1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use bytes::{Buf as _, BufMut as _, Bytes, BytesMut};
use futures::{io::IoSlice, prelude::*};
use std::{
convert::TryFrom as _,
io,
pin::Pin,
task::{Context, Poll},
u16,
};
const MAX_LEN_BYTES: u16 = 2;
const MAX_FRAME_SIZE: u16 = (1 << (MAX_LEN_BYTES * 8 - MAX_LEN_BYTES)) - 1;
const DEFAULT_BUFFER_SIZE: usize = 64;
/// A `Stream` and `Sink` for unsigned-varint length-delimited frames,
/// wrapping an underlying `AsyncRead + AsyncWrite` I/O resource.
///
/// We purposely only support a frame sizes up to 16KiB (2 bytes unsigned varint
/// frame length). Frames mostly consist in a short protocol name, which is highly
/// unlikely to be more than 16KiB long.
#[pin_project::pin_project]
#[derive(Debug)]
pub(crate) struct LengthDelimited<R> {
/// The inner I/O resource.
#[pin]
inner: R,
/// Read buffer for a single incoming unsigned-varint length-delimited frame.
read_buffer: BytesMut,
/// Write buffer for outgoing unsigned-varint length-delimited frames.
write_buffer: BytesMut,
/// The current read state, alternating between reading a frame
/// length and reading a frame payload.
read_state: ReadState,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ReadState {
/// We are currently reading the length of the next frame of data.
ReadLength {
buf: [u8; MAX_LEN_BYTES as usize],
pos: usize,
},
/// We are currently reading the frame of data itself.
ReadData { len: u16, pos: usize },
}
impl Default for ReadState {
fn default() -> Self {
ReadState::ReadLength {
buf: [0; MAX_LEN_BYTES as usize],
pos: 0,
}
}
}
impl<R> LengthDelimited<R> {
/// Creates a new I/O resource for reading and writing unsigned-varint
/// length delimited frames.
pub(crate) fn new(inner: R) -> LengthDelimited<R> {
LengthDelimited {
inner,
read_state: ReadState::default(),
read_buffer: BytesMut::with_capacity(DEFAULT_BUFFER_SIZE),
write_buffer: BytesMut::with_capacity(DEFAULT_BUFFER_SIZE + MAX_LEN_BYTES as usize),
}
}
/// Drops the [`LengthDelimited`] resource, yielding the underlying I/O stream.
///
/// # Panic
///
/// Will panic if called while there is data in the read or write buffer.
/// The read buffer is guaranteed to be empty whenever `Stream::poll` yields
/// a new `Bytes` frame. The write buffer is guaranteed to be empty after
/// flushing.
pub(crate) fn into_inner(self) -> R {
assert!(self.read_buffer.is_empty());
assert!(self.write_buffer.is_empty());
self.inner
}
/// Converts the [`LengthDelimited`] into a [`LengthDelimitedReader`], dropping the
/// uvi-framed `Sink` in favour of direct `AsyncWrite` access to the underlying
/// I/O stream.
///
/// This is typically done if further uvi-framed messages are expected to be
/// received but no more such messages are written, allowing the writing of
/// follow-up protocol data to commence.
pub(crate) fn into_reader(self) -> LengthDelimitedReader<R> {
LengthDelimitedReader { inner: self }
}
/// Writes all buffered frame data to the underlying I/O stream,
/// _without flushing it_.
///
/// After this method returns `Poll::Ready`, the write buffer of frames
/// submitted to the `Sink` is guaranteed to be empty.
fn poll_write_buffer(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>>
where
R: AsyncWrite,
{
let mut this = self.project();
while !this.write_buffer.is_empty() {
match this.inner.as_mut().poll_write(cx, this.write_buffer) {
Poll::Pending => return Poll::Pending,
Poll::Ready(Ok(0)) => {
return Poll::Ready(Err(io::Error::new(
io::ErrorKind::WriteZero,
"Failed to write buffered frame.",
)))
}
Poll::Ready(Ok(n)) => this.write_buffer.advance(n),
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
}
}
Poll::Ready(Ok(()))
}
}
impl<R> Stream for LengthDelimited<R>
where
R: AsyncRead,
{
type Item = Result<Bytes, io::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let mut this = self.project();
loop {
match this.read_state {
ReadState::ReadLength { buf, pos } => {
match this.inner.as_mut().poll_read(cx, &mut buf[*pos..*pos + 1]) {
Poll::Ready(Ok(0)) => {
if *pos == 0 {
return Poll::Ready(None);
} else {
return Poll::Ready(Some(Err(io::ErrorKind::UnexpectedEof.into())));
}
}
Poll::Ready(Ok(n)) => {
debug_assert_eq!(n, 1);
*pos += n;
}
Poll::Ready(Err(err)) => return Poll::Ready(Some(Err(err))),
Poll::Pending => return Poll::Pending,
};
if (buf[*pos - 1] & 0x80) == 0 {
// MSB is not set, indicating the end of the length prefix.
let (len, _) = unsigned_varint::decode::u16(buf).map_err(|e| {
log::debug!("invalid length prefix: {}", e);
io::Error::new(io::ErrorKind::InvalidData, "invalid length prefix")
})?;
if len >= 1 {
*this.read_state = ReadState::ReadData { len, pos: 0 };
this.read_buffer.resize(len as usize, 0);
} else {
debug_assert_eq!(len, 0);
*this.read_state = ReadState::default();
return Poll::Ready(Some(Ok(Bytes::new())));
}
} else if *pos == MAX_LEN_BYTES as usize {
// MSB signals more length bytes but we have already read the maximum.
// See the module documentation about the max frame len.
return Poll::Ready(Some(Err(io::Error::new(
io::ErrorKind::InvalidData,
"Maximum frame length exceeded",
))));
}
}
ReadState::ReadData { len, pos } => {
match this
.inner
.as_mut()
.poll_read(cx, &mut this.read_buffer[*pos..])
{
Poll::Ready(Ok(0)) => {
return Poll::Ready(Some(Err(io::ErrorKind::UnexpectedEof.into())))
}
Poll::Ready(Ok(n)) => *pos += n,
Poll::Pending => return Poll::Pending,
Poll::Ready(Err(err)) => return Poll::Ready(Some(Err(err))),
};
if *pos == *len as usize {
// Finished reading the frame.
let frame = this.read_buffer.split_off(0).freeze();
*this.read_state = ReadState::default();
return Poll::Ready(Some(Ok(frame)));
}
}
}
}
}
}
impl<R> Sink<Bytes> for LengthDelimited<R>
where
R: AsyncWrite,
{
type Error = io::Error;
fn poll_ready(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// Use the maximum frame length also as a (soft) upper limit
// for the entire write buffer. The actual (hard) limit is thus
// implied to be roughly 2 * MAX_FRAME_SIZE.
if self.as_mut().project().write_buffer.len() >= MAX_FRAME_SIZE as usize {
match self.as_mut().poll_write_buffer(cx) {
Poll::Ready(Ok(())) => {}
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
Poll::Pending => return Poll::Pending,
}
debug_assert!(self.as_mut().project().write_buffer.is_empty());
}
Poll::Ready(Ok(()))
}
fn start_send(self: Pin<&mut Self>, item: Bytes) -> Result<(), Self::Error> {
let this = self.project();
let len = match u16::try_from(item.len()) {
Ok(len) if len <= MAX_FRAME_SIZE => len,
_ => {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"Maximum frame size exceeded.",
))
}
};
let mut uvi_buf = unsigned_varint::encode::u16_buffer();
let uvi_len = unsigned_varint::encode::u16(len, &mut uvi_buf);
this.write_buffer.reserve(len as usize + uvi_len.len());
this.write_buffer.put(uvi_len);
this.write_buffer.put(item);
Ok(())
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// Write all buffered frame data to the underlying I/O stream.
match LengthDelimited::poll_write_buffer(self.as_mut(), cx) {
Poll::Ready(Ok(())) => {}
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
Poll::Pending => return Poll::Pending,
}
let this = self.project();
debug_assert!(this.write_buffer.is_empty());
// Flush the underlying I/O stream.
this.inner.poll_flush(cx)
}
fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// Write all buffered frame data to the underlying I/O stream.
match LengthDelimited::poll_write_buffer(self.as_mut(), cx) {
Poll::Ready(Ok(())) => {}
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
Poll::Pending => return Poll::Pending,
}
let this = self.project();
debug_assert!(this.write_buffer.is_empty());
// Close the underlying I/O stream.
this.inner.poll_close(cx)
}
}
/// A `LengthDelimitedReader` implements a `Stream` of uvi-length-delimited
/// frames on an underlying I/O resource combined with direct `AsyncWrite` access.
#[pin_project::pin_project]
#[derive(Debug)]
pub(crate) struct LengthDelimitedReader<R> {
#[pin]
inner: LengthDelimited<R>,
}
impl<R> LengthDelimitedReader<R> {
/// Destroys the `LengthDelimitedReader` and returns the underlying I/O stream.
///
/// This method is guaranteed not to drop any data read from or not yet
/// submitted to the underlying I/O stream.
///
/// # Panic
///
/// Will panic if called while there is data in the read or write buffer.
/// The read buffer is guaranteed to be empty whenever [`Stream::poll_next`]
/// yield a new `Message`. The write buffer is guaranteed to be empty whenever
/// [`LengthDelimited::poll_write_buffer`] yields [`Poll::Ready`] or after
/// the [`Sink`] has been completely flushed via [`Sink::poll_flush`].
pub(crate) fn into_inner(self) -> R {
self.inner.into_inner()
}
}
impl<R> Stream for LengthDelimitedReader<R>
where
R: AsyncRead,
{
type Item = Result<Bytes, io::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.project().inner.poll_next(cx)
}
}
impl<R> AsyncWrite for LengthDelimitedReader<R>
where
R: AsyncWrite,
{
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, io::Error>> {
// `this` here designates the `LengthDelimited`.
let mut this = self.project().inner;
// We need to flush any data previously written with the `LengthDelimited`.
match LengthDelimited::poll_write_buffer(this.as_mut(), cx) {
Poll::Ready(Ok(())) => {}
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
Poll::Pending => return Poll::Pending,
}
debug_assert!(this.write_buffer.is_empty());
this.project().inner.poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
self.project().inner.poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
self.project().inner.poll_close(cx)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<Result<usize, io::Error>> {
// `this` here designates the `LengthDelimited`.
let mut this = self.project().inner;
// We need to flush any data previously written with the `LengthDelimited`.
match LengthDelimited::poll_write_buffer(this.as_mut(), cx) {
Poll::Ready(Ok(())) => {}
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
Poll::Pending => return Poll::Pending,
}
debug_assert!(this.write_buffer.is_empty());
this.project().inner.poll_write_vectored(cx, bufs)
}
}
#[cfg(test)]
mod tests {
use crate::length_delimited::LengthDelimited;
use futures::{io::Cursor, prelude::*};
use quickcheck::*;
use std::io::ErrorKind;
#[test]
fn basic_read() {
let data = vec![6, 9, 8, 7, 6, 5, 4];
let framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(framed.try_collect::<Vec<_>>()).unwrap();
assert_eq!(recved, vec![vec![9, 8, 7, 6, 5, 4]]);
}
#[test]
fn basic_read_two() {
let data = vec![6, 9, 8, 7, 6, 5, 4, 3, 9, 8, 7];
let framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(framed.try_collect::<Vec<_>>()).unwrap();
assert_eq!(recved, vec![vec![9, 8, 7, 6, 5, 4], vec![9, 8, 7]]);
}
#[test]
fn two_bytes_long_packet() {
let len = 5000u16;
assert!(len < (1 << 15));
let frame = (0..len).map(|n| (n & 0xff) as u8).collect::<Vec<_>>();
let mut data = vec![(len & 0x7f) as u8 | 0x80, (len >> 7) as u8];
data.extend(frame.clone().into_iter());
let mut framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(async move { framed.next().await }).unwrap();
assert_eq!(recved.unwrap(), frame);
}
#[test]
fn packet_len_too_long() {
let mut data = vec![0x81, 0x81, 0x1];
data.extend((0..16513).map(|_| 0));
let mut framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(async move { framed.next().await.unwrap() });
if let Err(io_err) = recved {
assert_eq!(io_err.kind(), ErrorKind::InvalidData)
} else {
panic!()
}
}
#[test]
fn empty_frames() {
let data = vec![0, 0, 6, 9, 8, 7, 6, 5, 4, 0, 3, 9, 8, 7];
let framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(framed.try_collect::<Vec<_>>()).unwrap();
assert_eq!(
recved,
vec![
vec![],
vec![],
vec![9, 8, 7, 6, 5, 4],
vec![],
vec![9, 8, 7],
]
);
}
#[test]
fn unexpected_eof_in_len() {
let data = vec![0x89];
let framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(framed.try_collect::<Vec<_>>());
if let Err(io_err) = recved {
assert_eq!(io_err.kind(), ErrorKind::UnexpectedEof)
} else {
panic!()
}
}
#[test]
fn unexpected_eof_in_data() {
let data = vec![5];
let framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(framed.try_collect::<Vec<_>>());
if let Err(io_err) = recved {
assert_eq!(io_err.kind(), ErrorKind::UnexpectedEof)
} else {
panic!()
}
}
#[test]
fn unexpected_eof_in_data2() {
let data = vec![5, 9, 8, 7];
let framed = LengthDelimited::new(Cursor::new(data));
let recved = futures::executor::block_on(framed.try_collect::<Vec<_>>());
if let Err(io_err) = recved {
assert_eq!(io_err.kind(), ErrorKind::UnexpectedEof)
} else {
panic!()
}
}
#[test]
fn writing_reading() {
fn prop(frames: Vec<Vec<u8>>) -> TestResult {
let (client_connection, server_connection) = futures_ringbuf::Endpoint::pair(100, 100);
async_std::task::block_on(async move {
let expected_frames = frames.clone();
let server = async_std::task::spawn(async move {
let mut connec =
rw_stream_sink::RwStreamSink::new(LengthDelimited::new(server_connection));
let mut buf = vec![0u8; 0];
for expected in expected_frames {
if expected.is_empty() {
continue;
}
if buf.len() < expected.len() {
buf.resize(expected.len(), 0);
}
let n = connec.read(&mut buf).await.unwrap();
assert_eq!(&buf[..n], &expected[..]);
}
});
let client = async_std::task::spawn(async move {
let mut connec = LengthDelimited::new(client_connection);
for frame in frames {
connec.send(From::from(frame)).await.unwrap();
}
});
server.await;
client.await;
});
TestResult::passed()
}
quickcheck(prop as fn(_) -> _)
}
}