1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright 2019 Parity Technologies (UK) Ltd.
// Copyright 2023 litep2p developers
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Ed25519 keys.

use crate::{
    error::{Error, ParseError},
    PeerId,
};

use ed25519_dalek::{self as ed25519, Signer as _, Verifier as _};
use std::fmt;
use zeroize::Zeroize;

/// An Ed25519 keypair.
#[derive(Clone)]
pub struct Keypair(ed25519::SigningKey);

impl Keypair {
    /// Generate a new random Ed25519 keypair.
    pub fn generate() -> Keypair {
        Keypair::from(SecretKey::generate())
    }

    /// Convert the keypair into a byte array by concatenating the bytes
    /// of the secret scalar and the compressed public point,
    /// an informal standard for encoding Ed25519 keypairs.
    pub fn to_bytes(&self) -> [u8; 64] {
        self.0.to_keypair_bytes()
    }

    /// Try to parse a keypair from the [binary format](https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5)
    /// produced by [`Keypair::to_bytes`], zeroing the input on success.
    ///
    /// Note that this binary format is the same as `ed25519_dalek`'s and `ed25519_zebra`'s.
    pub fn try_from_bytes(kp: &mut [u8]) -> Result<Keypair, Error> {
        let bytes = <[u8; 64]>::try_from(&*kp)
            .map_err(|e| Error::Other(format!("Failed to parse ed25519 keypair: {e}")))?;

        ed25519::SigningKey::from_keypair_bytes(&bytes)
            .map(|k| {
                kp.zeroize();
                Keypair(k)
            })
            .map_err(|e| Error::Other(format!("Failed to parse ed25519 keypair: {e}")))
    }

    /// Sign a message using the private key of this keypair.
    pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
        self.0.sign(msg).to_bytes().to_vec()
    }

    /// Get the public key of this keypair.
    pub fn public(&self) -> PublicKey {
        PublicKey(self.0.verifying_key())
    }

    /// Get the secret key of this keypair.
    pub fn secret(&self) -> SecretKey {
        SecretKey(self.0.to_bytes())
    }
}

impl fmt::Debug for Keypair {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Keypair").field("public", &self.0.verifying_key()).finish()
    }
}

/// Demote an Ed25519 keypair to a secret key.
impl From<Keypair> for SecretKey {
    fn from(kp: Keypair) -> SecretKey {
        SecretKey(kp.0.to_bytes())
    }
}

/// Promote an Ed25519 secret key into a keypair.
impl From<SecretKey> for Keypair {
    fn from(sk: SecretKey) -> Keypair {
        let signing = ed25519::SigningKey::from_bytes(&sk.0);
        Keypair(signing)
    }
}

/// An Ed25519 public key.
#[derive(Eq, Clone)]
pub struct PublicKey(ed25519::VerifyingKey);

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("PublicKey(compressed): ")?;
        for byte in self.0.as_bytes() {
            write!(f, "{byte:x}")?;
        }
        Ok(())
    }
}

impl PartialEq for PublicKey {
    fn eq(&self, other: &Self) -> bool {
        self.0.as_bytes().eq(other.0.as_bytes())
    }
}

impl PublicKey {
    /// Verify the Ed25519 signature on a message using the public key.
    pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
        ed25519::Signature::try_from(sig).and_then(|s| self.0.verify(msg, &s)).is_ok()
    }

    /// Convert the public key to a byte array in compressed form, i.e.
    /// where one coordinate is represented by a single bit.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0.to_bytes()
    }

    /// Try to parse a public key from a byte array containing the actual key as produced by
    /// `to_bytes`.
    pub fn try_from_bytes(k: &[u8]) -> Result<PublicKey, ParseError> {
        let k = <[u8; 32]>::try_from(k).map_err(|_| ParseError::InvalidPublicKey)?;

        // The error type of the verifying key is deliberately opaque as to avoid side-channel
        // leakage. We can't provide a more specific error type here.
        ed25519::VerifyingKey::from_bytes(&k)
            .map_err(|_| ParseError::InvalidPublicKey)
            .map(PublicKey)
    }

    /// Convert public key to `PeerId`.
    pub fn to_peer_id(&self) -> PeerId {
        crate::crypto::PublicKey::Ed25519(self.clone()).into()
    }
}

/// An Ed25519 secret key.
#[derive(Clone)]
pub struct SecretKey(ed25519::SecretKey);

/// View the bytes of the secret key.
impl AsRef<[u8]> for SecretKey {
    fn as_ref(&self) -> &[u8] {
        &self.0[..]
    }
}

impl fmt::Debug for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "SecretKey")
    }
}

impl SecretKey {
    /// Generate a new Ed25519 secret key.
    pub fn generate() -> SecretKey {
        let signing = ed25519::SigningKey::generate(&mut rand::rngs::OsRng);
        SecretKey(signing.to_bytes())
    }
    /// Try to parse an Ed25519 secret key from a byte slice
    /// containing the actual key, zeroing the input on success.
    /// If the bytes do not constitute a valid Ed25519 secret key, an error is
    /// returned.
    pub fn try_from_bytes(mut sk_bytes: impl AsMut<[u8]>) -> crate::Result<SecretKey> {
        let sk_bytes = sk_bytes.as_mut();
        let secret = <[u8; 32]>::try_from(&*sk_bytes)
            .map_err(|e| Error::Other(format!("Failed to parse ed25519 secret key: {e}")))?;
        sk_bytes.zeroize();
        Ok(SecretKey(secret))
    }

    /// Convert this secret key to a byte array.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::*;

    fn eq_keypairs(kp1: &Keypair, kp2: &Keypair) -> bool {
        kp1.public() == kp2.public() && kp1.0.to_bytes() == kp2.0.to_bytes()
    }

    #[test]
    fn ed25519_keypair_encode_decode() {
        fn prop() -> bool {
            let kp1 = Keypair::generate();
            let mut kp1_enc = kp1.to_bytes();
            let kp2 = Keypair::try_from_bytes(&mut kp1_enc).unwrap();
            eq_keypairs(&kp1, &kp2) && kp1_enc.iter().all(|b| *b == 0)
        }
        QuickCheck::new().tests(10).quickcheck(prop as fn() -> _);
    }

    #[test]
    fn ed25519_keypair_from_secret() {
        fn prop() -> bool {
            let kp1 = Keypair::generate();
            let mut sk = kp1.0.to_bytes();
            let kp2 = Keypair::from(SecretKey::try_from_bytes(&mut sk).unwrap());
            eq_keypairs(&kp1, &kp2) && sk == [0u8; 32]
        }
        QuickCheck::new().tests(10).quickcheck(prop as fn() -> _);
    }

    #[test]
    fn ed25519_signature() {
        let kp = Keypair::generate();
        let pk = kp.public();

        let msg = "hello world".as_bytes();
        let sig = kp.sign(msg);
        assert!(pk.verify(msg, &sig));

        let mut invalid_sig = sig.clone();
        invalid_sig[3..6].copy_from_slice(&[10, 23, 42]);
        assert!(!pk.verify(msg, &invalid_sig));

        let invalid_msg = "h3ll0 w0rld".as_bytes();
        assert!(!pk.verify(invalid_msg, &sig));
    }

    #[test]
    fn secret_key() {
        let _ = tracing_subscriber::fmt()
            .with_env_filter(tracing_subscriber::EnvFilter::from_default_env())
            .try_init();

        let key = Keypair::generate();
        tracing::trace!("keypair: {:?}", key);
        tracing::trace!("secret: {:?}", key.secret());
        tracing::trace!("public: {:?}", key.public());

        let new_key = Keypair::from(key.secret());
        assert_eq!(new_key.secret().as_ref(), key.secret().as_ref());
        assert_eq!(new_key.public(), key.public());

        let new_secret = SecretKey::from(new_key.clone());
        assert_eq!(new_secret.as_ref(), new_key.secret().as_ref());

        let cloned_secret = new_secret.clone();
        assert_eq!(cloned_secret.as_ref(), new_secret.as_ref());
    }
}