use core::fmt;
use core::{
convert::TryFrom,
iter::FromIterator,
marker::PhantomData,
mem,
mem::{
MaybeUninit,
},
ops::{Deref, Range, RangeInclusive},
time::Duration,
};
use core::num::{
NonZeroI8,
NonZeroI16,
NonZeroI32,
NonZeroI64,
NonZeroI128,
NonZeroU8,
NonZeroU16,
NonZeroU32,
NonZeroU64,
NonZeroU128,
};
use byte_slice_cast::{AsByteSlice, AsMutByteSlice, ToMutByteSlice};
#[cfg(target_has_atomic = "ptr")]
use crate::alloc::sync::Arc;
use crate::alloc::{
boxed::Box,
borrow::{Cow, ToOwned},
collections::{
BTreeMap, BTreeSet, VecDeque, LinkedList, BinaryHeap
},
rc::Rc,
string::String,
vec::Vec,
};
use crate::compact::Compact;
use crate::DecodeFinished;
use crate::encode_like::EncodeLike;
use crate::Error;
pub(crate) const MAX_PREALLOCATION: usize = 4 * 1024;
const A_BILLION: u32 = 1_000_000_000;
pub trait Input {
fn remaining_len(&mut self) -> Result<Option<usize>, Error>;
fn read(&mut self, into: &mut [u8]) -> Result<(), Error>;
fn read_byte(&mut self) -> Result<u8, Error> {
let mut buf = [0u8];
self.read(&mut buf[..])?;
Ok(buf[0])
}
fn descend_ref(&mut self) -> Result<(), Error> {
Ok(())
}
fn ascend_ref(&mut self) {}
#[cfg(feature = "bytes")]
#[doc(hidden)]
fn scale_internal_decode_bytes(&mut self) -> Result<bytes::Bytes, Error> where Self: Sized {
Vec::<u8>::decode(self).map(bytes::Bytes::from)
}
}
impl<'a> Input for &'a [u8] {
fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
Ok(Some(self.len()))
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
if into.len() > self.len() {
return Err("Not enough data to fill buffer".into());
}
let len = into.len();
into.copy_from_slice(&self[..len]);
*self = &self[len..];
Ok(())
}
}
#[cfg(feature = "std")]
impl From<std::io::Error> for Error {
fn from(err: std::io::Error) -> Self {
use std::io::ErrorKind::*;
match err.kind() {
NotFound => "io error: NotFound".into(),
PermissionDenied => "io error: PermissionDenied".into(),
ConnectionRefused => "io error: ConnectionRefused".into(),
ConnectionReset => "io error: ConnectionReset".into(),
ConnectionAborted => "io error: ConnectionAborted".into(),
NotConnected => "io error: NotConnected".into(),
AddrInUse => "io error: AddrInUse".into(),
AddrNotAvailable => "io error: AddrNotAvailable".into(),
BrokenPipe => "io error: BrokenPipe".into(),
AlreadyExists => "io error: AlreadyExists".into(),
WouldBlock => "io error: WouldBlock".into(),
InvalidInput => "io error: InvalidInput".into(),
InvalidData => "io error: InvalidData".into(),
TimedOut => "io error: TimedOut".into(),
WriteZero => "io error: WriteZero".into(),
Interrupted => "io error: Interrupted".into(),
Other => "io error: Other".into(),
UnexpectedEof => "io error: UnexpectedEof".into(),
_ => "io error: Unknown".into(),
}
}
}
#[cfg(feature = "std")]
pub struct IoReader<R: std::io::Read>(pub R);
#[cfg(feature = "std")]
impl<R: std::io::Read> Input for IoReader<R> {
fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
Ok(None)
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
self.0.read_exact(into).map_err(Into::into)
}
}
pub trait Output {
fn write(&mut self, bytes: &[u8]);
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend_from_slice(bytes)
}
}
#[cfg(feature = "std")]
impl<W: std::io::Write> Output for W {
fn write(&mut self, bytes: &[u8]) {
(self as &mut dyn std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
}
}
#[doc(hidden)]
#[non_exhaustive]
pub enum TypeInfo {
Unknown,
U8,
I8,
U16,
I16,
U32,
I32,
U64,
I64,
U128,
I128,
F32,
F64,
}
pub trait Encode {
#[doc(hidden)]
const TYPE_INFO: TypeInfo = TypeInfo::Unknown;
fn size_hint(&self) -> usize {
0
}
fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
fn encode(&self) -> Vec<u8> {
let mut r = Vec::with_capacity(self.size_hint());
self.encode_to(&mut r);
r
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
fn encoded_size(&self) -> usize {
let mut size_tracker = SizeTracker { written: 0 };
self.encode_to(&mut size_tracker);
size_tracker.written
}
}
struct SizeTracker {
written: usize,
}
impl Output for SizeTracker {
fn write(&mut self, bytes: &[u8]) {
self.written += bytes.len();
}
fn push_byte(&mut self, _byte: u8) {
self.written += 1;
}
}
pub trait DecodeLength {
fn len(self_encoded: &[u8]) -> Result<usize, Error>;
}
pub trait Decode: Sized {
#[doc(hidden)]
const TYPE_INFO: TypeInfo = TypeInfo::Unknown;
fn decode<I: Input>(input: &mut I) -> Result<Self, Error>;
fn decode_into<I: Input>(input: &mut I, dst: &mut MaybeUninit<Self>) -> Result<DecodeFinished, Error> {
let value = Self::decode(input)?;
dst.write(value);
unsafe { Ok(DecodeFinished::assert_decoding_finished()) }
}
fn skip<I: Input>(input: &mut I) -> Result<(), Error> {
Self::decode(input).map(|_| ())
}
fn encoded_fixed_size() -> Option<usize> {
None
}
}
pub trait Codec: Decode + Encode {}
impl<S: Decode + Encode> Codec for S {}
pub trait FullEncode: Encode + EncodeLike {}
impl<S: Encode + EncodeLike> FullEncode for S {}
pub trait FullCodec: Decode + FullEncode {}
impl<S: Decode + FullEncode> FullCodec for S {}
pub trait WrapperTypeEncode: Deref {}
impl<T: ?Sized> WrapperTypeEncode for Box<T> {}
impl<T: ?Sized + Encode> EncodeLike for Box<T> {}
impl<T: Encode> EncodeLike<T> for Box<T> {}
impl<T: Encode> EncodeLike<Box<T>> for T {}
impl<T: ?Sized> WrapperTypeEncode for &T {}
impl<T: ?Sized + Encode> EncodeLike for &T {}
impl<T: Encode> EncodeLike<T> for &T {}
impl<T: Encode> EncodeLike<&T> for T {}
impl<T: Encode> EncodeLike<T> for &&T {}
impl<T: Encode> EncodeLike<&&T> for T {}
impl<T: ?Sized> WrapperTypeEncode for &mut T {}
impl<T: ?Sized + Encode> EncodeLike for &mut T {}
impl<T: Encode> EncodeLike<T> for &mut T {}
impl<T: Encode> EncodeLike<&mut T> for T {}
impl<'a, T: ToOwned + ?Sized> WrapperTypeEncode for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode + ?Sized> EncodeLike for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode> EncodeLike<T> for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode> EncodeLike<Cow<'a, T>> for T {}
impl<T: ?Sized> WrapperTypeEncode for Rc<T> {}
impl<T: ?Sized + Encode> EncodeLike for Rc<T> {}
impl<T: Encode> EncodeLike<T> for Rc<T> {}
impl<T: Encode> EncodeLike<Rc<T>> for T {}
impl WrapperTypeEncode for String {}
impl EncodeLike for String {}
impl EncodeLike<&str> for String {}
impl EncodeLike<String> for &str {}
#[cfg(target_has_atomic = "ptr")]
mod atomic_ptr_targets {
use super::*;
impl<T: ?Sized> WrapperTypeEncode for Arc<T> {}
impl<T: ?Sized + Encode> EncodeLike for Arc<T> {}
impl<T: Encode> EncodeLike<T> for Arc<T> {}
impl<T: Encode> EncodeLike<Arc<T>> for T {}
}
#[cfg(feature = "bytes")]
mod feature_wrapper_bytes {
use super::*;
use bytes::Bytes;
impl WrapperTypeEncode for Bytes {}
impl EncodeLike for Bytes {}
impl EncodeLike<&[u8]> for Bytes {}
impl EncodeLike<Vec<u8>> for Bytes {}
impl EncodeLike<Bytes> for &[u8] {}
impl EncodeLike<Bytes> for Vec<u8> {}
}
#[cfg(feature = "bytes")]
struct BytesCursor {
bytes: bytes::Bytes,
position: usize
}
#[cfg(feature = "bytes")]
impl Input for BytesCursor {
fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
Ok(Some(self.bytes.len() - self.position))
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
if into.len() > self.bytes.len() - self.position {
return Err("Not enough data to fill buffer".into())
}
into.copy_from_slice(&self.bytes[self.position..self.position + into.len()]);
self.position += into.len();
Ok(())
}
fn scale_internal_decode_bytes(&mut self) -> Result<bytes::Bytes, Error> {
let length = <Compact<u32>>::decode(self)?.0 as usize;
bytes::Buf::advance(&mut self.bytes, self.position);
self.position = 0;
if length > self.bytes.len() {
return Err("Not enough data to fill buffer".into());
}
Ok(self.bytes.split_to(length))
}
}
#[cfg(feature = "bytes")]
pub fn decode_from_bytes<T>(bytes: bytes::Bytes) -> Result<T, Error> where T: Decode {
let mut input = BytesCursor {
bytes,
position: 0
};
T::decode(&mut input)
}
#[cfg(feature = "bytes")]
impl Decode for bytes::Bytes {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
input.scale_internal_decode_bytes()
}
}
impl<T, X> Encode for X where
T: Encode + ?Sized,
X: WrapperTypeEncode<Target = T>,
{
fn size_hint(&self) -> usize {
(**self).size_hint()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(**self).encode()
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
(**self).encode_to(dest)
}
}
pub trait WrapperTypeDecode: Sized {
type Wrapped: Into<Self>;
#[doc(hidden)]
#[inline]
fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error> where Self::Wrapped: Decode {
input.descend_ref()?;
let result = Ok(Self::Wrapped::decode(input)?.into());
input.ascend_ref();
result
}
}
impl<T> WrapperTypeDecode for Box<T> {
type Wrapped = T;
fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error> where Self::Wrapped: Decode {
input.descend_ref()?;
let layout = core::alloc::Layout::new::<MaybeUninit<T>>();
let ptr: *mut MaybeUninit<T> = if layout.size() == 0 {
core::ptr::NonNull::dangling().as_ptr()
} else {
let ptr: *mut u8 = unsafe {
crate::alloc::alloc::alloc(layout)
};
if ptr.is_null() {
crate::alloc::alloc::handle_alloc_error(layout);
}
ptr.cast()
};
let mut boxed: Box<MaybeUninit<T>> = unsafe { Box::from_raw(ptr) };
T::decode_into(input, &mut boxed)?;
let ptr: *mut MaybeUninit<T> = Box::into_raw(boxed);
let ptr: *mut T = ptr.cast();
let boxed: Box<T> = unsafe { Box::from_raw(ptr) };
input.ascend_ref();
Ok(boxed)
}
}
impl<T> WrapperTypeDecode for Rc<T> {
type Wrapped = T;
fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error> where Self::Wrapped: Decode {
Box::<T>::decode(input).map(|output| output.into())
}
}
#[cfg(target_has_atomic = "ptr")]
impl<T> WrapperTypeDecode for Arc<T> {
type Wrapped = T;
fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error> where Self::Wrapped: Decode {
Box::<T>::decode(input).map(|output| output.into())
}
}
impl<T, X> Decode for X where
T: Decode + Into<X>,
X: WrapperTypeDecode<Wrapped=T>,
{
#[inline]
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Self::decode_wrapped(input)
}
}
macro_rules! with_type_info {
( $type_info:expr, $macro:ident $( ( $( $params:ident ),* ) )?, { $( $unknown_variant:tt )* }, ) => {
match $type_info {
TypeInfo::U8 => { $macro!(u8 $( $( , $params )* )? ) },
TypeInfo::I8 => { $macro!(i8 $( $( , $params )* )? ) },
TypeInfo::U16 => { $macro!(u16 $( $( , $params )* )? ) },
TypeInfo::I16 => { $macro!(i16 $( $( , $params )* )? ) },
TypeInfo::U32 => { $macro!(u32 $( $( , $params )* )? ) },
TypeInfo::I32 => { $macro!(i32 $( $( , $params )* )? ) },
TypeInfo::U64 => { $macro!(u64 $( $( , $params )* )? ) },
TypeInfo::I64 => { $macro!(i64 $( $( , $params )* )? ) },
TypeInfo::U128 => { $macro!(u128 $( $( , $params )* )? ) },
TypeInfo::I128 => { $macro!(i128 $( $( , $params )* )? ) },
TypeInfo::Unknown => { $( $unknown_variant )* },
TypeInfo::F32 => { $macro!(f32 $( $( , $params )* )? ) },
TypeInfo::F64 => { $macro!(f64 $( $( , $params )* )? ) },
}
};
}
pub trait EncodeAsRef<'a, T: 'a> {
type RefType: Encode + From<&'a T>;
}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn size_hint(&self) -> usize {
1 + match *self {
Ok(ref t) => t.size_hint(),
Err(ref t) => t.size_hint(),
}
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T, LikeT, E, LikeE> EncodeLike<Result<LikeT, LikeE>> for Result<T, E>
where
T: EncodeLike<LikeT>,
LikeT: Encode,
E: EncodeLike<LikeE>,
LikeE: Encode,
{}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
match input.read_byte()
.map_err(|e| e.chain("Could not result variant byte for `Result`"))?
{
0 => Ok(
Ok(T::decode(input).map_err(|e| e.chain("Could not Decode `Result::Ok(T)`"))?)
),
1 => Ok(
Err(E::decode(input).map_err(|e| e.chain("Could not decode `Result::Error(E)`"))?)
),
_ => Err("unexpected first byte decoding Result".into()),
}
}
}
#[derive(Eq, PartialEq, Clone, Copy)]
pub struct OptionBool(pub Option<bool>);
impl fmt::Debug for OptionBool {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl Encode for OptionBool {
fn size_hint(&self) -> usize {
1
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl EncodeLike for OptionBool {}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
match input.read_byte()? {
0 => Ok(OptionBool(None)),
1 => Ok(OptionBool(Some(true))),
2 => Ok(OptionBool(Some(false))),
_ => Err("unexpected first byte decoding OptionBool".into()),
}
}
}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Option<U>> for Option<T> {}
impl<T: Encode> Encode for Option<T> {
fn size_hint(&self) -> usize {
1 + match *self {
Some(ref t) => t.size_hint(),
None => 0,
}
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
match input.read_byte()
.map_err(|e| e.chain("Could not decode variant byte for `Option`"))?
{
0 => Ok(None),
1 => Ok(
Some(T::decode(input).map_err(|e| e.chain("Could not decode `Option::Some(T)`"))?)
),
_ => Err("unexpected first byte decoding Option".into()),
}
}
}
macro_rules! impl_for_non_zero {
( $( $name:ty ),* $(,)? ) => {
$(
impl Encode for $name {
fn size_hint(&self) -> usize {
self.get().size_hint()
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
self.get().encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
self.get().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.get().using_encoded(f)
}
}
impl EncodeLike for $name {}
impl Decode for $name {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Self::new(Decode::decode(input)?)
.ok_or_else(|| Error::from("cannot create non-zero number from 0"))
}
}
)*
}
}
pub(crate) fn encode_slice_no_len<T: Encode, W: Output + ?Sized>(slice: &[T], dest: &mut W) {
macro_rules! encode_to {
( u8, $slice:ident, $dest:ident ) => {{
let typed = unsafe { mem::transmute::<&[T], &[u8]>(&$slice[..]) };
$dest.write(&typed)
}};
( i8, $slice:ident, $dest:ident ) => {{
let typed = unsafe { mem::transmute::<&[T], &[u8]>(&$slice[..]) };
$dest.write(&typed)
}};
( $ty:ty, $slice:ident, $dest:ident ) => {{
if cfg!(target_endian = "little") {
let typed = unsafe { mem::transmute::<&[T], &[$ty]>(&$slice[..]) };
$dest.write(<[$ty] as AsByteSlice<$ty>>::as_byte_slice(typed))
} else {
for item in $slice.iter() {
item.encode_to(dest);
}
}
}};
}
with_type_info! {
<T as Encode>::TYPE_INFO,
encode_to(slice, dest),
{
for item in slice.iter() {
item.encode_to(dest);
}
},
}
}
pub fn decode_vec_with_len<T: Decode, I: Input>(
input: &mut I,
len: usize,
) -> Result<Vec<T>, Error> {
fn decode_unoptimized<I: Input, T: Decode>(
input: &mut I,
items_len: usize,
) -> Result<Vec<T>, Error> {
let input_capacity = input.remaining_len()?
.unwrap_or(MAX_PREALLOCATION)
.checked_div(mem::size_of::<T>())
.unwrap_or(0);
let mut r = Vec::with_capacity(input_capacity.min(items_len));
input.descend_ref()?;
for _ in 0..items_len {
r.push(T::decode(input)?);
}
input.ascend_ref();
Ok(r)
}
macro_rules! decode {
( $ty:ty, $input:ident, $len:ident ) => {{
if cfg!(target_endian = "little") || mem::size_of::<T>() == 1 {
let vec = read_vec_from_u8s::<_, $ty>($input, $len)?;
Ok(unsafe { mem::transmute::<Vec<$ty>, Vec<T>>(vec) })
} else {
decode_unoptimized($input, $len)
}
}};
}
with_type_info! {
<T as Decode>::TYPE_INFO,
decode(input, len),
{
decode_unoptimized(input, len)
},
}
}
impl_for_non_zero! {
NonZeroI8,
NonZeroI16,
NonZeroI32,
NonZeroI64,
NonZeroI128,
NonZeroU8,
NonZeroU16,
NonZeroU32,
NonZeroU64,
NonZeroU128,
}
impl<T: Encode, const N: usize> Encode for [T; N] {
fn size_hint(&self) -> usize {
mem::size_of::<T>() * N
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
encode_slice_no_len(&self[..], dest)
}
}
const fn calculate_array_bytesize<T, const N: usize>() -> usize {
struct AssertNotOverflow<T, const N: usize>(PhantomData<T>);
impl<T, const N: usize> AssertNotOverflow<T, N> {
const OK: () = assert!(mem::size_of::<T>().checked_mul(N).is_some(), "array size overflow");
}
#[allow(clippy::let_unit_value)]
let () = AssertNotOverflow::<T, N>::OK;
mem::size_of::<T>() * N
}
impl<T: Decode, const N: usize> Decode for [T; N] {
#[inline(always)]
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let mut array = MaybeUninit::uninit();
Self::decode_into(input, &mut array)?;
unsafe {
Ok(array.assume_init())
}
}
fn decode_into<I: Input>(input: &mut I, dst: &mut MaybeUninit<Self>) -> Result<DecodeFinished, Error> {
let is_primitive = match <T as Decode>::TYPE_INFO {
| TypeInfo::U8
| TypeInfo::I8
=> true,
| TypeInfo::U16
| TypeInfo::I16
| TypeInfo::U32
| TypeInfo::I32
| TypeInfo::U64
| TypeInfo::I64
| TypeInfo::U128
| TypeInfo::I128
| TypeInfo::F32
| TypeInfo::F64
=> cfg!(target_endian = "little"),
TypeInfo::Unknown => false
};
if is_primitive {
let ptr: *mut [T; N] = dst.as_mut_ptr();
let ptr: *mut u8 = ptr.cast();
let bytesize = calculate_array_bytesize::<T, N>();
unsafe {
ptr.write_bytes(0, bytesize);
}
let slice: &mut [u8] = unsafe {
core::slice::from_raw_parts_mut(ptr, bytesize)
};
input.read(slice)?;
unsafe {
return Ok(DecodeFinished::assert_decoding_finished());
}
}
let slice: &mut [MaybeUninit<T>; N] = {
let ptr: *mut [T; N] = dst.as_mut_ptr();
let ptr: *mut [MaybeUninit<T>; N] = ptr.cast();
unsafe { &mut *ptr }
};
struct State<'a, T, const N: usize> {
count: usize,
slice: &'a mut [MaybeUninit<T>; N]
}
impl<'a, T, const N: usize> Drop for State<'a, T, N> {
fn drop(&mut self) {
if !mem::needs_drop::<T>() {
return;
}
for item in &mut self.slice[..self.count] {
unsafe {
item.assume_init_drop();
}
}
}
}
let mut state = State {
count: 0,
slice
};
while state.count < state.slice.len() {
T::decode_into(input, &mut state.slice[state.count])?;
state.count += 1;
}
mem::forget(state);
unsafe {
Ok(DecodeFinished::assert_decoding_finished())
}
}
fn skip<I: Input>(input: &mut I) -> Result<(), Error> {
if Self::encoded_fixed_size().is_some() {
for _ in 0..N {
T::skip(input)?;
}
} else {
Self::decode(input)?;
}
Ok(())
}
fn encoded_fixed_size() -> Option<usize> {
Some(<T as Decode>::encoded_fixed_size()? * N)
}
}
impl<T: EncodeLike<U>, U: Encode, const N: usize> EncodeLike<[U; N]> for [T; N] {}
impl Encode for str {
fn size_hint(&self) -> usize {
self.as_bytes().size_hint()
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
self.as_bytes().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_bytes().using_encoded(f)
}
}
impl<'a, T: ToOwned + ?Sized> Decode for Cow<'a, T>
where <T as ToOwned>::Owned: Decode,
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Cow::Owned(Decode::decode(input)?))
}
}
impl<T> EncodeLike for PhantomData<T> {}
impl<T> Encode for PhantomData<T> {
fn encode_to<W: Output + ?Sized>(&self, _dest: &mut W) {}
}
impl<T> Decode for PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Result<Self, Error> {
Ok(PhantomData)
}
}
impl Decode for String {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Self::from_utf8(Vec::decode(input)?).map_err(|_| "Invalid utf8 sequence".into())
}
}
pub(crate) fn compact_encode_len_to<W: Output + ?Sized>(dest: &mut W, len: usize) -> Result<(), Error> {
if len > u32::MAX as usize {
return Err("Attempted to serialize a collection with too many elements.".into());
}
Compact(len as u32).encode_to(dest);
Ok(())
}
impl<T: Encode> Encode for [T] {
fn size_hint(&self) -> usize {
mem::size_of::<u32>() + mem::size_of_val(self)
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
compact_encode_len_to(dest, self.len()).expect("Compact encodes length");
encode_slice_no_len(self, dest)
}
}
pub(crate) fn read_vec_from_u8s<I, T>(input: &mut I, items_len: usize) -> Result<Vec<T>, Error>
where
I: Input,
T: ToMutByteSlice + Default + Clone,
{
debug_assert!(MAX_PREALLOCATION >= mem::size_of::<T>(), "Invalid precondition");
let byte_len = items_len.checked_mul(mem::size_of::<T>())
.ok_or("Item is too big and cannot be allocated")?;
let input_len = input.remaining_len()?;
if input_len.map(|l| l < byte_len).unwrap_or(false) {
return Err("Not enough data to decode vector".into())
}
let r = if input_len.is_some() || byte_len < MAX_PREALLOCATION {
let mut items: Vec<T> = vec![Default::default(); items_len];
let bytes_slice = items.as_mut_byte_slice();
input.read(bytes_slice)?;
items
} else {
let max_preallocated_items = MAX_PREALLOCATION / mem::size_of::<T>();
let mut items: Vec<T> = vec![];
let mut items_remains = items_len;
while items_remains > 0 {
let items_len_read = max_preallocated_items.min(items_remains);
let items_len_filled = items.len();
let items_new_size = items_len_filled + items_len_read;
items.reserve_exact(items_len_read);
unsafe {
items.set_len(items_new_size);
}
let bytes_slice = items.as_mut_byte_slice();
let bytes_len_filled = items_len_filled * mem::size_of::<T>();
input.read(&mut bytes_slice[bytes_len_filled..])?;
items_remains = items_remains.saturating_sub(items_len_read);
}
items
};
Ok(r)
}
impl<T> WrapperTypeEncode for Vec<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Vec<U>> for Vec<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<&[U]> for Vec<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Vec<U>> for &[T] {}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
decode_vec_with_len(input, len as usize)
})
}
}
macro_rules! impl_codec_through_iterator {
($(
$type:ident
{ $( $generics:ident $( : $decode_additional:ident )? ),* }
{ $( $type_like_generics:ident ),* }
{ $( $impl_like_generics:tt )* }
)*) => {$(
impl<$( $generics: Encode ),*> Encode for $type<$( $generics, )*> {
fn size_hint(&self) -> usize {
mem::size_of::<u32>() $( + mem::size_of::<$generics>() * self.len() )*
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
compact_encode_len_to(dest, self.len()).expect("Compact encodes length");
for i in self.iter() {
i.encode_to(dest);
}
}
}
impl<$( $generics: Decode $( + $decode_additional )? ),*> Decode
for $type<$( $generics, )*>
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
input.descend_ref()?;
let result = Result::from_iter((0..len).map(|_| Decode::decode(input)));
input.ascend_ref();
result
})
}
}
impl<$( $impl_like_generics )*> EncodeLike<$type<$( $type_like_generics ),*>>
for $type<$( $generics ),*> {}
impl<$( $impl_like_generics )*> EncodeLike<&[( $( $type_like_generics, )* )]>
for $type<$( $generics ),*> {}
impl<$( $impl_like_generics )*> EncodeLike<$type<$( $type_like_generics ),*>>
for &[( $( $generics, )* )] {}
)*}
}
impl_codec_through_iterator! {
BTreeMap { K: Ord, V } { LikeK, LikeV}
{ K: EncodeLike<LikeK>, LikeK: Encode, V: EncodeLike<LikeV>, LikeV: Encode }
BTreeSet { T: Ord } { LikeT }
{ T: EncodeLike<LikeT>, LikeT: Encode }
LinkedList { T } { LikeT }
{ T: EncodeLike<LikeT>, LikeT: Encode }
BinaryHeap { T: Ord } { LikeT }
{ T: EncodeLike<LikeT>, LikeT: Encode }
}
impl<T: Encode> EncodeLike for VecDeque<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<&[U]> for VecDeque<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<VecDeque<U>> for &[T] {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Vec<U>> for VecDeque<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<VecDeque<U>> for Vec<T> {}
impl<T: Encode> Encode for VecDeque<T> {
fn size_hint(&self) -> usize {
mem::size_of::<u32>() + mem::size_of::<T>() * self.len()
}
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
compact_encode_len_to(dest, self.len()).expect("Compact encodes length");
macro_rules! encode_to {
( $ty:ty, $self:ident, $dest:ident ) => {{
if cfg!(target_endian = "little") || mem::size_of::<T>() == 1 {
let slices = $self.as_slices();
let typed = unsafe {
core::mem::transmute::<(&[T], &[T]), (&[$ty], &[$ty])>(slices)
};
$dest.write(<[$ty] as AsByteSlice<$ty>>::as_byte_slice(typed.0));
$dest.write(<[$ty] as AsByteSlice<$ty>>::as_byte_slice(typed.1));
} else {
for item in $self {
item.encode_to($dest);
}
}
}};
}
with_type_info! {
<T as Encode>::TYPE_INFO,
encode_to(self, dest),
{
for item in self {
item.encode_to(dest);
}
},
}
}
}
impl<T: Decode> Decode for VecDeque<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(<Vec<T>>::decode(input)?.into())
}
}
impl EncodeLike for () {}
impl Encode for () {
fn encode_to<W: Output + ?Sized>(&self, _dest: &mut W) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Result<(), Error> {
Ok(())
}
}
macro_rules! impl_len {
( $( $type:ident< $($g:ident),* > ),* ) => { $(
impl<$($g),*> DecodeLength for $type<$($g),*> {
fn len(mut self_encoded: &[u8]) -> Result<usize, Error> {
usize::try_from(u32::from(Compact::<u32>::decode(&mut self_encoded)?))
.map_err(|_| "Failed convert decoded size into usize.".into())
}
}
)*}
}
impl_len!(Vec<T>, BTreeSet<T>, BTreeMap<K, V>, VecDeque<T>, BinaryHeap<T>, LinkedList<T>);
macro_rules! tuple_impl {
(
($one:ident, $extra:ident),
) => {
impl<$one: Encode> Encode for ($one,) {
fn size_hint(&self) -> usize {
self.0.size_hint()
}
fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.0.encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.0.using_encoded(f)
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
match $one::decode(input) {
Err(e) => Err(e),
Ok($one) => Ok(($one,)),
}
}
}
impl<$one: DecodeLength> DecodeLength for ($one,) {
fn len(self_encoded: &[u8]) -> Result<usize, Error> {
$one::len(self_encoded)
}
}
impl<$one: EncodeLike<$extra>, $extra: Encode> crate::EncodeLike<($extra,)> for ($one,) {}
};
(($first:ident, $fextra:ident), $( ( $rest:ident, $rextra:ident ), )+) => {
impl<$first: Encode, $($rest: Encode),+> Encode for ($first, $($rest),+) {
fn size_hint(&self) -> usize {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.size_hint()
$( + $rest.size_hint() )+
}
fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+> Decode for ($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Result<Self, super::Error> {
Ok((
match $first::decode(input) {
Ok(x) => x,
Err(e) => return Err(e),
},
$(match $rest::decode(input) {
Ok(x) => x,
Err(e) => return Err(e),
},)+
))
}
}
impl<$first: EncodeLike<$fextra>, $fextra: Encode,
$($rest: EncodeLike<$rextra>, $rextra: Encode),+> crate::EncodeLike<($fextra, $( $rextra ),+)>
for ($first, $($rest),+) {}
impl<$first: DecodeLength, $($rest),+> DecodeLength for ($first, $($rest),+) {
fn len(self_encoded: &[u8]) -> Result<usize, Error> {
$first::len(self_encoded)
}
}
tuple_impl!( $( ($rest, $rextra), )+ );
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::*;
tuple_impl!(
(A0, A1), (B0, B1), (C0, C1), (D0, D1), (E0, E1), (F0, F1), (G0, G1), (H0, H1), (I0, I1),
(J0, J1), (K0, K1), (L0, L1), (M0, M1), (N0, N1), (O0, O1), (P0, P1), (Q0, Q1), (R0, R1),
);
}
macro_rules! impl_endians {
( $( $t:ty; $ty_info:ident ),* ) => { $(
impl EncodeLike for $t {}
impl Encode for $t {
const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;
fn size_hint(&self) -> usize {
mem::size_of::<$t>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let buf = self.to_le_bytes();
f(&buf[..])
}
}
impl Decode for $t {
const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let mut buf = [0u8; mem::size_of::<$t>()];
input.read(&mut buf)?;
Ok(<$t>::from_le_bytes(buf))
}
fn encoded_fixed_size() -> Option<usize> {
Some(mem::size_of::<$t>())
}
}
)* }
}
macro_rules! impl_one_byte {
( $( $t:ty; $ty_info:ident ),* ) => { $(
impl EncodeLike for $t {}
impl Encode for $t {
const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;
fn size_hint(&self) -> usize {
mem::size_of::<$t>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[*self as u8][..])
}
}
impl Decode for $t {
const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(input.read_byte()? as $t)
}
}
)* }
}
impl_endians!(u16; U16, u32; U32, u64; U64, u128; U128, i16; I16, i32; I32, i64; I64, i128; I128);
impl_one_byte!(u8; U8, i8; I8);
impl_endians!(f32; F32, f64; F64);
impl EncodeLike for bool {}
impl Encode for bool {
fn size_hint(&self) -> usize {
mem::size_of::<bool>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[*self as u8][..])
}
}
impl Decode for bool {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let byte = input.read_byte()?;
match byte {
0 => Ok(false),
1 => Ok(true),
_ => Err("Invalid boolean representation".into())
}
}
fn encoded_fixed_size() -> Option<usize> {
Some(1)
}
}
impl Encode for Duration {
fn size_hint(&self) -> usize {
mem::size_of::<u64>() + mem::size_of::<u32>()
}
fn encode(&self) -> Vec<u8> {
let secs = self.as_secs();
let nanos = self.subsec_nanos();
(secs, nanos).encode()
}
}
impl Decode for Duration {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let (secs, nanos) = <(u64, u32)>::decode(input)
.map_err(|e| e.chain("Could not decode `Duration(u64, u32)`"))?;
if nanos >= A_BILLION {
Err("Could not decode `Duration`: Number of nanoseconds should not be higher than 10^9.".into())
} else {
Ok(Duration::new(secs, nanos))
}
}
}
impl EncodeLike for Duration {}
impl<T> Encode for Range<T>
where
T: Encode
{
fn size_hint(&self) -> usize {
2 * mem::size_of::<T>()
}
fn encode(&self) -> Vec<u8> {
(&self.start, &self.end).encode()
}
}
impl<T> Decode for Range<T>
where
T: Decode
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let (start, end) = <(T, T)>::decode(input)
.map_err(|e| e.chain("Could not decode `Range<T>`"))?;
Ok(Range { start, end })
}
}
impl<T> Encode for RangeInclusive<T>
where
T: Encode
{
fn size_hint(&self) -> usize {
2 * mem::size_of::<T>()
}
fn encode(&self) -> Vec<u8> {
(self.start(), self.end()).encode()
}
}
impl<T> Decode for RangeInclusive<T>
where
T: Decode
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let (start, end) = <(T, T)>::decode(input)
.map_err(|e| e.chain("Could not decode `RangeInclusive<T>`"))?;
Ok(RangeInclusive::new(start, end))
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::borrow::Cow;
#[test]
fn vec_is_sliceable() {
let v = b"Hello world".to_vec();
v.using_encoded(|ref slice|
assert_eq!(slice, &b"\x2cHello world")
);
}
#[test]
fn encode_borrowed_tuple() {
let x = vec![1u8, 2, 3, 4];
let y = 128i64;
let encoded = (&x, &y).encode();
assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn cow_works() {
let x = &[1u32, 2, 3, 4, 5, 6][..];
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<'_, [u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
#[test]
fn cow_string_works() {
let x = "Hello world!";
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<'_, str> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
fn hexify(bytes: &[u8]) -> String {
bytes.iter().map(|ref b| format!("{:02x}", b)).collect::<Vec<String>>().join(" ")
}
#[test]
fn string_encoded_as_expected() {
let value = String::from("Hello, World!");
let encoded = value.encode();
assert_eq!(hexify(&encoded), "34 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 21");
assert_eq!(<String>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_u8_encoded_as_expected() {
let value = vec![0u8, 1, 1, 2, 3, 5, 8, 13, 21, 34];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "28 00 01 01 02 03 05 08 0d 15 22");
assert_eq!(<Vec<u8>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_i16_encoded_as_expected() {
let value = vec![0i16, 1, -1, 2, -2, 3, -3];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "1c 00 00 01 00 ff ff 02 00 fe ff 03 00 fd ff");
assert_eq!(<Vec<i16>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_option_int_encoded_as_expected() {
let value = vec![Some(1i8), Some(-1), None];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "0c 01 01 01 ff 00");
assert_eq!(<Vec<Option<i8>>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_option_bool_encoded_as_expected() {
let value = vec![OptionBool(Some(true)), OptionBool(Some(false)), OptionBool(None)];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "0c 01 02 00");
assert_eq!(<Vec<OptionBool>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[cfg(feature = "bytes")]
#[test]
fn bytes_works_as_expected() {
let input = bytes::Bytes::from_static(b"hello");
let encoded = Encode::encode(&input);
let encoded_vec = input.to_vec().encode();
assert_eq!(encoded, encoded_vec);
assert_eq!(
&b"hello"[..],
bytes::Bytes::decode(&mut &encoded[..]).unwrap(),
);
}
#[cfg(feature = "bytes")]
#[test]
fn bytes_deserialized_from_bytes_is_zero_copy() {
let encoded = bytes::Bytes::from(Encode::encode(&b"hello".to_vec()));
let decoded = decode_from_bytes::<bytes::Bytes>(encoded.clone()).unwrap();
assert_eq!(decoded, &b"hello"[..]);
assert_eq!(encoded.slice_ref(&decoded), &b"hello"[..]);
}
#[cfg(feature = "bytes")]
#[test]
fn nested_bytes_deserialized_from_bytes_is_zero_copy() {
let encoded = bytes::Bytes::from(Encode::encode(&Some(b"hello".to_vec())));
let decoded = decode_from_bytes::<Option<bytes::Bytes>>(encoded.clone()).unwrap();
let decoded = decoded.as_ref().unwrap();
assert_eq!(decoded, &b"hello"[..]);
assert_eq!(encoded.slice_ref(&decoded), &b"hello"[..]);
}
fn test_encode_length<T: Encode + Decode + DecodeLength>(thing: &T, len: usize) {
assert_eq!(<T as DecodeLength>::len(&thing.encode()[..]).unwrap(), len);
}
#[test]
fn len_works_for_decode_collection_types() {
let vector = vec![10; 10];
let mut btree_map: BTreeMap<u32, u32> = BTreeMap::new();
btree_map.insert(1, 1);
btree_map.insert(2, 2);
let mut btree_set: BTreeSet<u32> = BTreeSet::new();
btree_set.insert(1);
btree_set.insert(2);
let mut vd = VecDeque::new();
vd.push_front(1);
vd.push_front(2);
let mut bh = BinaryHeap::new();
bh.push(1);
bh.push(2);
let mut ll = LinkedList::new();
ll.push_back(1);
ll.push_back(2);
let t1: (Vec<_>,) = (vector.clone(),);
let t2: (Vec<_>, u32) = (vector.clone(), 3u32);
test_encode_length(&vector, 10);
test_encode_length(&btree_map, 2);
test_encode_length(&btree_set, 2);
test_encode_length(&vd, 2);
test_encode_length(&bh, 2);
test_encode_length(&ll, 2);
test_encode_length(&t1, 10);
test_encode_length(&t2, 10);
}
#[test]
fn vec_of_string_encoded_as_expected() {
let value = vec![
"Hamlet".to_owned(),
"Война и мир".to_owned(),
"三国演义".to_owned(),
"أَلْف لَيْلَة وَلَيْلَة".to_owned()
];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "10 18 48 61 6d 6c 65 74 50 d0 92 d0 be d0 b9 d0 bd d0 b0 20 d0 \
b8 20 d0 bc d0 b8 d1 80 30 e4 b8 89 e5 9b bd e6 bc 94 e4 b9 89 bc d8 a3 d9 8e d9 84 d9 92 \
d9 81 20 d9 84 d9 8e d9 8a d9 92 d9 84 d9 8e d8 a9 20 d9 88 d9 8e d9 84 d9 8e d9 8a d9 92 \
d9 84 d9 8e d8 a9 e2 80 8e");
assert_eq!(<Vec<String>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[derive(Debug, PartialEq)]
struct MyWrapper(Compact<u32>);
impl Deref for MyWrapper {
type Target = Compact<u32>;
fn deref(&self) -> &Self::Target { &self.0 }
}
impl WrapperTypeEncode for MyWrapper {}
impl From<Compact<u32>> for MyWrapper {
fn from(c: Compact<u32>) -> Self { MyWrapper(c) }
}
impl WrapperTypeDecode for MyWrapper {
type Wrapped = Compact<u32>;
}
#[test]
fn should_work_for_wrapper_types() {
let result = vec![0b1100];
assert_eq!(MyWrapper(3u32.into()).encode(), result);
assert_eq!(MyWrapper::decode(&mut &*result).unwrap(), MyWrapper(3_u32.into()));
}
#[test]
fn codec_vec_deque_u8_and_u16() {
let mut v_u8 = VecDeque::new();
let mut v_u16 = VecDeque::new();
for i in 0..50 {
v_u8.push_front(i as u8);
v_u16.push_front(i as u16);
}
for i in 50..100 {
v_u8.push_back(i as u8);
v_u16.push_back(i as u16);
}
assert_eq!(Decode::decode(&mut &v_u8.encode()[..]), Ok(v_u8));
assert_eq!(Decode::decode(&mut &v_u16.encode()[..]), Ok(v_u16));
}
#[test]
fn codec_iterator() {
let t1: BTreeSet<u32> = FromIterator::from_iter((0..10).flat_map(|i| 0..i));
let t2: LinkedList<u32> = FromIterator::from_iter((0..10).flat_map(|i| 0..i));
let t3: BinaryHeap<u32> = FromIterator::from_iter((0..10).flat_map(|i| 0..i));
let t4: BTreeMap<u16, u32> = FromIterator::from_iter(
(0..10)
.flat_map(|i| 0..i)
.map(|i| (i as u16, i + 10))
);
let t5: BTreeSet<Vec<u8>> = FromIterator::from_iter((0..10).map(|i| Vec::from_iter(0..i)));
let t6: LinkedList<Vec<u8>> = FromIterator::from_iter((0..10).map(|i| Vec::from_iter(0..i)));
let t7: BinaryHeap<Vec<u8>> = FromIterator::from_iter((0..10).map(|i| Vec::from_iter(0..i)));
let t8: BTreeMap<Vec<u8>, u32> = FromIterator::from_iter(
(0..10)
.map(|i| Vec::from_iter(0..i))
.map(|i| (i.clone(), i.len() as u32))
);
assert_eq!(Decode::decode(&mut &t1.encode()[..]), Ok(t1));
assert_eq!(Decode::decode(&mut &t2.encode()[..]), Ok(t2));
assert_eq!(
Decode::decode(&mut &t3.encode()[..]).map(BinaryHeap::into_sorted_vec),
Ok(t3.into_sorted_vec()),
);
assert_eq!(Decode::decode(&mut &t4.encode()[..]), Ok(t4));
assert_eq!(Decode::decode(&mut &t5.encode()[..]), Ok(t5));
assert_eq!(Decode::decode(&mut &t6.encode()[..]), Ok(t6));
assert_eq!(
Decode::decode(&mut &t7.encode()[..]).map(BinaryHeap::into_sorted_vec),
Ok(t7.into_sorted_vec()),
);
assert_eq!(Decode::decode(&mut &t8.encode()[..]), Ok(t8));
}
#[test]
fn io_reader() {
let mut io_reader = IoReader(std::io::Cursor::new(&[1u8, 2, 3][..]));
let mut v = [0; 2];
io_reader.read(&mut v[..]).unwrap();
assert_eq!(v, [1, 2]);
assert_eq!(io_reader.read_byte().unwrap(), 3);
assert_eq!(io_reader.read_byte(), Err("io error: UnexpectedEof".into()));
}
#[test]
fn shared_references_implement_encode() {
Arc::new(10u32).encode();
Rc::new(10u32).encode();
}
#[test]
fn not_limit_input_test() {
use crate::Input;
struct NoLimit<'a>(&'a [u8]);
impl<'a> Input for NoLimit<'a> {
fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
Ok(None)
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
self.0.read(into)
}
}
let len = MAX_PREALLOCATION * 2 + 1;
let mut i = Compact(len as u32).encode();
i.resize(i.len() + len, 0);
assert_eq!(<Vec<u8>>::decode(&mut NoLimit(&i[..])).unwrap(), vec![0u8; len]);
let i = Compact(len as u32).encode();
assert_eq!(
<Vec<u8>>::decode(&mut NoLimit(&i[..])).err().unwrap().to_string(),
"Not enough data to fill buffer",
);
let i = Compact(1000u32).encode();
assert_eq!(
<Vec<u8>>::decode(&mut NoLimit(&i[..])).err().unwrap().to_string(),
"Not enough data to fill buffer",
);
}
#[test]
fn boolean() {
assert_eq!(true.encode(), vec![1]);
assert_eq!(false.encode(), vec![0]);
assert_eq!(bool::decode(&mut &[1][..]).unwrap(), true);
assert_eq!(bool::decode(&mut &[0][..]).unwrap(), false);
}
#[test]
fn some_encode_like() {
fn t<B: EncodeLike>() {}
t::<&[u8]>();
t::<&str>();
t::<NonZeroU32>();
}
#[test]
fn vec_deque_encode_like_vec() {
let data: VecDeque<u32> = vec![1, 2, 3, 4, 5, 6].into();
let encoded = data.encode();
let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
assert!(decoded.iter().all(|v| data.contains(&v)));
assert_eq!(data.len(), decoded.len());
let encoded = decoded.encode();
let decoded = VecDeque::<u32>::decode(&mut &encoded[..]).unwrap();
assert_eq!(data, decoded);
}
#[test]
fn vec_decode_right_capacity() {
let data: Vec<u32> = vec![1, 2, 3];
let mut encoded = data.encode();
encoded.resize(encoded.len() * 2, 0);
let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
assert_eq!(data, decoded);
assert_eq!(decoded.capacity(), decoded.len());
let data: Vec<String> = vec!["1".into(), "2".into(), "3".into()];
let mut encoded = data.encode();
encoded.resize(65536, 0);
let decoded = Vec::<String>::decode(&mut &encoded[..]).unwrap();
assert_eq!(data, decoded);
assert_eq!(decoded.capacity(), decoded.len());
}
#[test]
fn duration() {
let num_secs = 13;
let num_nanos = 37;
let duration = Duration::new(num_secs, num_nanos);
let expected = (num_secs, num_nanos as u32).encode();
assert_eq!(duration.encode(), expected);
assert_eq!(Duration::decode(&mut &expected[..]).unwrap(), duration);
}
#[test]
fn malformed_duration_encoding_fails() {
let invalid_nanos = A_BILLION;
let encoded = (0u64, invalid_nanos).encode();
assert!(Duration::decode(&mut &encoded[..]).is_err());
let num_secs = 1u64;
let num_nanos = 37u32;
let invalid_nanos = num_secs as u32 * A_BILLION + num_nanos;
let encoded = (num_secs, invalid_nanos).encode();
assert!(Duration::decode(&mut &encoded[..]).is_err());
let duration = Duration::from_nanos(invalid_nanos as u64);
let expected = (num_secs, num_nanos).encode();
assert_eq!(duration.encode(), expected);
assert_eq!(Duration::decode(&mut &expected[..]).unwrap(), duration);
}
#[test]
fn u64_max() {
let num_secs = u64::MAX;
let num_nanos = 0;
let duration = Duration::new(num_secs, num_nanos);
let expected = (num_secs, num_nanos).encode();
assert_eq!(duration.encode(), expected);
assert_eq!(Duration::decode(&mut &expected[..]).unwrap(), duration);
}
#[test]
fn decoding_does_not_overflow() {
let num_secs = u64::MAX;
let num_nanos = A_BILLION;
let encoded = (num_secs, num_nanos).encode();
assert!(Duration::decode(&mut &encoded[..]).is_err());
}
#[test]
fn string_invalid_utf8() {
let mut bytes: &[u8] = &[20, 114, 167, 10, 20, 114];
let obj = <String>::decode(&mut bytes);
assert!(obj.is_err());
}
#[test]
fn empty_array_encode_and_decode() {
let data: [u32; 0] = [];
let encoded = data.encode();
assert!(encoded.is_empty());
<[u32; 0]>::decode(&mut &encoded[..]).unwrap();
}
macro_rules! test_array_encode_and_decode {
( $( $name:ty ),* $(,)? ) => {
$(
paste::item! {
#[test]
fn [<test_array_encode_and_decode _ $name>]() {
let data: [$name; 32] = [123 as $name; 32];
let encoded = data.encode();
let decoded: [$name; 32] = Decode::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded, data);
}
}
)*
}
}
test_array_encode_and_decode!(u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);
test_array_encode_and_decode!(f32, f64);
fn test_encoded_size(val: impl Encode) {
let length = val.using_encoded(|v| v.len());
assert_eq!(length, val.encoded_size());
}
struct TestStruct {
data: Vec<u32>,
other: u8,
compact: Compact<u128>,
}
impl Encode for TestStruct {
fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
self.data.encode_to(dest);
self.other.encode_to(dest);
self.compact.encode_to(dest);
}
}
#[test]
fn encoded_size_works() {
test_encoded_size(120u8);
test_encoded_size(30u16);
test_encoded_size(1u32);
test_encoded_size(2343545u64);
test_encoded_size(34358394245459854u128);
test_encoded_size(vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10u32]);
test_encoded_size(Compact(32445u32));
test_encoded_size(Compact(34353454453545u128));
test_encoded_size(TestStruct {
data: vec![1, 2, 4, 5, 6],
other: 45,
compact: Compact(123234545),
});
}
#[test]
fn ranges() {
let range = Range { start: 1, end: 100 };
let range_bytes = (1, 100).encode();
assert_eq!(range.encode(), range_bytes);
assert_eq!(Range::decode(&mut &range_bytes[..]), Ok(range));
let range_inclusive = RangeInclusive::new(1, 100);
let range_inclusive_bytes = (1, 100).encode();
assert_eq!(range_inclusive.encode(), range_inclusive_bytes);
assert_eq!(RangeInclusive::decode(&mut &range_inclusive_bytes[..]), Ok(range_inclusive));
}
}