordered by increasing distance relative to a local key
// that identifies the local peer. This is an often-used, simplified
// implementation that approximates the properties of the b-tree (or prefix tree)
// implementation described in the full paper [0], whereby buckets are split on-demand.
// This should be treated as an implementation detail, however, so that the
// implementation may change in the future without breaking the API.
//
// 2. Replacement Cache
//
// In this implementation, the "replacement cache" for unresponsive peers
// consists of a single entry per bucket. Furthermore, this implementation is
// currently tailored to connection-oriented transports, meaning that the
// "LRU"-based ordering of entries in a bucket is actually based on the last reported
// connection status of the corresponding peers, from least-recently (dis)connected to
// most-recently (dis)connected, and controlled through the `Entry` API. As a result,
// the nodes in the buckets are not reordered as a result of RPC activity, but only as a
// result of nodes being marked as connected or disconnected. In particular,
// if a bucket is full and contains only entries for peers that are considered
// connected, no pending entry is accepted. See the `bucket` submodule for
// further details.
//
// [0]: https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
mod bucket;
mod entry;
#[allow(clippy::ptr_offset_with_cast)]
#[allow(clippy::assign_op_pattern)]
mod key;
pub use bucket::NodeStatus;
pub use entry::*;
use arrayvec::{self, ArrayVec};
use bucket::KBucket;
use std::collections::VecDeque;
use std::time::{Duration, Instant};
/// Maximum number of k-buckets.
const NUM_BUCKETS: usize = 256;
/// A `KBucketsTable` represents a Kademlia routing table.
#[derive(Debug, Clone)]
pub(crate) struct KBucketsTable<TKey, TVal> {
/// The key identifying the local peer that owns the routing table.
local_key: TKey,
/// The buckets comprising the routing table.
buckets: Vec<KBucket<TKey, TVal>>,
/// The list of evicted entries that have been replaced with pending
/// entries since the last call to [`KBucketsTable::take_applied_pending`].
applied_pending: VecDeque<AppliedPending<TKey, TVal>>,
}
/// A (type-safe) index into a `KBucketsTable`, i.e. a non-negative integer in the
/// interval `[0, NUM_BUCKETS)`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
struct BucketIndex(usize);
impl BucketIndex {
/// Creates a new `BucketIndex` for a `Distance`.
///
/// The given distance is interpreted as the distance from a `local_key` of
/// a `KBucketsTable`. If the distance is zero, `None` is returned, in
/// recognition of the fact that the only key with distance `0` to a
/// `local_key` is the `local_key` itself, which does not belong in any
/// bucket.
fn new(d: &Distance) -> Option<BucketIndex> {
d.ilog2().map(|i| BucketIndex(i as usize))
}
/// Gets the index value as an unsigned integer.
fn get(&self) -> usize {
self.0
}
/// Returns the minimum inclusive and maximum inclusive [`Distance`]
/// included in the bucket for this index.
fn range(&self) -> (Distance, Distance) {
let min = Distance(U256::pow(U256::from(2), U256::from(self.0)));
if self.0 == usize::from(u8::MAX) {
(min, Distance(U256::MAX))
} else {
let max = Distance(U256::pow(U256::from(2), U256::from(self.0 + 1)) - 1);
(min, max)
}
}
/// Generates a random distance that falls into the bucket for this index.
fn rand_distance(&self, rng: &mut impl rand::Rng) -> Distance {
let mut bytes = [0u8; 32];
let quot = self.0 / 8;
for i in 0..quot {
bytes[31 - i] = rng.gen();
}
let rem = (self.0 % 8) as u32;
let lower = usize::pow(2, rem);
let upper = usize::pow(2, rem + 1);
bytes[31 - quot] = rng.gen_range(lower..upper) as u8;
Distance(U256::from(bytes))
}
}
impl<TKey, TVal> KBucketsTable<TKey, TVal>
where
TKey: Clone + AsRef<KeyBytes>,
TVal: Clone,
{
/// Creates a new, empty Kademlia routing table with entries partitioned
/// into buckets as per the Kademlia protocol.
///
/// The given `pending_timeout` specifies the duration after creation of
/// a [`PendingEntry`] after which it becomes eligible for insertion into
/// a full bucket, replacing the least-recently (dis)connected node.
pub(crate) fn new(local_key: TKey, pending_timeout: Duration) -> Self {
KBucketsTable {
local_key,
buckets: (0..NUM_BUCKETS)
.map(|_| KBucket::new(pending_timeout))
.collect(),
applied_pending: VecDeque::new(),
}
}
/// Returns the local key.
pub(crate) fn local_key(&self) -> &TKey {
&self.local_key
}
/// Returns an `Entry` for the given key, representing the state of the entry
/// in the routing table.
pub(crate) fn entry<'a>(&'a mut self, key: &'a TKey) -> Entry<'a, TKey, TVal> {
let index = BucketIndex::new(&self.local_key.as_ref().distance(key));
if let Some(i) = index {
let bucket = &mut self.buckets[i.get()];
if let Some(applied) = bucket.apply_pending() {
self.applied_pending.push_back(applied)
}
Entry::new(bucket, key)
} else {
Entry::SelfEntry
}
}
/// Returns an iterator over all buckets.
///
/// The buckets are ordered by proximity to the `local_key`, i.e. the first
/// bucket is the closest bucket (containing at most one key).
pub(crate) fn iter(&mut self) -> impl Iterator<Item = KBucketRef<'_, TKey, TVal>> + '_ {
let applied_pending = &mut self.applied_pending;
self.buckets.iter_mut().enumerate().map(move |(i, b)| {
if let Some(applied) = b.apply_pending() {
applied_pending.push_back(applied)
}
KBucketRef {
index: BucketIndex(i),
bucket: b,
}
})
}
/// Returns the bucket for the distance to the given key.
///
/// Returns `None` if the given key refers to the local key.
pub(crate) fn bucket<K>(&mut self, key: &K) -> Option<KBucketRef<'_, TKey, TVal>>
where
K: AsRef<KeyBytes>,
{
let d = self.local_key.as_ref().distance(key);
if let Some(index) = BucketIndex::new(&d) {
let bucket = &mut self.buckets[index.0];
if let Some(applied) = bucket.apply_pending() {
self.applied_pending.push_back(applied)
}
Some(KBucketRef { bucket, index })
} else {
None
}
}
/// Consumes the next applied pending entry, if any.
///
/// When an entry is attempted to be inserted and the respective bucket is full,
/// it may be recorded as pending insertion after a timeout, see [`InsertResult::Pending`].
///
/// If the oldest currently disconnected entry in the respective bucket does not change
/// its status until the timeout of pending entry expires, it is evicted and
/// the pending entry inserted instead. These insertions of pending entries
/// happens lazily, whenever the `KBucketsTable` is accessed, and the corresponding
/// buckets are updated accordingly. The fact that a pending entry was applied is
/// recorded in the `KBucketsTable` in the form of `AppliedPending` results, which must be
/// consumed by calling this function.
pub(crate) fn take_applied_pending(&mut self) -> Option<AppliedPending<TKey, TVal>> {
self.applied_pending.pop_front()
}
/// Returns an iterator over the keys closest to `target`, ordered by
/// increasing distance.
pub(crate) fn closest_keys<'a, T>(
&'a mut self,
target: &'a T,
) -> impl Iterator<Item = TKey> + 'a
where
T: AsRef<KeyBytes>,
{
let distance = self.local_key.as_ref().distance(target);
ClosestIter {
target,
iter: None,
table: self,
buckets_iter: ClosestBucketsIter::new(distance),
fmap: |b: &KBucket<TKey, _>| -> ArrayVec<_, { K_VALUE.get() }> {
b.iter().map(|(n, _)| n.key.clone()).collect()
},
}
}
/// Returns an iterator over the nodes closest to the `target` key, ordered by
/// increasing distance.
pub(crate) fn closest<'a, T>(
&'a mut self,
target: &'a T,
) -> impl Iterator<Item = EntryView<TKey, TVal>> + 'a
where
T: Clone + AsRef<KeyBytes>,
TVal: Clone,
{
let distance = self.local_key.as_ref().distance(target);
ClosestIter {
target,
iter: None,
table: self,
buckets_iter: ClosestBucketsIter::new(distance),
fmap: |b: &KBucket<_, TVal>| -> ArrayVec<_, { K_VALUE.get() }> {
b.iter()
.map(|(n, status)| EntryView {
node: n.clone(),
status,
})
.collect()
},
}
}
/// Counts the number of nodes between the local node and the node
/// closest to `target`.
///
/// The number of nodes between the local node and the target are
/// calculated by backtracking from the target towards the local key.
pub(crate) fn count_nodes_between<T>(&mut self, target: &T) -> usize
where
T: AsRef<KeyBytes>,
{
let local_key = self.local_key.clone();
let distance = target.as_ref().distance(&local_key);
let mut iter = ClosestBucketsIter::new(distance).take_while(|i| i.get() != 0);
if let Some(i) = iter.next() {
let num_first = self.buckets[i.get()]
.iter()
.filter(|(n, _)| n.key.as_ref().distance(&local_key) <= distance)
.count();
let num_rest: usize = iter.map(|i| self.buckets[i.get()].num_entries()).sum();
num_first + num_rest
} else {
0
}
}
}
/// An iterator over (some projection of) the closest entries in a
/// `KBucketsTable` w.r.t. some target `Key`.
struct ClosestIter<'a, TTarget, TKey, TVal, TMap, TOut> {
/// A reference to the target key whose distance to the local key determines
/// the order in which the buckets are traversed. The resulting
/// array from projecting the entries of each bucket using `fmap` is
/// sorted according to the distance to the target.
target: &'a TTarget,
/// A reference to all buckets of the `KBucketsTable`.
table: &'a mut KBucketsTable<TKey, TVal>,
/// The iterator over the bucket indices in the order determined by the
/// distance of the local key to the target.
buckets_iter: ClosestBucketsIter,
/// The iterator over the entries in the currently traversed bucket.
iter: Option<arrayvec::IntoIter<TOut, { K_VALUE.get() }>>,
/// The projection function / mapping applied on each bucket as
/// it is encountered, producing the next `iter`ator.
fmap: TMap,
}
/// An iterator over the bucket indices, in the order determined by the `Distance` of
/// a target from the `local_key`, such that the entries in the buckets are incrementally
/// further away from the target, starting with the bucket covering the target.
struct ClosestBucketsIter {
/// The distance to the `local_key`.
distance: Distance,
/// The current state of the iterator.
state: ClosestBucketsIterState,
}
/// Operating states of a `ClosestBucketsIter`.
enum ClosestBucketsIterState {
/// The starting state of the iterator yields the first bucket index and
/// then transitions to `ZoomIn`.
Start(BucketIndex),
/// The iterator "zooms in" to to yield the next bucket cotaining nodes that
/// are incrementally closer to the local node but further from the `target`.
/// These buckets are identified by a `1` in the corresponding bit position
/// of the distance bit string. When bucket `0` is reached, the iterator
/// transitions to `ZoomOut`.
ZoomIn(BucketIndex),
/// Once bucket `0` has been reached, the iterator starts "zooming out"
/// to buckets containing nodes that are incrementally further away from
/// both the local key and the target. These are identified by a `0` in
/// the corresponding bit position of the distance bit string. When bucket
/// `255` is reached, the iterator transitions to state `Done`.
ZoomOut(BucketIndex),
/// The iterator is in this state once it has visited all buckets.
Done,
}
impl ClosestBucketsIter {
fn new(distance: Distance) -> Self {
let state = match BucketIndex::new(&distance) {
Some(i) => ClosestBucketsIterState::Start(i),
None => ClosestBucketsIterState::Start(BucketIndex(0)),
};
Self { distance, state }
}
fn next_in(&self, i: BucketIndex) -> Option<BucketIndex> {
(0..i.get()).rev().find_map(|i| {
if self.distance.0.bit(i) {
Some(BucketIndex(i))
} else {
None
}
})
}
fn next_out(&self, i: BucketIndex) -> Option<BucketIndex> {
(i.get() + 1..NUM_BUCKETS).find_map(|i| {
if !self.distance.0.bit(i) {
Some(BucketIndex(i))
} else {
None
}
})
}
}
impl Iterator for ClosestBucketsIter {
type Item = BucketIndex;
fn next(&mut self) -> Option<Self::Item> {
match self.state {
ClosestBucketsIterState::Start(i) => {
self.state = ClosestBucketsIterState::ZoomIn(i);
Some(i)
}
ClosestBucketsIterState::ZoomIn(i) => {
if let Some(i) = self.next_in(i) {
self.state = ClosestBucketsIterState::ZoomIn(i);
Some(i)
} else {
let i = BucketIndex(0);
self.state = ClosestBucketsIterState::ZoomOut(i);
Some(i)
}
}
ClosestBucketsIterState::ZoomOut(i) => {
if let Some(i) = self.next_out(i) {
self.state = ClosestBucketsIterState::ZoomOut(i);
Some(i)
} else {
self.state = ClosestBucketsIterState::Done;
None
}
}
ClosestBucketsIterState::Done => None,
}
}
}
impl<TTarget, TKey, TVal, TMap, TOut> Iterator for ClosestIter<'_, TTarget, TKey, TVal, TMap, TOut>
where
TTarget: AsRef<KeyBytes>,
TKey: Clone + AsRef<KeyBytes>,
TVal: Clone,
TMap: Fn(&KBucket<TKey, TVal>) -> ArrayVec<TOut, { K_VALUE.get() }>,
TOut: AsRef<KeyBytes>,
{
type Item = TOut;
fn next(&mut self) -> Option<Self::Item> {
loop {
match &mut self.iter {
Some(iter) => match iter.next() {
Some(k) => return Some(k),
None => self.iter = None,
},
None => {
if let Some(i) = self.buckets_iter.next() {
let bucket = &mut self.table.buckets[i.get()];
if let Some(applied) = bucket.apply_pending() {
self.table.applied_pending.push_back(applied)
}
let mut v = (self.fmap)(bucket);
v.sort_by(|a, b| {
self.target
.as_ref()
.distance(a.as_ref())
.cmp(&self.target.as_ref().distance(b.as_ref()))
});
self.iter = Some(v.into_iter());
} else {
return None;
}
}
}
}
}
}
/// A reference to a bucket.
pub struct KBucketRef<'a, TKey, TVal> {
index: BucketIndex,
bucket: &'a mut KBucket<TKey, TVal>,
}
impl<'a, TKey, TVal> KBucketRef<'a, TKey, TVal>
where
TKey: Clone + AsRef<KeyBytes>,
TVal: Clone,
{
/// Returns the minimum inclusive and maximum inclusive distance for
/// this bucket.
pub fn range(&self) -> (Distance, Distance) {
self.index.range()
}
/// Checks whether the bucket is empty.
pub fn is_empty(&self) -> bool {
self.num_entries() == 0
}
/// Returns the number of entries in the bucket.
pub fn num_entries(&self) -> usize {
self.bucket.num_entries()
}
/// Returns true if the bucket has a pending node.
pub fn has_pending(&self) -> bool {
self.bucket.pending().map_or(false, |n| !n.is_ready())
}
/// Tests whether the given distance falls into this bucket.
pub fn contains(&self, d: &Distance) -> bool {
BucketIndex::new(d).map_or(false, |i| i == self.index)
}
/// Generates a random distance that falls into this bucket.
///
/// Together with a known key `a` (e.g. the local key), a random distance `d` for
/// this bucket w.r.t `k` gives rise to the corresponding (random) key `b` s.t.
/// the XOR distance between `a` and `b` is `d`. In other words, it gives
/// rise to a random key falling into this bucket. See [`key::Key::for_distance`].
pub fn rand_distance(&self, rng: &mut impl rand::Rng) -> Distance {
self.index.rand_distance(rng)
}
/// Returns an iterator over the entries in the bucket.
pub fn iter(&'a self) -> impl Iterator<Item = EntryRefView<'a, TKey, TVal>> {
self.bucket.iter().map(move |(n, status)| EntryRefView {
node: NodeRefView {
key: &n.key,
value: &n.value,
},
status,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use libp2p_identity::PeerId;
use quickcheck::*;
type TestTable = KBucketsTable<KeyBytes, ()>;
impl Arbitrary for TestTable {
fn arbitrary(g: &mut Gen) -> TestTable {
let local_key = Key::from(PeerId::random());
let timeout = Duration::from_secs(g.gen_range(1..360));
let mut table = TestTable::new(local_key.clone().into(), timeout);
let mut num_total = g.gen_range(0..100);
for (i, b) in &mut table.buckets.iter_mut().enumerate().rev() {
let ix = BucketIndex(i);
let num = g.gen_range(0..usize::min(K_VALUE.get(), num_total) + 1);
num_total -= num;
for _ in 0..num {
let distance = ix.rand_distance(&mut rand::thread_rng());
let key = local_key.for_distance(distance);
let node = Node {
key: key.clone(),
value: (),
};
let status = NodeStatus::arbitrary(g);
match b.insert(node, status) {
InsertResult::Inserted => {}
_ => panic!(),
}
}
}
table
}
}
#[test]
fn buckets_are_non_overlapping_and_exhaustive() {
let local_key = Key::from(PeerId::random());
let timeout = Duration::from_secs(0);
let mut table = KBucketsTable::<KeyBytes, ()>::new(local_key.into(), timeout);
let mut prev_max = U256::from(0);
for bucket in table.iter() {
let (min, max) = bucket.range();
assert_eq!(Distance(prev_max + U256::from(1)), min);
prev_max = max.0;
}
assert_eq!(U256::MAX, prev_max);
}
#[test]
fn bucket_contains_range() {
fn prop(ix: u8) {
let index = BucketIndex(ix as usize);
let mut bucket = KBucket::<Key<PeerId>, ()>::new(Duration::from_secs(0));
let bucket_ref = KBucketRef {
index,
bucket: &mut bucket,
};
let (min, max) = bucket_ref.range();
assert!(min <= max);
assert!(bucket_ref.contains(&min));
assert!(bucket_ref.contains(&max));
if min != Distance(0.into()) {
// ^ avoid underflow
assert!(!bucket_ref.contains(&Distance(min.0 - 1)));
}
if max != Distance(U256::max_value()) {
// ^ avoid overflow
assert!(!bucket_ref.contains(&Distance(max.0 + 1)));
}
}
quickcheck(prop as fn(_));
}
#[test]
fn rand_distance() {
fn prop(ix: u8) -> bool {
let d = BucketIndex(ix as usize).rand_distance(&mut rand::thread_rng());
let n = U256::from(<[u8; 32]>::from(d.0));
let b = U256::from(2);
let e = U256::from(ix);
let lower = b.pow(e);
let upper = b.checked_pow(e + U256::from(1)).unwrap_or(U256::MAX) - U256::from(1);
lower <= n && n <= upper
}
quickcheck(prop as fn(_) -> _);
}
#[test]
fn entry_inserted() {
let local_key = Key::from(PeerId::random());
let other_id = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key, Duration::from_secs(5));
if let Entry::Absent(entry) = table.entry(&other_id) {
match entry.insert((), NodeStatus::Connected) {
InsertResult::Inserted => (),
_ => panic!(),
}
} else {
panic!()
}
let res = table.closest_keys(&other_id).collect::<Vec<_>>();
assert_eq!(res.len(), 1);
assert_eq!(res[0], other_id);
}
#[test]
fn entry_self() {
let local_key = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key.clone(), Duration::from_secs(5));
match table.entry(&local_key) {
Entry::SelfEntry => (),
_ => panic!(),
}
}
#[test]
fn closest() {
let local_key = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key, Duration::from_secs(5));
let mut count = 0;
loop {
if count == 100 {
break;
}
let key = Key::from(PeerId::random());
if let Entry::Absent(e) = table.entry(&key) {
match e.insert((), NodeStatus::Connected) {
InsertResult::Inserted => count += 1,
_ => continue,
}
} else {
panic!("entry exists")
}
}
let mut expected_keys: Vec<_> = table
.buckets
.iter()
.flat_map(|t| t.iter().map(|(n, _)| n.key.clone()))
.collect();
for _ in 0..10 {
let target_key = Key::from(PeerId::random());
let keys = table.closest_keys(&target_key).collect::<Vec<_>>();
// The list of keys is expected to match the result of a full-table scan.
expected_keys.sort_by_key(|k| k.distance(&target_key));
assert_eq!(keys, expected_keys);
}
}
#[test]
fn applied_pending() {
let local_key = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key.clone(), Duration::from_millis(1));
let expected_applied;
let full_bucket_index;
loop {
let key = Key::from(PeerId::random());
if let Entry::Absent(e) = table.entry(&key) {
match e.insert((), NodeStatus::Disconnected) {
InsertResult::Full => {
if let Entry::Absent(e) = table.entry(&key) {
match e.insert((), NodeStatus::Connected) {
InsertResult::Pending { disconnected } => {
expected_applied = AppliedPending {
inserted: Node {
key: key.clone(),
value: (),
},
evicted: Some(Node {
key: disconnected,
value: (),
}),
};
full_bucket_index = BucketIndex::new(&key.distance(&local_key));
break;
}
_ => panic!(),
}
} else {
panic!()
}
}
_ => continue,
}
} else {
panic!("entry exists")
}
}
// Expire the timeout for the pending entry on the full bucket.`
let full_bucket = &mut table.buckets[full_bucket_index.unwrap().get()];
let elapsed = Instant::now().checked_sub(Duration::from_secs(1)).unwrap();
full_bucket.pending_mut().unwrap().set_ready_at(elapsed);
match table.entry(&expected_applied.inserted.key) {
Entry::Present(_, NodeStatus::Connected) => {}
x => panic!("Unexpected entry: {x:?}"),
}
match table.entry(&expected_applied.evicted.as_ref().unwrap().key) {
Entry::Absent(_) => {}
x => panic!("Unexpected entry: {x:?}"),
}
assert_eq!(Some(expected_applied), table.take_applied_pending());
assert_eq!(None, table.take_applied_pending());
}
#[test]
fn count_nodes_between() {
fn prop(mut table: TestTable, target: Key<PeerId>) -> bool {
let num_to_target = table.count_nodes_between(&target);
let distance = table.local_key.distance(&target);
let base2 = U256::from(2);
let mut iter = ClosestBucketsIter::new(distance);
iter.all(|i| {
// Flip the distance bit related to the bucket.
let d = Distance(distance.0 ^ (base2.pow(U256::from(i.get()))));
let k = table.local_key.for_distance(d);
if distance.0.bit(i.get()) {
// Bit flip `1` -> `0`, the key must be closer than `target`.
d < distance && table.count_nodes_between(&k) <= num_to_target
} else {
// Bit flip `0` -> `1`, the key must be farther than `target`.
d > distance && table.count_nodes_between(&k) >= num_to_target
}
})
}
QuickCheck::new()
.tests(10)
.quickcheck(prop as fn(_, _) -> _)
}
}